
CHAPTER - 1

A REVIEW OF
ELECTROMAGNETIC MODE ANALYSIS 
OF PLANAR OPTICAL WAVEGUIDES



1.1 Introduction i

The advent of laser and its extensive applications 
have created many new fascinating fields like integrated 
optics. This field is primarily based on the fact that light 
can be guided and confined in thin-films (with dimensions of 
the order of wavelength of light) of transparent materials 
on suitable substrates. The basic concept of integrated 
optics was first proposed by Anderson in 1965, while Miller 
coined the term "Integrated Optics" in 1969. It was 
visualised that thin-films ancL micro-fabrication technology 
could be suitably adopted for generation, modulation, 
switching, multiplexing, processing and such other optical 
functions in integrated optics form. Since then considerable 
progress has been made in the thin-film and integrated 
electronics technology.

Integrated optics is a far reaching attempt to 
apply thin-films and integrated electronics technology to 
optical circuits and devices. An integrated optical circuit 
could include lasers, integrated lenses, switches, 
Interferometers, polarizers, modulators, detectors etc. Such 
circuits are useful in signal processing and optical 
communication. These could also be used in systems like 
optical transmitters, switches, repeaters and receivers. An 
optical system in the form of an integrated optical circuit 
is advantageous in reducing the sensitivity to air currents 
and mechanical vibrations, and in obtaining high efficiency 
at low driving voltages. The most promising materials for
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integrated optical circuits are direct band-gap 
semiconductors composed of Group IIl^V materials like GaAlAs 
and InGaAsP because these can be processed to perform almost 
all necessary operations as lasers, switches, modulators, 
detectors and so on.

Physically an integrated optical system differs 
from conventional optical systems in that light waves are 
propagated as guided waves confined in dielectric thin-films 
rather than as diffraction limited beams in free space. The 
propagation of these optical guided waves is very similar to 
the propagation of microwaves in waveguides, except that 
optical waveguides are made of dielectric layers of few 
microns or less in size and that the electric field of the 
optical guided waves extends both into the air and the 
substrate. One can conceive devices in the thin-film 
configuration that will generate, propagate, modulate, 
demodulate, deflect, switch, divide, combine, and detect 
these optical guided waves; and one can envision the design 
of an entire optical communication system (or sub-system) on 
one piece (or several pieces) of planar substrate material 
with most of the optical logic and data processing functions 
performed internally, within the thin-films.

The very high concentration of energy in very 
small regions in the optical waveguides gives rise to 
enormous intensities leading to the realization of nonlinear 
optical effects such as second harmonic generation which are 
useful to conceive nonlinear optical devices. Thus thin-film
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waveguides, due to high field intensities associated with it 
serve as useful tool for research studies in nonlinear 
optics. The confinement of light energy in small regions of 
space is also resposible for an efficient interaction of the 
optical energy with an applied electric field or an acoustic 
wave. This leads to much more efficient electrooptic and 
acoustooptic modulators and deflectors requiring very low 
drive powers.

The specific features that are basic and most 
important to integrated optics are (a) the fabrication of 
low-loss waveguides, Cb) the control of the modes 
propagating in the waveguides so that the desired operating 
characteristics can be obtained, and (c) methods to achieve 
efficient input and output coupling that will channel an 
optical beam propagating through free space into guided 
waves in the thin-films and vice versa. In integrated optics 
two kinds of waveguides are commonly used (i) Planar 
Waveguides in which light is concentrated near the surface 
of the substrate with no lateral confinement (ii) Stripe 
Waveguides in which light energy is confined in both the 
transverse dimensions. This confinement is desirable for the 
fabrication of devices like amplitude or intensity 
modulators, directional couplers and optical switches.

In the present work we intend to study the 
propagation of light only through the planar waveguides• 
The propagation can be analysed in detail using 
electromagnetic mode theory although a ray treatment gives a
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reasonably good idea about the propagation characteristics. 
In the beginning we introduce electromagnetic theory through 
Maxwell’s equations and briefly outline the propagation of 
plane electromagnetic waves in unbounded free space and 
dielectric medium. After summarizing the boundary conditions 
at an interface separating two dielectrics and giving the 
main results for reflection and refraction, we will discuss 
the mode treatment of asymmetric dielectric slab waveguide. 
This would be considered in view of the fact that almost all 
waveguides used in integrated optics are asymmetric in 
nature.

