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CHAPTER IIX
PHOTOLUMINES CENCE
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CHAPTER III
PHOTOLUMINES CEHCE

3.1 INTRDUCTION

The stwly of photoluminescence decay provides infommation
about nature of trapoing state, energy lewvels of luminscent material
and the type of kinetics involved in the luminescencé processe. In
the present study analysis of observatior;g:made on Ca3siMnsDy and
Ca3:BisTb phosphors at roam temp (300?1_&) so as to get informatio K‘
about following aspects @

1. llatvre of decay Law

2. Energy distribution of trap levels

3. Kinetics involved in decay mechanism

4. The effect of activators on decay behaviour
3.2 TEORY OF PHUW PIIORES CENCE

An improtant step in the theory of phosphoréscnece was that
made by Jablonskii (L) in 1935 for decay of emission from organic
molecules in rigid media. An energy level scheme for emitting centréz;i
as shown in f£ig. 1.1 « The transition between excited state F amd
ground state G, but cxcited molecules or centres may relax to the
nctas table state M( transition M =9 G being forbidden. To return
to ground state the transition M ~—p F must be effected by thermal
or optical actvivatio.n. The phosphorescence emission is due tb F —>G,
is conditioned in rate by optiéal process M ——» F, If the energy
required '\J'.ater: is E, t’hen the probability per second that 1toccu:fs
is given by - '

P = S.expe. (—E/KT) .o (301)
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Whaere )’1‘ = ahsolute temparature of phosphor

e

3 = ecncope freauency factor
E = electron tran depthe.

In general, a phasohor contalns more than one trap and phogphorescence

”~

‘ e
is known to be a cunulative effect _gf;rt/rc_‘-:_gs,/af different depths. Its
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intensity is dependent on the rate of escape of electrons from trapse.
The retrepping of elcotrons in traps also affect the behaviour of

phosphorescence.

3.2.1 Decay Laws

The phosphorescence decay may be elther (a) exponential or
L) hyperbolic (2) denending upon the type of kinetics involved in
the luminescence processe
a) Exponential Decay

The luminescence intensity diminishes exponetially with
time. The finite delay in emission of absorbed energy is due to
life time of the excited state of the emitting atam,” ion or molecule.
If p 13 transition probability for return of the center to the
ground state and n centres are excited at any instant, then

an
dt = J—'Pn L (302)

where J is numler of excited centres per gecond by the incident
radiatione. T™he transition probability P, according to Randall and
ilkins (3) is given by equation (3.1), viz. p = S.etp. (-E/KT),

The decay of luminescence is given by equation (3.2) with
J = 0. The equation (3.2) becanes -
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on integration we get,

n = n_ exp. (-pt) .o (3.3)
where n is the number of excited electrons at t = 0, the time when
excltation stops,

The luminescence intensity is giyen by -

I= - % = = (-pn)

= p n, exp. (-pt)
e I = Io exp. (=pt) .e (3.4)

where Io is intensity at t = 0 and p = 1/, where 7' is life time
of excited state.The equation(3.4)shous that, decay exponential &
rate of decay depends uwpon the transition probability P. when
the kinetlecs of luminescence 1s first order then exp. decay occurs,
i.e. when the traps are situated quite close to the luminescence
centres. To £ind out the trop depth equation (3.4) i3 useful.
b) Hyperbolic decay

When the luminescence process 13 of second order then the
decay result\p' in this process is hyperbolic, i.e. when electron traps
arc located aWway fraan luminescence centrese.

let there e n Impurity centres with which only n number of
electronz camnbine at a time, if p is the probubility with which an
electron combines with any of the centre in time dk, then |

P = A.n dt .e (305)

wvhere A 1s recambination coefficient. Xf all the electpons return; to
the ground state at the centres through the conduction band with

above said probability p, then the rate of decay will be,

dn - -

St = - M .o (3.6)
on inteqgration,

n = o

. (3.7)
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Te luninescence intensity is gilven by -

an
I = - -y '
= - A(—Anz)
= n? a
1+ n, at)?
= To .o (3.8)
(1 + «t)?

where « = n A is another constant. Far large values of t > 1)
the equation (3,8) can he written as --

= o - L 09
I ("' ‘t?‘ (3.9)
Treating more generally in the light of different capture cross-

sections for electrons empty centres and traps, Adirovitch (4,5)
._.(
ar‘f.jred at an approximite Becquerel type relation of the form,

T constant
= ——— i ~n~b~--
(t+ ¢t )

where b depends on the ratio of capture cross-sectlion of traps and

.0 (3010)

empty centre. However, this equation fails in case where well separated

groups of traps existe.

