
CHAPTER - 4

A STUDY OF NONLINEAR SURFACE WAVES 
AND GUIDED WAVES IN PLANAR 

OPTICAL WAVEGUIDE
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4.1 Introduction s
In the recent past considerable interest has been 

developed in the optics of layered media with nonlinear 
dielectric properties. Many interface phenomena1 are found 
to be associated with reflection and refraction of a strong 
plane wave from the surface of a nonlinear medium having 
intensity-dependent refractive index. In the presence of 
negative nonlinearity, it has been shown that longitudinally 
inhomogeneous travelling waves (LITW) can be excited such 
that the intensity and angle of propagation would vary 
perpendicular to the interface. Similarly nonlinear surface 
waves (NSW) can be excited2 at the interface if the 
nonlinear medium has a lower refractive index with positive 
optical Kerr coefficient. Kaplan1 has obtained conditions 
for the excitation of ail the possible types of wavee in a 
medium having negative nonlinearity. The above mentioned two 
types of waves give rise to a number of nonlinear interface 
phenomena like bistable reflectivity and hysteresis, 
nonlinear self-deflection of refracted rays and self-induced 
transparancy of nonlinear interface.

The salient feature* of the nonlinear surface wave 
is that its dispersion relation contains the square of the 
electric field as a parameter apart from the frequency and 
the wave vector. Further, such waves can be directly excited 
by bounded light beam which is incident on the interface. 
Tomlinson2 has obtained an exact solution of Maxwell's
equations which describe the propagation of s-polarised



81

(i.e. TE) nonlinear surface waves. He has shown that an 
interface between two dielectric inedia (with the lower 
refractive index material having a positive nonlinearity) 
can support a two-dimensional optical surface wave which 
propagates along the interface with a constant shape and 
intensity.

Apart from these studies the propagation phenomena 
of nonlinear film-guided waves (NGW) have been investigated

^... nby considering multilayer dielectric structures 
Dispersion relations and power flow expressions for such 
modes have been obtained. Holland's theoretical 
investigations* have shown that in a symmetric structure 
there exist nonlinear guided waves with symmetric field 
profiles. In addition there exist asymmetric guided waves 
which are closely related to the surface waves supported at 
an interface.

In view of their unique features and potential 
applications in all the integrated optical devices, the 
investigation of surface waves and nonlinear guided waves 
has attracted considerable interest. In the present work we 
have first revisited Tomlinson's analysis* with a view to 
get aquainted with the method of analysing the surface wave 
propagation along a nonlinear interface. In order to examine 
the intensity effect on the guided waves we have next 
investigated the nonlinear propagation of TE waves in both 
the high- and low-refractive index guiding layers.
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4« 2 8»vi«iilng Tomlinson*» Analyil^1 of Surfac* Wave at- *
Honltwr Ini>rf«c> CPrwnt foffc) *

We consider an interface coinciding with x-y-piane 
and separating linear and nonlinear dielectric media which 
are on negative and positive z-sides respectively (Fig.4.1). 
The dielectric constant of the nonlinear medium is assumed 
to be

e(x,y,z) -+ Ae + «aIE(x,y,z) j* .... (4.1)
where «o ■ dielectric constant of linear medium

Ae - zero-field refractive index difference between 
the two media and 

*a • nonlinear coefficient.
We assume that the interface supports a 

two-dimensional optical surface wave which propagates along 
x-axis independent of y-co-ordinate. The existance of 
surface wave demands that A* < 0 and «a > 0 i.e. the lower 
refractive index material (i.e. nonlinear medium) has a 
positive optical Kerr coefficient. The electric field of 
such a wave is supposed to be described by the scalar wave 
equation

• £* ..... (4.2)
c

We guess the following solutions of this equation for the 
two media under consideration.
K(x,y,z):;m E^expdlrx) expdc^z) , z < 0 ... (4.3)
B(x,y,z): ■ ESoexp(ikxx) sech Ik^tz-zJJ , z >0 ... (4.4)