1.2 Maxwell*% Equations t

It is well known that Maxwell’s equations include 
the fundamental principles of all large-scale 
electromagnetic devices such as electronic computers, 
optical devices, television, microwave radar etc. These 
equations play vital role in the theories of electromagnetic 
radiation and relativity.

Maxwell noted that the laws due to Oauss and
Faraday were applicable to time-varying electric and
magnetic fields without changing their forms . However, he
had to correct Ampere's law by introducing the displacement 
current density. Thus he could give a consistant set of four 
equations which are applicable to both static and 
time-varying electromagnetic fields in trmm spec*.
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V X E » **v*f ---<i.n
( SI units )9 • B - 0

V x B • M0«0 • I'

Maxwell could visualise that when a magnetic 
field is wrapped round a current, a current could equally 
be wrapped around a magnetic field. This reciprocal relation 
between the two fields could be expressed mathematically by 
the curl of a vector field. When the two fields coexist in 
space, the reaction between them can be expressed a6 curl 
curl of a vector field. Combining the four equations 
appropriately, Maxwell derived the second order differential 
equations for the two fields.

J « * *o o (1.2)
where y stands for E or 8.

These equations established that electromagnetic
disturbances travel in the form of waves even in free space.
1.3 Plane Electromagnetic Waves In Unbounded Media *

a> In fr space t
The solutions of the above wave equations oan be

obtained in the form
„ _ • ..Hwt-k-r)W a e

where k is the wave vector representing the direction 
of propagation of wave, while k-r represents the phase 
factor with r as a position vector in space.

This solution represents a plane wave if the field 
depends only on one space co-ordinate, and time co-ordinate.
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A plane wave is the one where the surfaces of the constant 
phase are planes normal to the direction of propagation of 
the wave. Such planes are called wavefronts. For a plane

MMwave propagating in z-direction we should have '"■jffc1" "fly * 0' 
^ M 10 that we can write E ■ B(z,t), H ■ R(z,t). From

the divergence Maxwell's equations we can show that and
m

H are constant in space while the curl Maxwell's equations z
lead to the conclusion that these components are also
constant in time. Thus they represent static components and
consequently, no part of the wave motion. He can therefore
choose E_ « H, * 0 so that E - iE„ + JE H ■ 1H + JH . It z z x y x y
can be shown that in a progerssive plane electromagnetic
wave the ratio of amplitudes of E and H fields is given by
(fj /e )1/2. This is called the characteristic ispedance or o o
intrinsic impedance of the medium, e.g. For free space, the 
value of this ratio comes out to be roughly 377 ohms. Since 
the E and H vectors do not have any z-components, both these 
must be perpendicular to the direction of propagation. This 
means plane electromagnetic waves are purely transverse in 
nature. These are termed as TEM waves. If E points in a
direction parallel to the x-axis, H will point in a
direction parallel to' y-axis. Such waves are called plane
polarised. The plane containing H vector and direction of
propagation is termed as the plana of polarisation and the 
plane containing E vector and the direction of propagation 
is called plane of vibration. He often say that the wave is 
polarised in the direction of its E vector. In general E and
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H vectors may lie in x-y plane instead of parallel to x and
y-axes. In such a case, each vector can be split up into x
and y components. For example, components Ex and for E
vector. Since E oscillates in time, the two components also
vary in time. If E and E are not in phase and theirx y
magnitudes are unequal, the E vector will describe an
ellipse in x-y plane. Such a wave is said to be elliptically
polarised. As a special case E and E may have equaldn y
magnitudes and a 90° phase difference. In that case the 
resultant E vector describes a circle and the wave is said 
to be circularly polarised.

The phase velocity of the plane electromagnetic 
wave is defined as Vp * —--- « 3 X 10* m/sec in free space.