3.2.2 Effect of Steadly excitation of Phosphor on the £illing of
electron traps : !’Md
Luninescence iIntensity of a phosphor reaches to a ‘ggqai: value,

if it is excited at fix temperature by steady excitation source. This
state of phosphor is called equilibrium state and in this condition.
the concentration of f£illed electron traps is in equlibriume. Depending
on relative locatinn and distribution of traps the followlng cases

arisee.

A) When traps are located close to the luminescence centres (First
Order Kinetics) -~ let J be the intensity of excitation. Then rate

of electrons raising to the excited state is proporticnal to J, and is



given by CJ, wlere c is consztant of proportionality. If there are n
number of electrom'ztlae N traps, then the rate of capture of excited
electrons in traps is CcJa(N-n), a being probability of capture per

trap, The rate of escapejfelectrons fram traps is given by n.§ exp.(-E/KT)

Under equilibrium,
¢Ja (N-n) = nsetp. (=E/AKT) .. (3.11)

fran which we get

n = N .o (3.12)
3 e (=~EB/KT)

vvhere A = C2J, is a factoar directly proportional to intensity of

excitatione.

B) When traps are located away fram the luminescence centres (second
order kinetics) :

Let n be the nuuber of trapped electrons and m the number
of these electrons in conduction bande. The (Min) is the number of
empty luminescence centres and rate of electrons returning £fram the
conduction band is given by ,

%“E =0=(J -~ Pmnulllin) + ns expe (-E/KT) =~ mb(l&m) .. (3.13)

and the rate of electrons returning from the conduction band 1s given by

%: = 0 = ns exXpe (=B/KT) = mb (N = n) .. (3.14)

where B and b are constants and €J is the rate of electrans raising to
excited state. If excitation is not of an appreciably low intensity,
the number of electruns in the conduction band 1s much greater than
the nuwber of trapped ones and thus (M + n) = n.

Hence pmz = CJ oo (3.15)

and Iy

‘.. n = e (301_@)
14 S .e)g:é (=E/KT)




where B = b CJ/P and thus is proportional to the square root

of the excitation intensitye.

C) When traps exist with complex distribution

If the form of specific distribution of traps 1s known,

the derivations of equations (3.12) and (3.16) can be extended

further tc{(,over conplex trap distribution. In most practical

cagses, the number of traps Il of different trap depth doces not

vary rapidly with E over most of the range of E values. Thus

i1f N is assum®ed constant or slowly varying, the total number

of £illed traps frum a given excitation intensity can be obtained.

Let this number be T, then in most cases
Emax

nT = j n.dBE X
0
By using eqne (3.12) we have
Emaze
np= [ N

A
For all practical excitation intensities.
A £<S and thus eqn. (3.18) yeilds
n, =MNKT log (a* + 1)
where A' = as™!

(3.17)

~-(3.18)

on integratione
(3.19)

exp.(~Emax/KT) proportional to excitation intensity.

At higher excitation intencities when A' ) 1, the number of £illed

traps will beJlinear function of logarithm of the excitation

intensities provided that A << 3. When A approaches 3, a saturation

state will be reached, A similar logarithmic relation can be

obtained by using eqn. (3.16) which includes consideration of

retrappinge.



3.2.3 Phogphorescence decay for different trap distributions
{considering retrapping neqligible).

In general a phosphor contains traps of various depths. If
there are N number of traps with activation energies lying

between E and E + dE. The phosphorescence intensity I at time t
[ B
after ce?sation of excitation is given by -

Emace
I= J us exp. (-EXKT) exp.(-stexp.( =E_)dE .. (3.20)
Emin XT
fEma.v.:
Ng
= exp. (-E/KT) [ exp.(~E/KT) de
exp.ET g L ] .. (3.20)

considering N to he constant over an energy range of 0 +0

infinity the folloring three cases of interest arise , according
to distribution of trapse.

A) Uniform trap distribution

B) Quasi Uniform trap distribution
C) Exponetial trap distributione |

A) Uniform trap distributiony- if a phosphor contains an
equal number of traps of all depths in the range of energy f£rom

zero to infinity then the distribution of traps is said to be

uniform.Then integration of equation (3.21) gives ,

I = 'L]'I'_ég (1 - ©XDe (—St) .o (3022)
If 53¢ > 1 , then
LT
I = —-—E—- oo (3023)
= KT £

-1

=(constant) t ee @3.24)

Thus phosphorescence intengity is inversedly proportional to decay
t ime (t).
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B) Quasi Uniform trap distributioné--The phosphors with number of

traps H, which do not vary too rapidly with E in a complete
distribution are said to possess quasi uniform trap distribution.
Here the phosphorescence decay intensity at time t 1is proportional
to number of electrons in traps of mean life(T)time, where

Te= s"l cxpe { E/KT) from eqn. (3.23) the product (I. t) is
found to proportional to E. Thus a plot of the product I.t against
logt for a given phpsphorescence decay will represent the variation

of N with t and gives an approiimate idea of the trap distribution.

