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CHAPTER III 
PHQTQLUHIHBS CBIICE

3.1 IHTRCDUCT3DM
The study of photoluninescence decay provides information 

about nature of trapping state, energy levels of luminscent material 
and the type of kinetics involved in the luminescence process. In 
the present study analysis of observatior^fmade on Ca3:MnsDy and 

CoSsBijTb phosphors at roan temp (3 00°k) so as to get informatio 

about fouling aspects :
1. llature of decay Law
2. Energy distribution of trap levels
3. Kinetics involved in decay mechanism
4. The effect of activators on decay behaviour

3.2 THEORY OF PH LG ITIUREGCEl'JCE
An improtant step in the theory of phosphorescnece was that 

made by Jablonskii (1) in 1935 for decay of emission from organic

molecules in rigid media. An energy level scheme for emitting centre
as shown in fig. 1-1 . The transition between excited state P and
ground state G, but excited molecules or centres may relax to the 
metastable state transition M <,—* G being forbidden. To return
to ground state the transition M---> P must be effected by thermal
or optical activation. The phosphorescence emission i3 due to P —G* 
is conditioned in rate by optical process M —^ F# J£ the energy 
required^later is E, then the probability per second that i^occures 
is given by -

P = S.exp. (-E/kT) (3.1)
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Where.T = absolute temporature of phosphor 
7
3 - escape frecmency factor 
E = electron trap depth.

In general, a phosphor contains more than one trap and phogphnresrftn.ee
r ' ~ ~ ' ~ 7~~
is known to be a cunulative effect cdEtraps_of different depths• Its 
intensity is dependent on the rate c£ escape of electrons from traps. 
The retrapping of electrons in traps also affect the behaviour of 
p hosphone3cence,
3,2.1 Decay Laws

The phosphorescence decay may be either (a) exponential or 
b) hyperbolic (?) depending upon the type of kinetics involved in 
the luminescence process, 
a) Exponential Decay

The luminescence intensity diminishes exponetia 1 ly with 
time, Bie finite delay in emission of absorbed energy is due to 
life time of the excited state c£ the emitting atom, ion or molecule. 
If p is transition probability for return of the center to the 
ground state and n centres are excited at any instant, then

= J - pn .. (3.2)
where J is number of excited centres per second by the incident 
radiation. Ihe transition probability P, according to Randall and 
Uilkins (3) is given by equation (3.1), vis. p = S.*xp. (-E/KT).

The decay of luminescence is given by equation (3.2) with 
«J =3 0. The equation (3.2) becomes -

an
dt pn
dn
n = -p.dt
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on Integration we get, 

n = nQ exp. (-pt) (3.3)

where nQ is the number of excited electrons at t = 0, the time when 

excitation steps.

The luminescence intensity is giyen by - 

I =s — ^jj-3 s* — (-pn)

ap nQ exp* C-pt)

• • I a Io exp. (~pt) .. (3.4)

where Io is intensity at t = 0 and p = 1/T , where T is life time 

c£ excited state.Ihe equation(3• 4) shows that, decay exponential & 

rate efi decay depends upon the transition probability P. when

the kinetics cf luminescence is first order then exp. decay occurs, 

i.e. when the traps are situated quite close to the luminescence 

centres. To find out the trap depth equation (3.4) is useful* 

b) Hyperbolic decay

When the liminescence process is cf second order then the 

decay result^in this process is hyperbolic, i.e. when electron traps 

are loc-ated^away from luminescence centres.

let there be n impurity centres with which on ly n number of 

electrons combine at a time, if p is the probability with which an 

electron combines with any of the centre in time dt, then 

P = A.n dt .. (3.5)
where A is recombination coefficient, xf all the electrons return^/ to 

tlie ground state at t!ie centres through the conduction band with 

above said probability p, then the rate of decay will be,

dn 
dt

on integration, 
n -

= - An

n_

(3.6)

1+ nQ At
• • (3.7)
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'Hie luminescence Intensity Is given by 

I - at
— A (-An2) 

2 *= n

(1+ nQ At)Z 

Io
(1 + *t):

(3.8)

where °{ = nQA is another constant. For large values of t (t» 1)

the equation (3.8) can be written as —

I a
Io

-m (3.9)

Treating more generally in the light of different capture cross- 

sections for electrons empty centres and traps# Adircwiteh (4#5) 

arived at an approximate Becquerel type relation of the farm#
Ks

constant
WWli— % «■■■ —- »*—

(t + tQ )l
(3.10)

where b depends on the ratio of capture cross-section of traps and 

empty centre. However# this equation fails in case where well separated 

groups of traps exist.