^0*0

The group velocity is given by dto /dfi where ff* ijq<sou> . As 
electromagnetic waves propagate through space from their 
source to distant receiving points, there is a transfer of 
energy from the source to the receivers. There exists a 
simple and direct relation between the rate of this energy 
transfer and the amplitudes of electric and magnetic field 
strengths of the electromagnetic wave. This relation 
obtained from Maxwell's equations is given by S * (E x H) in 
watts/m2 and is known as Poynting vector. It is interpreted 
as the amount of field energy passing through unit area of 
surface in unit time normal to direction of flow of energy. 
The time averaged power flow is given as |Re(E x H ).
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b> In Dielectric s

For an isotropic, homogeneous and linear material 
medium other than vacuum, the set of Maxwell's equations are 
written as

7 • D ■ p
V • B - 0 

7 X E~+- « 0
g X H - •» J

.......(1.3)
(SI units)

where the following constitutive relations or material
aquations are incorporated i D * «E , H * -2- , J « oE withfJ
a * electrical conductivity of the medium. By combining the 
above equations appropriately the following wave equations 
can be easily derived.

7*E • mfj -j— +■ ofj • ^ +■ V ( ^ ) .

V*H mu **h
at'

+ &u MTFT
- ... (1.4)

For a conducting or a non-conducting medium it can 
be shown that we can set p • 0 and that both E and H are 
mutually perpendicular to each other and also transverse to 
the direction of propagation. The vector product1£ X H will 
point in the direction of propagation. For a non-conducting 
medium or dielectric J - 0 also. Hence the wave equations 
(1.4) reduce to a following simple form

» 1 9^ yt
* v* at*

with yt " E or H and v * ——

0
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By definition the relative permeability and
permittivity are given as u * -j-— and « ■ Hence the

T *0 r *0

phase velocity can be written as v - —------ with c » 3 XP \ ju « r
10* m/sec in free space. Since and «r are greater than 
unity, we find that v? < c in a dielectric. Further the 
refractive index of dielectric is given by n ■ * 4**r«r •

p
For non-magnetic dielectric pr« 1 so that n*« *r • This is
called Maxwell's relation which is experimentally verified
for substances having non-polar molecules e.g. air,
hydrogen, benzene, carbon etc. However «r becomes a function
of frequency in case of substances containing polar
molecules e.g. water, glass etc. This gives rise to the
phenomenon called dispersion. In a dielectric, average
Poynting vector is found to be (n/jur> times that in free
space. Also the total electromagnetic energy density is
found to be « times that in free space, r

1.4 Plane Electromagnetic Waves in Bounded Media *

The characteristics of electromagnetic waves are 
modified substantially when these waves propagate in a
bounded medium. When a plane electromagnetic wave is
propagating from a medium with constants to a medium
with constants (p ,« ), the field vectors E, D, B, and Hat 2
should satisfy the following boundary conditions at the 
surface of discontinuity separating the two media (Fig.1.1).
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(D_ D )ft
(E - E )i *
(B, - B.)

- *v
.....  (1.5)
(SI units)

n « a 
n * 0 ;
n * 0 
n - J

where n - unit normal vector at the surface, 
a « surface charge density and 3 * surface current density.

These conditions are useful in explaining 
reflection and refraction of the plane waves at a boundary 
between two material media. These are also applicable while 
studying the propagation of waves through waveguides.

With reference to Fig. 1.2, the electromagnetic 
theory easily verifies the laws of reflection and refraction

sin & nVis. e- e, nnd _T5-g----- - (—£_)*''* where n and45 ft2
n

are the refractive indices of the two media. Similarly the 
expressions for reflection (R) and transmission (T) 
coefficients for TE and TM polarisations of the propagating 
waves are derived to be 
TE polarisation :

Ri

TM polarisatiom »
R*

sin (e- e)________2___t
sin*(e + e )

2 1
sin 2e sin 26ft 2
ain*(® + 6)

2 41

tan*(© - 6)
■______ ft__ 2
tan*(e + e )

ft 2

sin 2e sin 26._________ ft______ X_____
sin*(© + e ) cos*(fi - e)

ft 2 ft 2

* • • • (1.6)

... (1.7)
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In TM case there is a possibility of zero power 

reflection coefficient for a certain angle of incidence 
given by

-i n*« tan 1{——)B n,

This angle is called Brewster's angle. Similarly, for some 
angle of incidence the power transmission coefficient would 
be zero. This angle is known as the Critical angle given by

-i n*0 * sin <----)c nf
which is true for either type of polarisations at the
interface. When a wave in denser medium is incident at an
angle exceeding 0 , it will be totally reflected back intoc
the same medium. It will be accompanied by a surface
(evanescent) wave in the less denser medium for which
sin 0 > 1. This cannot be satisfied for any real value of2
0 , i.e. 0 is a complex angle. The physical interpretation 2 2

of this phenomenon is that the transmitted wave no longer 
crosses the interface, so that only reflected wave remains.