The functional forms for the solutions have been 
chosen so as to consider the propagation of the surface wave
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along the interface with a constant shape and amplitude. 
With these expressions we solve the wave equation viz. 
Eq.<4.2) for the field parameters related to the beam shape 
and associated critical powers.
4.2. 1 Field P»Mdwi*rf *

Linear Medium Cz < 03 :
Differentiating Eg.(4.3) twice with respect to x and z

separately we can obtain
**E
Ox*

k* E a*E
&zz

- k* E
AS

so that
7*1 - < k*

AS
k* ) E
X

Putting this in Eq.(4.2) we get the condition
<-<+ *k*»E -0 ..... •«•*>

where k is defined asO

ko - < / c .... (4.5a)
This condition is satisfied only when

k* « k* - k* ....  (4.6)
Monlinear Medium Cz > 03 >

Differentiating Eq.(4.4) twice with respect to x 
and z we obtain the following expressions.

a* e 
a%*

k* E
X

0E
3z
a* E 
a%*

Ejo exp (ikx) k2aseoh t..3 tank £..3

2a [ E exP (• •) sech £.. 3SO ]{ 1-2 eech £.. 3 }
This is simplified further using Eg.(4.4)

**E £ w 2 k*#-r * *C_ E "• ---—“ e2 l*l!
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Hence we obtain
2 k* E ■

V*E » - k* 1 + k* E-------—|E|* --- (4.7a)x 2a g2 * •
o

Now
«(x,y,2)-~ E » c*

* [ *0 - ** + *2!®!* ] -jj E
« k*

“ k* E - v>* k2 1 + —5—- |eI* E . .. (4.7b)0 00 c * *o
where we have used Eqs.(4.1) & (4.5a) with Ac < 0 and the
definition of as given below.

V* . -1A?1 ...  (4.7c)c co
Physically sin”V represents the total internalO

reflection as measured from the interface in the limit of 
zero intensity.
Futting the three Egs.(4.7) in Eg.(4.2) and simplifying we 
get

(- k* + k* + k* - y* k*) E + f- + -5s- k* 1|S|*E * 0x 2a o e o ^ g2 © J * 1
o

.....  (4.8)
This will hold good provided the following two conditions 
are satisfied.

k* » k* - k* ( 1 - y* ) .... , (4.9a)ZZ X o c
• E** 2 Z So . I Sk*z “ ~TJZ«]-- ko *e ...... (4.9b)
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The above assumed solutions (Eqs. 4.3 it 4.4) 

should satisfy the boundary conditions that E and dE / dz 

must be continuous at the interface z « 0 For the

continuity of E at z “ 0 we get
E * E sech ( k z ) ..... (4.10)to so a o

Differentiating Egs.(4.3) and (4.4) with respect to z and 

equating the values at z - 0.

; kio iz E_ k sech(-k z ) tanh(-k z )20 2Z 22 O 2Z O
where we have used the trigonometric relations

sech(-d) ■ sech(d) and tanh(-e) * -tanh(d) 

Simplifying the above expression further we obtain

k_
Eio E

sinh(k z ) 22 ©
to (4.11)

‘iz cosh (k z )22 O
Eqs.(4.6), (4.9a & b), (4.10) and (4.11) are the five 

conditions which relate six parameters namely k

i k r zas V and zC O

O H IZ

involved in the field distribution
function. All these parameters can be expressed in terms of 

a single independent parameter. This is chosen as a quantity 
D defined by

2|A«| ( 1 + D ) ...... (4.12)
Using this definition Eqs.(4.6) and (4.9) are rewritten as 
explained below.