3.2.2 Effect of Steadly excitation of Phosphor on the falling of

t-S3M OrvifWr

Luminescence intensity of a phosphor reaches to a ^sorjat Rvalue# 

if it is excited at fix temperature by steady excitation source. This 

state c£ phosphor is called equilibrium state and in this condition, 

the concentration of filled electron traps is in equlibrium. Depending 

on relative location and distribution of traps the following cases 

arise.

A) When traps are located close to the luminescence centres (First 
Order Kinetics) - let ^ be the intensity of excitation. Then rate

of electrons raising to the excited state is proportional to (p# and is
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given by CJ# whs re C is constant of proportionality. Ec there are n
in

mtnber of electrons ^the N traps# then the rate of capture of excited

electrons in traps is CJa(N-n)# a being probability of capture per
of

trap# ohe rate of escape<electrons from traps is given by n~S exp• (-E/KT) 

Uhder equilibrium#

CJa (N-n) « nsescp. (-E/fcT) .. (3.11)

frcm which we get
_ N__________________.. (3.12)

i + 3.gy(-nA:T)
A*

where A = Caj# is a factor directly proportional to intensity of 

excitation.

B) When traps are located away from the luminescence centres (second 
order kinetics) :

Let n be the number a£ trapped electrons and m the number 

of these electrons in conduction band. The (Mki) is the number of 

empty luminescence centres and rate cf electrons returning from the 

conduction band is given by ,

|jg = 0 = (J - J3 m(M *n) + ns exp. C-E/kT) - mb(ll-m) .. (3.13) 

and the rate of electrons returning from the conduction band is given by

~~ => 0 * ns exp. (-E/KE) - mb (N — n) .. (3.14)

where J3 and b are constants and CJ is the rate of electrons raising to 

excited state. If excitation is not of an appreciably low intensity# 

the number of electrons in the conduction band is much greater than 

the number of trapped ones and thus (M + n) = n.

Hence pm2 = CJ .. (3.15)

and
n

___ii____________________
1 + S .exp. (-E/kt) 

B

(3.16)
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where B = b yf CJ/J3 and thus Is proportional to the square root

of the excitation intensity.

c) When traps exist with complex distribution

if the form of specific distribution of traps is known#

the derivations of equations (3.12) and (3.16) can be extended
further to^over complex trap distribution. In most practical

cases# the nunber of traps u c£ different trap depth does not

vary rapidly with E over moot of the range of E values. ttius

if N is assunred constant or slowly varying# the total number

of filled traps from a given excitation intensity can be obtained.

Let this number be then in most cases
Ernax

n„ = J* n.dE •• (3.17)
1 0

By using cqn. (3.12) v/c have 
Ernax

nT = J_____N_____________________-(3.18)
0 . . 3. exp. (-E/KT)

A

For all practical excitation intensities.

A S and thus eqn. (3.18) yeiIds on integration.

nT = MCT log (A* +1) .. (3.19)
-1

where A1 = .AS exp. (-Emax/lCT) proportional to excitation intensity. 

At higher excitation intensities when A* y 1# the nunber of filled 
traps will be ^linear function of logarithm of the excitation 

intensities provided that A << 3. Vlhen A approaches 3# a saturation 

state will be reached# A similar logarithmic relation can be 

obtained by using eqn. (3.16) which includes consideration of 

retrapping.
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3.2.3 Phosphorescence decay for different trap distributions 
(considering retrapping negligible)._______________________

In general a phosphor contains traps of various depths. If 

thete are N nunber of traps with activation energies Lying 

between E and E + dE. The phosphorescence intensity I at time t 

after cessation of excitation is given by -

/ Etneuc 
II S

Emin
exp. (-eAt)

Ns
exp.Cs.'tJ sEm ax

ejcp
Emin

exp • (-stexp • ( -E ) dE 
ICT

(-EAT) £ exp • (-EAT) 1

(3.20)

dE
(3.20)

considering N to be constant over an energy range of 0 tO 

infinity the following three cases of interest arise , according 

to distribution of traps.

A) Uniform trap distribution

B) Uua.3i Uniform trap distribution

C) Exponetial trap distribution.

A) uniform trap distribution!- if a phosphor contains an 

equal number of traps of al l depths in the range of energy from 

zero to infinity then the distribution of traps is said to be 

uniform. Then integration of equation (3.21) gives #

!- » (1 - exp.(-st)

If 3t » 1 , then

NKT 
” t
O NKT t”1 

=(constant) t

.. (3.22)

.. (3.23)

.. to.24)

Thus phosphorescence intensity is inversely proportional to decay 

time (t).
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b) Quasi Uniform trap distributlon*~>fihe phosphors with nxittber of 

traps N, which do net vary too rapidly with E in a complete 

distribution are said to possess quasi uniform trap distribution. 

Hare the phosphorescence decay intensity at time t is proportional 

to nunber of electrons in traps of mean lifeCT)time, where
fa s"*1 esqj. ( E/kT) from eqn. (3.23) the product (I. t) is 

found to proportional to E. Thus a plot of the product I.t against 

logt for a given phosphorescence decay will represent the variation 

of N with t and gives an approximate idea of the trap distribution.