C) Exponential trap distributione.

If we have ll«expe(-BE) as is found in same experimental

cases, then for st >} 1, we have,

I = (constant). E(FKT *1) . @-2s5)

l.e power of t varics linearly with the phosphorescance tempe. The
constant B cani?found out experimentally and approximately £rom the
shape of the thermolumifiéscence curve (3).

When PKT = 1, the equation (3.25) i3 correlated with the .
bimolecular law and when PKT = 0, the case becomes of uniform trap

distribution i.e. reciprocal law holds good. Many phogphors at roam

4 .
*l:empf7 shows decay of type (3.25). With &ny trap distribution
—t

covering a wide ranje, the decay is influenced by variation of

temperature because, raising temp. deeper traps suply electrons

————"
at the same rate at which shallow traps supply electrons at lower

temp. At constant femp., at time t most of the light emission by

P

a phosphor with contingous trap distribution is due to traps in

which the electrons will have the mean life time ¥ =t .



3.2.4 Retrapping of electrons during phosphorescence

There is finite probability of escaped electrons fram traps:
being trapped before recombination with luminescence centres. The
process of retrapping causes marked changes in phosphorescnece
characteristics (6), Garlick(7), considering the effect of retrapping
in monamolecular case obtained an expression far the intensity,ds

T = nozs.e::p. (- E/KT )

N(1+ Do .St ep (-EAT)
i

.o (3.26)

where

N

total number of traps
ng, = number of empty centres or filled traps initially.

when nj = N. i.e. traps are saturated at the commencement of decay,

Then 1 = 1B _expe.l= E//KT) <o (3.27)

[ 1+ st exp. (~-E/AT) _jz
At t )»1 the equation (3.26) takes the form,

1 = Nexp, ( =E/KT ) .o (3.28)
st2
Thuw for the traps of one depth only retrapping process causes a

fundamental change in the form of decay fram exponetial to hyper-

bolic (8). A more general treatment of phosphorescence due to traps

when retrapping occurs has recently been given by Klasens and

Wise (9).



3.3 RESULTS AND DI3CUSS ION

3.3.1 Decay Curve

Figures 3.1 to 3.5 show$ typical decay curves obtained for

" various phosphors with different concentrations of Dy (Mn fixed)

and of Tb (Bi fixed)e. Initially the intensity decreases very fast
and then decreases slowly. The nature of the decay curves appears
same as reported for alkali earth sulphide phosphors (23,19). The
analysis of decay curve 1is carried out to déc ide the mode of decay,
i.2. exponential,hyperbolic or pow:r law decay. To examine the
possgibility of simple exponential decay with single trap depth as
given by equation (3.4), Plots of LogI vs t are plotted(fig.3.8).
The plots are found to be non~linear, indicating that decay is not
exponential. However, plots of logl v3 log t appears to be linear
as shown in filg. 3.7. This indicates that decay may be hyperbolic
or powsr law. Thus obtained decay can be represented by I = I_ &P,
where I is intensity at any time t, I is the intensity at the
start of decay and b is decay constant.

3.3.2 Carrelation Coefficient -

The degree of linerily between log I and log t is confirmed
by evaluating the carrelation cocefficient (r) by wing the equation,
r= N ExY-£x8gy

I
r e - (g2 1% [vey? -e9? ]
where log € and y = log I and I is number of observationse.

®e (3.30)

The magnitude of r signifies the closeness of the relationship
while its sign indicates whether y increases or decreases, with xe.

When relation is linear, the value of r equalgunitye.




In the prosent work, the values of r for typical samples
are calculated (table noe. 3.1). The value of r for all these samples
are nearly equal to -1l. This indicates relation between log I and
Log te 1s close to linear. The negative sign of r indicates that
intensity decreasces with time which is in support with expected

natural behavioure.

3.3.3 Decay Constant

Q
The decay rate can be indicated by decay constante. Faster

the decay, higher iz the value of decay constant (b) and vicéversa.
It also provides the information about the relative population of
traps at varié;u:; depthase The value of decay constant is calculated
by the formula of least squares (13) using the relatione.

. NE xv - £ x 8x
b= ) 2
NEx - (8 x)

where x = log t and y = log I N is the number of observations. The

.o (3.31)

values of b calculated by using above equation (3.31) are shown in
Table Noe 3.1. Tt secems that values of b calculated by mmg__‘e_gg,_.
(3.31) and that fram graph are in good agreement with each other.