Subtracting Eq.(4.9a) from Eq.(4.6) and using Eq.(4.9b) we

* E*
2 20

obtain

22
From Eq.(4.12) we deduce

« E*
2 20

<>:[ e E*
2 20

”3 | Ac | - 1 ]
« 1 + D
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k « k vlz o c

Using this in the above equation we get

*••»•* (4.13)

Again subtracting Eq.(4.9a) from (4.6) and using Eq.(4.13) 

we obtain

k « k Vmr ...... (4.14)Zz o c
Similarly using Eq.(4.13) in Eq.(4.6) we get

k « kX o ' c
V */ w~‘ ♦ D ...... (4.15)

Further dividing Eq.(4.16) by Bq.(4.11) we deduce

ktanh [k z 1 * .•• m —L*“ k„ yrr- (4.15a)

so that seoh £..3 Ynns
where we have utilised the conditions given by Eqs.(4.13) 

and (4.14).

Putting this in Eq.(4.10), squaring and multiplying by m we 

get
Bio “ 2 I**! ..... (4.16)

From Eq.(4.10) we can deduce

k zZz o cosh"*(X)

i .e.

with X - E / EZo to

i n [ X + / X* - 1 J
--------  ------------

zz
(4.17)

How from Eqs.(4.12) and (4.16) we have 

E.Zo
E vr+.d
to

Hence Eq.(4.17) is rewritten as

z In £ /m + VBT 3
k y y l + bo c

(4.18)
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This parameter gives the position o£ the peak 
intensity o£ the surface wave. It has a maximum value of 
Q.663/( k w ) which is obtainable at D « 2.277. In ordero c
that the surface wave should exist, the three parameters 
k k and k must be real. This means from Eq.(4.13), the4z, 2Z X

condition D > 0 should be satisfied. As a result Eq.(4.12) 
implies that the field-induced refractive index change 
<« E2 ) at z should be at least twice the zero-field index2 20 O
difference |A*|. This minimum value of (eyB2^) is equal to 
the value of (« E* ) given by Eq.(4.16). The latter equation

2 IO
mean8 that, in the presence of the surface wave with 
critical power P, the field-induced index-change at the 
interface is always exactly twice the zero-field index 
difference, independent of the value of D.
4.2.2 Critical Power of the Surface >av» s

Correction of Tomlinson*a Expression :
The critical power carried in the surface wave per 

unit distance along y-direction is given by
P * kx s |E |* dz )

-CD
The integral in this equation should be solved for

the three regions.
i) linear medium ( z ■ -oo to 0 )

ii) nonlinear medium ( z * 0 to z )o
iii) nonlinear medium ( z ■ z to » )O

Accordingly we writs

KUI (4.20)
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©
with P • k / |E|2 dz .... (4.20a)l- * ,* 1-00

P - k /Z° IE I* dz .... (4,20b)
NLI X 1 1

O

PNLII « K 'Vl* ** .... <4-200
zo

The integrals are evaluated as explained below :
We first divide Eq.(4.16) by (4.13) and then Eg.(4.12)

by (4.14) and deduce the following ratios :
2

^io 2 |Ac| 1 it—y..  “ ............ .... (4.20d)t* 2 o^e
E*

-jP2. ° tT~T~E> .... (4.20e)

Using Eq.(4.3) in Eq.(4.20a) we write
° 2 P * k /IE exp(ik x) exp(k z) I dz

L X I lo x i.* 1-00

‘ K Ko [ TS- <2k,» *> 1°L |2 -I— CD
k E*X to

* ~21---
11

k |A«|
* ----2........ ..... (4.21a)

ko vo *2 ^

Here we have used Eqs.(4.13) and (4.16). We employ Eq.(4.4)
to evaluate the other integrals.

z- k / ° |E exp(ik x) sech ( k (z - z ) ] I* dz
NLX X 1 20 X 22 O 1o

■ k E2 / ° [ sech [k(z-z)]l dz
X 20 2* O

By change of variable X ■ z - z we geto

P « k E2 /° f sech ( k X ) 1 dX
NLZ X 20 |_ 22

o
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E tanh ( k z )k 30 2Z O22

K 2I*-I
Hence

Similarly
PKUX

HU
X_______
sky
2 O C

vu

oo
k /IE exp(ik x) sechX _ ' lo itZ

00
« k E, / * ° z sech [ k (z2z

“ k

O

20

22
kx 2|A«| 
*2ko*o

....  (4.21b)

k (z - z ) 3 I* dz
2Z O 1

ze) 3 ] dz

(4.21c)