C) Exponential trap distribution.

IE we have 1J o^exp. (-J3E) as is found in sane experimental

cases, then for St 1, we have,
I « (constant). ^(JPKT +1) (3'25)

i.e power of t varies linearly with the phosphorescence temp. The 
be

constant J3 can^found out exporimentally and approximately fron the 

shape of the tliermo luminesce nee curve (3).

When pKT = 1, the equation (3.25) is correlated with the 

bimolecular law and when J3KT = 0, the case becomes of uniform trap 

distribution i.e. reciprocal law holds good. Many phosphors at roan 

teIx^>)^shows decay of type (3.25). With any trap distribution 

\ covering a wide range, the decay Is influenced by variation of 

temperature because, raising temp, deeper traps supply electrons 

at the same rate at which 3hallos?/ traps supply electrons at lower 

temp. At constant fegmp., at time t most of the light emission by 
a phosphor with continjjlous trap distribution is due to traps in 

which the electrons will have the mean life time T = t •
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3.2.4 Re trapping of electrons during phosphorescence
There is finite probability of escaped electrons from traps 

being trapped before recombination with luminescence centres. The 
process of retrapping causes marked changes in phosphorescnece 
characteristics (6), Gar lick (7), considering the effect of retrapping 
in moncmolecular case obtained an expression far the intensity#is

I = n ^S.exp. (- E/KT )
n( 1+ 2? • st e*p (-E/kT))2 (3.26)

where
N = total number of traps
nQ = number of empty centres or filled traps initially, 

when n = N. i.e. traps are saturated at the commencement of decay#
Then IS exp.(- E/KT).

^1 + 3t exp. (-E/KT) J 
At t »1 the equation (3.2 6) takes the form#

I =_ N exp. ( -E/KT )

(3.27)

(3.28)
St"

Thus for the traps of one depth only retrapping process causes a 
fundamental change in the form of decay from exponetial to hyper
bolic (8). A more general treatment of phosphorescence due to traps 
when retrapping occurs has recently been given by K la sens and 
Wise (9).
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3-3 RESULTS AMD DI3CU3SUN 

3.3.1 Decay Curve

Figures 3.1 to 3.5 showp typical decay curves obtained fear 
various phosphors with different concentrations of Dy (Mn fixed) 

and of Tb (Bi fixed). Initially the intensity decreases very fast 

and then decreases slowly. The nature of the decay curves appears 
same as reported for alkali earth sulphide phosphors (23,19). The 

analysis of decay curve is carried out to decide the mode of decay, 

i.e. exponential, hyperbolic or power law decay. To examine the 

possibility c£ simple exponential decay with single trap depth as 
given by equation (3.4), of LogI vs t are plotted (fig.3.8) •

The plots are found to be non-linear, indicating that decay is not 

exponential, However, plots of logl V3 log t appears to be linear 

as shown in fig. 3.7. This indicates that decay may be hyperbolic
jfc?or paver law. Thus obtained decay can be represented by I =» IQ t“ , 

where I is intensity at any time t, IQ is the intensity at the 

start of decay and b is decay constant.

3*3.2 Correlation Coefficient -

The degree of linerily between log I and log t is confirmed 
by evaluating the correlation coefficient (r) by using the equation, 

r = N BxY-ExEy___________________ __ •• (3.30)

0 £x2 - (£x)2 J 12 [n£y2 -(£y)2 
where log t and y = log I and IT is number of observations.
The magnitude of r signifies the closeness of the relationship

while its sign indicates whether y increases or decreases, with x.

When relation is linear, the value of r equals, unity.



In the present work, the values of r for typical samples

are calculated (Table no. 3.1) . The value of r for all these samples

ere nearly equal to -1. This indicates relation between log I and

Log t* is close to linear. rIhe negative sign of r indicates that

intensity decreases with time which is in support with expected

natural behaviour.

3.3.3 Decav Constant--------------------------------- ~-------------- ^

The decay rate can be indicated by decay constant. Paster

the decay, higher i3 the value of decay constant (b) and viceversa^

It also provides the information about the relative population of

traps at various depths. The value of decay constant i3 calculated

by the formula of least squares (13) using the relation.

_ N £ xy -fix Ex
N £ yf - (£ x)‘

(3.31)c2 ..,2

where x = log t and y = log I. N is the number of observations* The 

values of b calculated by using above equation (3.31) are shown in 

Table No. 3.1. It seems that values of b calculated by using eqn._ 

(3.31) and that from graph are in good agreement with each other*

The variation of decay constant with activator concentration 

is almost cons'-ant and is not found to vary much with concentration. 

