LIST OF FIGURES

- 2.1 Spinel structure
- 2.2 Angles between A-A, B-B and A-B cations in the spinel structure.
- 2.3 Structure of BaTiO₃
- 3.1 Schematic diagram for the x-ray diffractometer
- 3.2 X-ray diffraction pattern of Ba_{0.8}Pb_{0.2}TiO₃ ferroelectric
- 3.3 X-ray diffraction pattern of Ba_{0.8}Pb_{0.2}TiO₃ ferrite
- 3.4 X-ray diffraction pattern of
 15% Ni_{0.75}Co_{0.25}Fe₂O₄ +85% Ba_{0.8}Pb_{0.2}TiO₃ composite
- 3.5 X-ray diffraction pattern of
 30% Ni_{0.75}Co_{0.25}Fe₂O₄ + 70% Ba_{0.8}Pb_{0.2}TiO₃ composite
- X-ray diffraction pattern of
 45% Ni_{0.75}Co_{0.25}Fe₂O₄ + 55% Ba_{0.8}Pb_{0.2}TiO₃ composite
- 4.1 Experimental set up for dielectric constant measurement
- 4.2.1 Variation of dielectric constant (ϵ ') with frequency for x = 1, 0.85, 0.7, 0.55 and 0 composite
- 4.2.2 Variation of loss tangent $(\tan \delta)$ with frequency for x = 1, 0.85, 0.7, 0.55 and 0 composite
- 4.2.3 Variation of log ($\sigma_{ac} \sigma_{dc}$) with log ω^2 for x = 1, 0.85, 0.7, 0.55 and 0 composite.
- 4.2.4 Variation of dielectric constant with temperature for x = 1, i.e. Ba_{0.8}Pb_{0.2}TiO₃ ferroelectric.

- 4.2.5 Variation of dielectric constant with temperature for x = 0, i.e. Ni_{0.75}Co_{0.25}Fe₂O₄ ferrite.
- 4.2.6 Variation of dielectric constant with temperature for x = 0.85 composite.
- 4.2.7 Variation of dielectric constant with temperature for x = 0.70 composite.
- 4.2.8 Variation of dielectric constant with temperature for x = 0.55 composite.
- 4.2.9 Variation of loss tangent with temperature for x = 1, i.e. Ba_{0.8}Pb_{0.2}TiO₃ ferroelectric.
- 4.2.10 Variation of loss tangent with temperature for x = 0, i.e. Ni_{0.75}Co_{0.25}Fe₂O₄ ferrite.
- 4.2.11 Variation of loss tangent with temperature for x = 0.85 composite.
- 4.2.12 Variation of loss tangent with temperature for x = 0.70 composite.
- 4.2.13 Variation of loss tangent with temperature for x = 0.55 composite.
- 4.3 Experimental set up for dc electrical resistivity measurement.
- 4.3.1 Variation of $\log \rho_{dc}$ vs (1/T) for x = 1, 0.85, 0.7, 0.55 and 0 composites.
- 4.4 Experimental set up for TEP measurement.
- 4.4.1 Variation of Seebeck coefficient (α) with temperature for x = 1, 0.85, 0.7, 0.55 and 0 composites.
- 5.1 Experimental set up for magnetic poling and ME output measurements.
- 5.2 Variation of magnetoelectric conversion factor with magnetic field for x = 0.85, 0.7 and 0.55 composites