In getting Eqs.(4.21b) and (4.21c) we have utilised 
Eq.(4.20e).
Substituting Eqs.(4.21) in Eq.(4.20) we get

or

p-k»-M^[^- + yCtyrTir]

m yt j---=-----  r « i
P - 2 .?. c Y w + D I -A- + YS + YTTTS 1° *a ° L 2VEF -I . (4.22)✓

where Eq.(4.15) for k is utilised.X
We henceforth use the notation P for the totalC

critical power in the surface due to the reason given in 
Sec.(4.2.3) to be followed.
Critical Power of Self Trapped Wave :

We have made use of 'sech* distribution function 
in deriving Eq.(4.22) because this function satisfies 
Maxwell's equations in the nonlinear medium. It is obvious
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that it would still be a solution if the location of the 

interface is shifted to z * -oo . In that case the nonlinear 
medium would extend from z* + eotoz»- oo . In such a 

medium we will have to consider a freely propagating 
self-trapped wave. We now obtain expression for the critical 

power of the self-trapped wave.
For this purpose we use Eg.<4.4). Thus 

ooP__ - k / |E exp(ik x) sech C k (z - z ) 3 |* dz
ST X 1 20 X 2Z o *

— 00
00■ k E* / 1 sech £ k (z - z ) ] |* dz

X 20 _ * 2Z O 1-00

The integral is solved again by changing the variable
as X - z - z . Hence we obtainO

1-fcH
2 k

2 Z 

!*o

tanh (k X)2Z rJ-00
22

By using Eqs.(4.7c), (4.15) and (4.20e) the above result can 
be rewritten as

2m w
/*,-* Vd yms (4.23)

y

Comparison of Total Critical Power (Pfi) with Power CP 3 of 
Saif-Trapped Wave j

Dividing Eg.(4.22) by Eg.(4.23) we get

f-it 7-J2 Vff
+ vt> + vnrs

' ST

i .e.

2 yi~ T5
( yrrr + )* (4.24)

° 4 vet /m
On the other hand the division of Tomlinson’s Eg.(17)

by (4.23) gives us
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p m ( Y1 + ft + VP ) p --- (4.25)
2 VP

Comparison of P>ak-Fl»ld Awplliudw for ih» 
Surfac» W»v» and Sslf—Trappsd Wav :

From Sec.(4.2.2) we list the following expressions
again.

k E2x to
~nr% z NU

P » kNLZZ X
, E ~(""*7')

Hence

P « kG H ...(4.26)

From Bqs.(4.20d) and (4.20e) we can easily deduce
E* E2 jfr
to m ae Vd

k*a ka* VI O
Hence Eg.(4.2 6) becomes

-2
P « k -T-e x K

30
23

3 VP + 2V1 + D
2VTTP

Consequently the amplitude of the surface wave is 
written as **

P
sv

“a15.,
r 3VP + 2vmy iL 2vmy J

i/2
--- (4.27)

Similarly from Eq.(4.23) we obtain amplitude for the 
self-trapped wave.A" ‘ f • k P^2 23 ST r (4.28)

Comparing Eq.(4.27) and (4.28) for P_ * P_we have

3VP + 2VT
ST 4 vms

o
i/2

BV (4.29)
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Behaviour of Field ParuwiTS as Functions of D *
We have plotted the various parameters of the 

field distribution as functions of D in Fig.(4.2). Also 
field amplitude as a function of z for several values of D 
has been illustrated in Fig.(4.3). For this purpose the 
above given expressions for the field parameters are 
rewritten as given below :

We have chosen the set VST" * 1.5 and Am * - 0.06.O
By definition k * Ye . « 3? . As a result

O O A. \

Eqs.(4.13)—(4.15) and Eg.(4.18) take the following forms, 
k X * 3n yi VE>is c
k_X * 3ft y V! + Dzm o
k X ■ 3n /7TT7 ....(4.30)
x e

and - In t 1 1 * B t VP 1
3n y/ Y 1 + bc

The graphs of these can be seen in Fig. (4.2). For 
D < 1, k ask , 80 we have also included in this figure aX ©

plot of 10a(k - k )X in order to show the degree to which
X ©

the velocity of the wave reduces on account of the
interaction with the nonlinear medium.