This indicates that activators probably do not create new traps but 

modify the relative importance of traps contributing to the phospho

rescence decay. Uhis observation is supported by TL studies.

3.3.4 In the present study the decay can be represented by the 

equation

I = I t o
-& for hyperbolic decay 1 b* should be equal to -2

and for power law decay b should be equal to -1 for t >^1.
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The value of *b' Is neither -2tyor -1 but it is equal to 1*

This exclude the possibility of hyperbolic decay and power law decay 

resulting from traps of single depth*

However, the observed power decay law can be explained 

the basis of monanolecular super position theory suggested by Randall 

and WiUcin^s (3) and followed by others (19, 18, 24, 16).3uch 

a decay results due to superposition of various exponentials corres

ponding to different traps and is expressed by the equation,

I =S I t”b 
O

sa m exp. (-P.,t) + lOu exp.(-P0t) + ... +lon exp. (-Pnt)
22 .. (3.32)

where Ic^, Ic^ ... Ion are the starting contributions to

luninescence intensity by First, second.... n n exponential component

and P^ =* S exp (-E^/KT), Pg = S exp. (-E2/Kt) ... Pn = S exp. (-En/KT)•

are the transition probabilities of an electron escaping from traps

of depth E^, E2 , ... En respectively.

It is possbile then to split each decay curve into a set of 

exponentials by the method suggested by Bufce (10) and followed by 

others (19, 18, 16).

In the present study all the decay curves were split into two 

or three exponentials (fig. 3.8 to 3.13). The activation energies 

corresponding to these exponential-s are calculated by using the 

slopes Pi»P2 , P3, of the straight line on the semi log plot between 

I and t. The values of E thus evaluated for all e>q?cnentiaIs• The 

values of S used in above calculations is taken from the thermolumin

escence studies carried on same samples. There is no significant 

change in trap depth with activator concentration. This indicates
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that activators do not introduce any new traps. The relatively 

small and unsystematic variation observed in different samples 

may be due to perturbation with that drawn from variation of b 

with activator concentration.

The distribution of traps in the present investigation can 

be estimated from the observed valves of 'b* which are close 

to unity. This indicates that trap distribution may be uniform 

trap distribution. For exponential trap distribution b >>• 1. There 

are certain samples which indicate exponential trap distribution.

3.3. 5 Kinetics of Luminescence

The 3cinetics involved in the decay process may be either mono- 

molecular (first order), bimolecular (second order) or intermediate. 

For a decay resulting fran trajjs of single depth the monanolecular 

process involves the exponential decay. The bimolecular process 

involves the hyperbolic decay. While power law decay results when 

process is neither first order nor second order (17). The plot 

of I versus t on a semilog paper (i.e. log I vs. t) must be a 

straight line for first order. For second order the plot of reci

procal of square root of intensity and time must be a straight 

line. Further for second carder and intermediate order, the slcpe 

of graph between log 1 and log t assunes the value of -2 and -1 

respectively at large values of t-

m the present study the the plots of log I and t are 

not straight lines(fig* 3.8 to 3.13) .This indicates that kinetics 

is not a moncmolecular and slcpe of log I - log t is not equal 

to -2. tfence 3 cine tics is not bimolecular. Howe ver the decay can be 

represented by power law equation I = Iq t" . But values of b are
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not exactly equal to one, as required to intermediate kinetics. 

The observation shows that, the observed power lav/ decay could 

be well explained on the basis of moncmolecular super position 

theory. This suggests that kinetics involved is likely to be 

moncmolec ular.
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Table Ho *3.1 s Tab is shewing correlation coefficient
and decay constant obtained for Typical 
samp les •

Sample
Ho.

Correlation
Coefficient

(-ve)

Decay constant 
calculated from graph

(-ve) (-ve)

MO-18 0.9587 1.208

r*4P>3
O.H

ID-20 1.44 2.04 1.5

ID-2 2 1.70 0.883 0.5533

ID-24 0.9212 1.40 0.982

ID-2 5 0.9596 1.428 1.566

ID-2 6 0.8870 2.168 1*310

ID-2 8 1.030 1.572 1.501

ID-30 0.790 0.708 0.60

ID -32 0.8744 1.366 0.9772

HD-33 0.8760 1.2156 0.7292
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luble No.3.2 : shewing activation energies calculated from
peeling off of decay curves fear typical sairples.

Sample
no*

Values from trap depth fran peeling off of 
decay curves

E1
exponential

E2
fast exponential

ID-18 0.6941 0.6623

IP- 2 0 0.6346 0.4979

ID-22 1.3637 1.2636

ID-24 1.1128 0.9770

ID-25 1.1522 1.1220

ID-2 6 1.3780 —

ID-2 8 1.2865 1.1633

ID-30 1.2560
1.1229

ID-32 1.2688 1.2033

ID-33 1.0168 0.9025
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