CHAPTER III

$\underline{X}=$ RAY DIPFRACTION STUDY

```
3.1 The Structure 0f Perovskite -Type Perroelectrics
    The perovskite - type ferroelectrics with general
composition }\mp@subsup{\textrm{ABO}}{3}{}(\textrm{Ba TiO}\mp@code{)}\mathrm{ ) have the cubic unit cell as shown
fig ( 3.1). The space group is 0'h - Pm 3m. Placing the
origin of an A ion the atomic co-ordinates are as follows :-
```


A ---- at - 日, 0, 0;
B ---- at - $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}+\delta Z_{B}$;
$0_{\mathrm{I}}-\mathrm{O}^{-}$at $-\frac{1}{2}, \frac{1}{2}, \delta 2_{0 I}$;
$20_{\text {II }}-$-at $-\frac{1}{2}, \theta, \frac{1}{2}+\delta 2_{0 I I} ; \theta, \frac{1}{2}, \frac{1}{2}+\delta Z_{0 I I}$

3.2 The structure of Bation In The Tetragonal Phase :

The first detailed X-ray analysis of untwinned crystals was made by kanzig (61) using rather unconventional method. Instead of deducting the displacements oz from the measured structure factors of a great number of reflections (h, $k, 1$), Kanzig measured the change that high order $(0,0,1)$ structure factors undergo when the crystal transforms from
the cubic phase into the tetragonal phase, the displacements $\delta 2$ were determined from these changes. It was assumed that $0_{I I}$ remains undisplaced and that $\delta z_{T i}$ and $\delta z_{O I}$ have opposite signs. The parameters δz at room temperature were found to be

$$
\delta \mathrm{z}_{\mathrm{Ti}}=0.0114, \delta \mathrm{z}_{0 \mathrm{I}}=-0.032
$$

$\left[\delta 20_{I I}=\emptyset\right.$ assumed $]$
Using conventional methods, Evans (62) made thorough X-ray analysis of the tetragonal phase at room temperature without introducing the assumptions made in the earlier analysis, he deduced two structures which are in very good agreement with the observed intensitics. The first solution is very close to Kanzig's result.

$$
\delta z_{\mathrm{Ti}}=0.012, \delta z_{\mathrm{I}}=-0.026, \delta z_{0 \mathrm{II}}=0
$$

The second solution gave

coul/cm ${ }^{2}$ A neutron diffraction study of the orthorhombic phase has also been accomplished by Shirane et al (64).

3.3 Method Of Determination of Parameters 'a' \& 'c'

The method we have adopted is a graphical technique and was proposed by Hall \& Deary. The method is deseribed below.

The interplaner distance ' d ' corresponding to any two planes with Miller indices $h, k, 1$ for a tetragonal unit cell is given by the relation.
$d^{2}=a^{2}\left[h^{2}+k^{2}+1^{2}(---)^{2}\right]^{-1}--(3.1)$
a

Now the equation 3.1 has two unknowns, viz and c / a to be determined knowing d values and corresponding $h, k, 1$ of the reflecttions in the XRD graph. The XRD graph provides knowledge about d values only and therefore intially $h, k, 1$ corresponding to the reflections and the parameter c/a is determined as below. Let d_{1} and d_{2} be the interplaner distances for any two plane sets with corresponding indices h_{1}, k_{1}, l_{1} and $h_{2}, k_{2}, 1_{2}$ respectively therefore,
$d l^{2}=a^{2}\left[h 1^{2}+k 1^{2}+11^{2}(---)^{2}\right]^{-1}-(3.2)$

$$
\mathrm{d} 2^{2}=\mathrm{a}^{2}\left[\mathrm{~h} 2^{2}+\mathrm{k} 2^{2}+12^{2} \mathrm{c}^{\mathrm{c} d} \mathrm{(---)}^{2}\right]^{-1}-(3.3)
$$

a

Further taking logarithms on both the sides of equations 3.2 and 3.3 and substracting eqn. 3.2 from equ 3.3 we find:$2 \log \mathrm{~d}_{2}-2 \log \mathrm{~d}_{1}=\log \left(\mathrm{h} 1^{2}+\mathrm{k} 1^{2}+(\mathrm{c} / \mathrm{a})^{2} 11^{2}\right)$