Further Eq.(4.22) is utilised to study the
variation of • P versus D. This graph is also included in2 e

Fig.(4.2).
In order to plot the graphs given in Fig.(4.3) we 

have used the reformed expressions given below :
For z < 0

|E(x,y,z) | ■> E exp(k z)1 1 iO is
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Using Eqs.(4.13) and (4.16) we simplify the above expression 
as

|E(z) | ■ V2 jAc| exp £ 3» yo VF £ ^ J .... (4.31) 

For z > 0
|E(x,y,z) I ■ B sech I k (z - z ) 3 

Using Eqs.(4.12) and (4.14) we write 
«‘^a |E(z)| * V2 j&efa¥ 157 sech y

2eyUsing sech y * —---- , the expression finallyezy + 1
becomes

*t'z |e(z)| - 2 vzfz«jTinyy......  ....(4.32)
2 ® + 1

where y * 3n ^ yFTnCT £ ^ J •
4.2.3 tozulit and Dlscuzsion t

When we compare Eq.(4.22) with Eq.(17) of 
Tomlinson, it is seen that the first term contribution 
should actually be one half of that reported by Tomlinson. 
In other words, Tomlinson2 has datsmimd the critical power 
CP 3 in the linear medium two times its actual value.Xw
Consequently his Eq. Cl73 is in error and the correct total 
critical power should be given by Eq.C4.22) of the present 
work. That is why we adopt the notation P for the correctedO

total critical power to distinguish it from Tomlinson’s 
erroneous P value given by his Eq.(17).

Comparing the bracketted expression with the 
R.H.S. of Eq.(4.21c) we note that, it represents the 
critical power in the surface wave between z and + too
Hence we have
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P - 2 PBT MUX (4.33)
This is in agreement with Tomlinson's conclusion that the
critical power in the self-trapped wave is twice the
critical power in the surface wave between z * z and z *G +UD.

Comparison of P with P s...............- e ... BT

The critical powers P and P_ are compared by 
numerical calculations presented in Table (4.1). It is seen 
that the corrected power P is larger than P for the same■ e BT
peak-field amplitude because the decay constant kige in the 
linear medium is always smaller than the decay constant k

29t

in the nonlinear medium (as seen by comparing Bqs.(4.13) and 
(4.14)). However this is true only for the lower values of 
E in the range 10”* to 1 and not for all D values upto 10* 
as concluded by Tomlinson. In fact for D 2r 10 the powers 
under consideration are practically the same. This can be 
noted by comparing the numerical values of P / P andC ST
P/PM given in Table (4.1).

If we consider the case in which hm > 0 and > 0 
and follow the above given treatment the following 
expressions are obtained for the decay constants.

k - k v vmr11 o c
and k, - k v ym ....  (4.34)zz o e

Since k > k for all D values in the range 10”*
AS SSI

to 10*, it is obvious that P would be lower than P__. ThisO BT
means the surface wave will not be supported by the
interface.
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Comparison of A_ with A_s.......... * -...- SV .— ST
By varying the value of D in the range 10”* to 10* 

at a regular step of 10, we have numerically estimated 
values of the multiplying factor of Eq.(4.29). It is found
to be less than unity for 0 < D < 1, while greater than
unity for D > 1. This means A_ < A__ for D > 1, whereas
Kmv > A^t for D < 1. However Tomlinson has concluded that 
the surface wave has a smaller peak-field amplitude for ail 
D values. This conclusion need to be modified in the light 
of above discussion. Thus the surface wave has a total 
stored energy smaller than that for the freely propagating 
wave only if D > 1.
Behaviour of Flwld P>r»w>tT8 t

From the Figs.(4.2) and (4.3) the following 
features are noted :

13 The threshold for the existance of the surface wave
is given by D * 0 so that k - z - 0. This means theIS O
surface wave travels with uniform amplitude (2|Ae| / e^)4''2
throughout the linear medium. However it decreases 
monotonically into the nonlinear medium.