The variation of decay constant with activator concentration
is almost consiant and is not found to vary much with concentration.
This indicates that activators probably do not create new traps but

modify the relative importance of traps contributing to the phospho-

rescence decay. 'This observation is supported by TL studles.

o {
3e3.4 In the present study the decay can be represented by the

equation

-b

I=1I,¢t for hyperbolic decay 'b' should be egual to =2

and for power law deccay b should be equal to -1 for t >)1.



The value of 'b' is neither -2for -1 but it is equal to 1.
This exclude the possibility of hyperbolic decay and power law decay
resulting from traps of single depthe.

However, the observed power decay law can be explained / )
the basis of monamolecular super position theory suggyested by Randall
and wukm/s (3) and followed by others (19, 18, 24, 16).8uwch
a decay results due to superposition of various exponentials corres-

ponding to differenttraps and is expressed by the equation,

o ~b
I-—-Iot

= I0, exp. (~Pjt) + IO, exp.(-Pzt) 4+ eee 4Ion expe. (.-ertz (3.32)

where 1oy, Io, ee. Ion are the starting contributions to
luminescence intens ity by First, secondecs. nth exponential component
and Py =5 exp(-E;/KT), P, =5 exp.(-E,/KT) ... Pn = S exp.(-En/KT).
are the transition probabilities of an electron escaping £fram traps
of depth E ., E2 ¢ eee En respectivelye. |

It is possblle then to split each decay curve into a set of
exponentials by the method suggested by Bube (10) and followed by
others (19, 18, 16).

In the present study all the decay curves were split into two
or three exponentials (fig. 3.8 to 3.13). The activation energies
corresponding to these exponential-s are calculated by using the
slopes P1,P2 , P3, of the straight line on the semi log plot between
I and t. The values of E thus evaluate@ for all exponentials. The
values of 3 used in above calculati-ns is taken fram the thermolumin-
escence studies carried on same samples. There is no signif icant

change in trap depth with activatar concentratisne This indicates
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thnt activators do not introduce any new traps. The relatively
small and unsystematic variation observed in different samples
may be due to perturbation with that drawn fram variation of b
with activator concentratione.

The distributlion of traps in the present investigation can
be g@stimated fram the obserwved valwes of 'b' which are close
to unitye. This imlicates that trap distribution may be wniform
trap distribution. For exponential trap distribution b »d 1. There

are certain samples which indicate exponential trap distributione.

3.3.5 Kineticsof Luninescence

The kinctics involved in the decay process may be either mono-
molecular (first order), bimolecular (second order) or intermediate.
For a decay resulting froan traps of single depth thc monanolecular
process involves the expoenential decaye. The bimolecular process
involves the hyperbolic decaye While power law decay results when
process is neither f£irst order nor second order (17). The plot
of I versus t on a éemilog paper (i.e. log I vs. t) must be a
straight line for first order. For second order the plot of reci-
procal of square root of intensity and time must be a straight
line. Further for second order and intermediate order, the slope
of graph between log I and log t assumes the value of -2 and -1
regpectively at large values of t.

In the present study the the plots of log T and t are
not straight lines(fig. 3.8 to 3.13) .This indicates that kinetics
is not a monamolecular and slope of log I - log t is not equal
to =2. Hence kinetics is not bimolecular. Hovever the decay can be

represented by powcer law equation I = Ig t"b. But values of b are
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not exactly equal to one, as required to intermediate kinetics.
The olbservation shous that, the observed power law decay could
be well explained on the basils of monamolecular super position
theory. This suggests that kineties involved is likely to be

moncauoleculare.
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Table Hoe.3.1 : Table showing correlation coefficient
and decay constant obtained for Typical

gamsles.

; a:a:: J; ;c:rtrelt;ti;r; ) T Decay constant

o Coe€ ficient calculated f£ram graph

* (=ve) (=ve) (=ve

MD-18 0.9587 1.208 1,021
I‘D—ZO‘ 1.44 2.04 1.5
1D-22 1.70 0.883 0.5533
[D=24 0.9212 1.40 0,982
MD-~25 0.9596 1.428 1,566
ID~26 0.8870 2.168 1.310
1D-28 1.030 1.572 1.501
D30 0.790 | 04708 0.60
1D-32 0.8744 , 1.366 0.9772

MD-33 0.8760 1.2156 0.7292
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Table No.3.2 ¢ shoving activation energiles calculated from
peeling off of decay curves far typical samples.

Samp le Values £from trap depth fram peeling off of
nos ' decay curves
El E2
exponential fast exponential
M-1l8 0.6941 0.6623
M- 20 Ue6346 0.4979
D22 1.3637 l1.2636
1D-24 1.1128 0.9710
D-26 1.3780 —-
MD~30 1.2560
1.3229
ID-32 1.2688 1.2033

MD-33 1.0168  0.9025
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