$$
-\log \left[h 2^{2}+k^{2}+(c / a)^{2} 12^{2}\right) \ldots(3.4)
$$

The equation 3.4 is used for the graphical techinique.
Initially the graph of $10 \mathrm{~g}\left(\mathrm{~h}^{2}+\mathrm{k}^{2}+1^{2}(\mathrm{c} / \mathrm{a})^{2}\right)$ for various values of c / a between 0.4 to 1.8 and for different values of $h, k, 1$ is ploted. The $\log \left(h^{2}+k^{2}+1^{2}(c / a)^{2}\right)$ is ploted as abscissa, while c/a is the ordinate while selecting the scale on abscissa, the scale is selected as a negative logarithmic scale, such that

$$
-\log \left(h^{2}+k^{2}+1^{2}(c / a)^{2}\right)
$$

is ploted automaticaly. Usually, 10 cm equals one period of logarithm.

Now the values of 2 log d are ploted on a transparant strip.

The scales selected for lof $\left(h^{2}+k^{2}+1^{2}(c / a)^{2}\right)$ and $2 \log$ d are the same. Now the transparant strip is slided over the graph of $\log \left(h^{2}+k^{2}+1^{2}(c / a)^{2}\right)$ and c / a, such that each 2 $\log d$ value matches with some $\log \left(h^{2}+k^{2}+1^{2}(c / a)^{2}\right)$
value. This will occur only for a c/a value, as seen from equ 3.4. The corresponding parameter c / a and $h, k, 1$ values are determined for every value of the interplaner distance. Using this information the parameters a, a and c/a are calculated.

In the present investigation, we have tried to index the following planes and have determined the values of parameters a, and $c / a . \quad$ The planes selected are $(1, \theta, \theta),(\theta, \theta, 1), \ldots$

3.4 The Result and Discussion

In the présent study an attempt has been made to determine lattice structure parameters of polycrystaline barium titanate (BaTiO_{3}) and solid solutions $\mathrm{BaFe}_{\mathrm{x} / 2}$
$\mathrm{Sb}_{\mathrm{x} / 2} \mathrm{Ti}(1-\mathrm{x})^{0_{3}}$ and $\mathrm{BaCr}_{\mathrm{x} / 2} \mathrm{Sb}_{\mathrm{x} / 2} \mathrm{Ti}_{(1-\mathrm{x})} \mathrm{O}_{3}$, for $\mathrm{x}=0.025$, $0.05,0.1,0.2$ and 0.4. Powder diffraction patterns are shown in fig $3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9$. The prominent lines are indexed in these diffraction patterns. The results obtained from the analysis of these diffraction patterns as outlined in sec 3.3 are presented in table 3.1 and 3.2 along with earlier worker's data.

Fig 3.10 shows variation c / a as x for both the substitutions. The trends observed for Fe Sb substitution is opposite to that observed for $C r$ Sb substitution. The c/a

TABLE 3.1

Lattice Parameters For $\mathrm{BaFe} \mathrm{x} / 2 \mathrm{Sbx} / 2 \mathrm{Ti}(1-\mathrm{x}) \mathrm{O3}$

Concetraction	Lattice a A°	Parameters	c/a
0.00	3.9905	4.0304	1.01
0.025	3.98336	4.0426	1.02
0.05	3.9901	3.9901	1.00
0.1	4.00702	3.9800	0.99
0.2			
0.4	4.0210	3.9808	0.99

Table 3.2

Lattice	Parameters For $\mathrm{BaCrX} / 2 \mathrm{SbX} / 2 \mathrm{~T} \mathrm{~T}(1-\mathrm{X}) \mathrm{O} 3$		
Concetraction x	Lattice	Parameters c A°	c/a
0.025	4.0109	3.9948	0.996
0.05	4.0938	4.00529	0.99
0.1	4.0274	3.979	0.988
0.2			
0.4	4.0534	4.0129	0.99