As D increases the field distribution is more and 
more sharply peaked in the nonlinear medium i.e. the wave 
becomes more and more intense at the peak. However the field 
amplitude at the interface always remains equal to 
(2|As| / e^)4^2. Further with the increase in D the peak 
shifts into the nonlinear medium and reaches a maximum 
distance for D * 2.277. For larger D values the peak shifts
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back towards the interface.
2) At D ■ 0 the critical power in the surface wave 

becomes infinite as the wave extends to - oo in the linear 
medium. This extent decreases in proportion to D as D 
value is increased above the threshold. Simultaneously the 
power of the wave decreases upto a minimum value at D ~ 1 
beyond which it increases again. This increase for low D 
values is approximately proportional to D , while it 
approaches (4« y* D / * ) for very large D values.

O C 2

4m 3 Wonlinaar Propagation of TE Wmymm In » Planar Optical
Wavguide with high-index Guiding layr s CPrwni Work3 

In this section we consider the effect of 
intensity-dependent refractive index on the propagation of 
T3 modes of electromagnetic wave in a three-layer planar 
optical waveguide with a geometry0 as shown in Fig.(1.5).

He make use of Egs.(1.35) and (1.36) of Chapter 1 
and assume that the effective refractive index of the 
guiding layer is given as :

*'aL +

where n ■ fieId-independent refractive index.

n* Intensity-dependent part of refractive index. 
Usually we take n„ ■ n’ < E* >

NL 2
with n' • nonlinear coefficient ~ 10“‘*(esu) or tO"*(m*/va)

2

Hence
n • n + n’ < E* 2 > i l a

By squaring both sides
n* * n* + 2 n n’ < E* >ft L» L« X
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where the small term containing n'2 is neglected.2
By definition « « n* so that above expression can be written 

as
e(x) « + «’ < L 2

with «' « 2n n’2 K. 2
Using this in Eg.(1.36) for the guiding layer we get

e( x) as «. m + « m ’ < E >I* 0 0 2
Assuming E * Ey eiCOt we can estimate

. _2 . 1 _2 < E > • — E2 y
e(x) . i fs e t • « cL O 2 L 2 (4.35)

4.3.1 Intensity Effect on Field variation 
Substituting this in Eg.(1.35) we obtain

ax'
where P * k e , Q

E + P E Q E « y y y
1 kV and ka2 2

(4.36)
2U U € o o

The wave eguation is written in a more compact form by
adopting the change of variable

2 1.2, 2. •s * -(x + z )

so that
.2 a2 + _JL 2 „_2ax* az 

Hence Eg.(4.36) becomes
as'

a*E
as— + P E + Q E* 2 y y (4.37)

This is a nonlinear eguation whose solution can be obtained
by employing the integration method due to Dufing.

SE
If —=r— * R r Eg.(4.37) becomesas aRas » -C PE (s) + QE*(s) 1 y y
Now
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OR“or OR
Os

08
~W

i PE (s) + QE"(s) ]y y-------- 1----------

i .e. 

Integrating

R *R « - t PE (s) + QE*(s) ] OE y y y

R2 » - CPE2 + 2 E4 ) ♦ c 
y 2 y

By initial condition 0 at s * 0 so that c » 0

Consequently the above equation takes the form 
OE - i (PE2 + T E* )t/2 os y y

with T - Q/2

This differential equation is solved by separating the 

variables

2VF
In

-/ P + T E2 
__________ y
/P + T E2 + VF

is + c'

This solution is valid under the condition that P > 0 

which holds good in the present study. By the same initial 

condition we have c' * 0. As a result the solution takes the 

form
/p + T E - VF

/ yP + T E~ + VF
* Re exp (i 2VF s)

* cos (2VF s)

Upon rationalising and simplifying we can finally obtain
Vcos (2VF s)E

(1 - cos C 2VF s)
For simplicity, the variation of

....  (4.38)

can be studied
either with respect to x or z co-ordinate. In the present 
work we assume z ■ 0 so that s * x/VF.

and
VF - k S'* - -IT nu
ft , 4/2 2n

V7
Vh“nl"I* S
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Hence we obtain
2VF b « VZ n d with d - 1*

and = JlT~nF

Hence Eq.(4.38) is rewritten as

E - 2V7 (4.39)y 2 1 - cos(VZ n d)I*

4.3.2 Results and Discussion :
Eq.(4.39) has been used to examine the field

variation in the x-direction. Fig.(4.4). For the numerical 
calculations we have chosen n « 2.29, n' * 10“* (m*/v2)L> 2

and varied d in the range 0.01 to 0.5. The nature of the 
graph shows that the field profile is sharply confined 
across the nonlinear layer, this indicates that under the 
intensity effect the guiding layer exhibits the 
self-focusing of the propagating wave.
4.4 Nonlinear Propagation of TE Wavs in * Planar Optical 

Waveguide with low-index Guiding layer : CPresent Work3
Holland* has investigated the optical wave-guiding

properties of a three-layered asymmetric structure. In his 
numerical calculations it has been shown that in such a 
structure guided waves exist with symmetric field profiles. 
These are considered as the nonlinear analog of conventional 
guided modes. For such a nonlinear propagation he has 
established a scalar wave equation. Although he has not 
given the solution of this equation, he has reported the 
intensity profiles of the symmetric guided waves for three 
different N values. In the present work we intend to solve



ion

this nonlinear equation by Dufinq's method as explained in 
the earlier Sec.(4.3).

With slight changes in notations, we write the 
equation ast

0*R

&x‘ * + ** [ *,. + I Ey ‘ “* ] E (4.40)

where E - Electric field along y-direction. y
4s ■ field free dielectric constant of the guiding 

layer.
o * nonlinear coefficient.
N = mode index.
In writing the above equation we have taken the x-axis 

normal to the guiding layer while z-axis is parallel to it. 
If P « k*(e - N*) - and Q * - k2a

L 2
The above equation can be re-written as :

d*E
dx

— = P E - Q E* * y y (4.41)

The first R.H.S. term is positive because P < 0
for the low-index guiding layer. 

dE
Put s * dx so that 6a PE - QE y y

Separating the variables and integrating, as we 
have done in the previous section, we obtain

S a
dE __ >dx

[ P Ej - T Ej j t/z

where T * Q/2 
Integrating again we get

1
Vf u In

u + /?
X

5*y

In solving the above integrals the constants of
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integration are found to be zero. A further simplification 
leads to the expression for the electric field

E - 2 u *1 .... ,4.42)
y 1 + exp(-2Vfr x)

With U * y/-y- * 2 - H*) / a
4.4.1 Results »nd Discussion s

Eq.(4.42) is employed to examine the field 
variation as a function of propagation distance across the 
guiding layer for different group index values. For this 
purpose the following data of various constants have been 
chosen, m - 2.24 , X * 0.5 tm , thickness of guiding 
layer - 1 pm , a ■ 10"V N - 1.5035 , 1.5170 , and 1.5434. 
It is to be noted that we have substituted only |P| values 
in Eq.(4.42) because the condition P < 0 is already taken 
care of in Eq.(4.41). The results are presented graphically 
in Fig.(4.5). The nature of field plots is the same as that 
for intensity plots of Holland given in his Fig.(5). From 
Fig.(4.5) we find that

For a given mode index the field profile has a peak 
value at the location of axis of the guiding layer.

ii> With the increase in mode index value the peak 
becomes more and more sharper with a simultaneous decrease in 
the extent of field profile across the layer. Physically it 
means the guided wave (hence the energy) is more and more 
tightly confined across the guiding medium.
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4.5 Summary and Conclusions s
In the beginning of this chapter we have revisited 

Tomlinson’s method of analysing surface wave at a nonlinear 
interface. Expressions for various field parameters in both 
linear and nonlinear media are obtained. In deriving the 
expression for critical power of the surface wave, however, 
we have noted a small correction in Tomlinson's expression. 
The critical power of the surface wave in the linear medium 
should be actually one half of that reported by Tomlinson. 
This has led to a corrected expression for total critical 
power. Numerical calculations have been carried out and 
critical powers for the surface wave and self-trapped wave 
have been compared. A similar comparison has been done for 
the peak-field amplitudes of these waves. The behaviour of 
different field parameters in the two media has been 
discussed at the end.

Next we have examined the nonlinear propagation of 
TE waves in a three-layer planar optical waveguide. The 
expression for effective dielectric constant of the guiding 
layer (having higher refractive index than that for 
substrate) is established and the same is employed in the 
scalar wave equation. The resulting nonlinear equation is 
solved by Dufing's method. The behaviour of electric field 
across the guiding layer is graphically presented and 
discussed.

At the end of this chapter we have studied the 
nonlinear propagation of TE waves in a planar waveguide with
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low-index guiding layer. Holland's nonlinear equation for 
this problem has been solved by Dufing's method and the 
field variation across the guiding medium has been examined
by presenting the results graphically.

Conclusions :
From our study reported in this chapter the 

following observations are noted :
1} Tomlinson's expression for total critical power of 

the surface wave is found to be erroneous in that the 
critical power in the linear medium is reported to be two 
times its actual value. This expression has been corrected 
in the present work.

Numerical estimates based upon the corrected 
expression indicate that the total power in the surface wave 
is larger than that of self-trapped wave only for lower 
values of parameter D in the range 10~a to 1, while for D > 

13 the two powers under consideration are practically the 
same. Further the peak-field amplitude for the surface wave 
has a smaller value than that for self-trapped wave only for 
D > 1 and not for all D values as concluded by Tomlinson. 
This means the surface wave has a smaller total stored 
energy only if D > 1.

23 In the study of nonlinear propagation of TE waves 
through a planar waveguide having high-index guiding layer, 
it is noted that the field profile is sharply confined 
across the guiding layer which favours for the self-focusing 
of the wave on account of intensity effect.
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33 In examining the nonlinear propagation of TE waves 
in a planar waveguide with low-index guiding layer, we have 
found that the nature of field profile is the same as that 
for intensity plots reported by Holland. With the increase 
in mode-index the profile exhibits more and more sharper 
peak close to the axis of the guiding layer. Physically it 
implies that the energy of the guided wave is more and more 
tightly confined across the guiding layer.
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Table 4. 1 Comparison of Critical Powers and Peak-field 

Amplitudes for Surface and Self-Trapped Waves.

I

D p /p 
a ST P/P,,

Multiplying 
factor of
Eq.(4.29)

0.001 8.417547 16.31929 0.723674
0.01 3.037344 5.524937 0.758042
0.1 1.404534 2.158312 0.852134

1 1.030330 1.207106 1.015051
10 1.000567 1.024404 1.102314

100 1.000006 1.002493 1.116368
1000 1.000000 1.000249 1.117866

Note t P /P______ > Present worko ST
P/P ---> Tomlinson's equationST
Multiplying --- > Present work
factor of Eq.(4.30)

Fig. 4.1 Interface between Nonlinear and Linear Dielectrics.
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Flfl« s Field parameters of the surface waye as functions

of D.

2)

Fig, 4.3 s Field amplitude of the surface wave as a function 
of z/'A.



fig. 4.4 s Intensity effect, on field variation for TE guided

Fig. 4.5 s Field profiles of the nonlinear guided TE wave.
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