A phase shift occurs on total internal reflection.
two types of

► ... (1.8)

The expressions for the same in the case of 
polarised incident waves are given below 

T1 polarisation :

2 tan
(sin*04- *2 ' V2 % i/2

COS 0,

TM polarisation :

6m « 2 tan-1£(sin*0i- n* / nj>4'*

(n| / n*) cos 0g ]
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In the above discussion we have considered 
reflection and refraction in terms of a single ray incident 
at a dielectric interface. However in practical situation, a 
beam of light with well-defined cross-section is incident at 
the interface. If the axis of this beam is taken as a single 
ray, the reflected ray is found to be laterally shifted with 
respect to the incident ray (Fig.1.3). This is called 
6oos-Ha»nch*n shift. It is found that for either type of 
polarisation the lateral shift becomes infinite at the 
critical angle and at the angle of grazing incidence. This 
effect is important in the case of dielectric waveguides. 
l.d.1 Propagation of Electromagnetic Waves in Waveguides :

In many actual cases electromagnetic waves are 
guided along or over conducting or dielectric surfaces. 
Common examples of guided electromagnetic waves are the 
waves along ordinary-parallel-wire and coaxial transmission 
lines, waves in waveguides and waves that are guided along 
the earth’s surface from radio transmitter to the receiving 
point. The transmission of light via a dielectric waveguide 
was first proposed and investigated by Hondros and Debye in 
the beginning of this century. Since then the interest in 
optical applications has been developed enormously through 
the achievement of lasing action in semiconductors, 
development of the heterostructure laser and p-n junction 
modulator.

In the circular cylindrical waveguide, early work 
was carried on modes in dielectric rods. This was followed
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by the suggestion of using optical fibres for long distance 
communicat ion. Since then a lot of development has been made 
in reducing the fibre losses and operating the waveguides at 
longer wavelengths. The most extensively used optical 
waveguide is the step-index optical fibre which consists of 
a cylindrical central core cladded by a material of slightly 
lower refractive index. For a ray entering the fibre core, 
if the angle of incidence (at the core-cladding interface) 4> 

is greater than the critical angle 4>c * sin *(*», t • fhsn 
the ray will undergo total internal reflection at that 
interface. Here n and n are refractive indices of core andA 3t
cladding respectively.Due to cylindrical symmetry in the 
fibre structure, the ray also suffers total internal 
reflection at the lower interface and will thus be guided 
through the fibre core by repeated total internal 
reflections. This is the basic principle of light guidance 
through the optical fibre. A mathematical analysis of the 
guided modes in optical fibres is rather complicated. The 
situation becomes worse in the presence of radiation losses. 
Therefore the properties of light transmission in dielectric 
waveguides are difficult to learn in such a study.

However there are simpler dielectric waveguides, 
whose physical properties are very nearly the same as those 
of the round optical fibre. Such structures are much easier 
to analyse. The simplest optical waveguide to analyse is 
probably the planar wawguldv which consists of a thin 
dielectric film (of refractive index nt> saadwitched between
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materials of slightly lower refractive indices,say n2 
and n#. This structure is useful to 'study the radiation and 
mode conversion properties of dielectric waveguides. It 
resembles a longitudinal cross-section through the cladded 
optical fibre and can be regarded as its two dimensional 
analog. Therefore the results obtained with the help of such 
a waveguide model are usually directly applicable to the 
round optical fibre. Such planar waveguides are important 
components in integrated optics. We now present the 
electromagnetic analysis of an asymmetric dielectric slab 
waveguide in somewhat detail.
1.4.2 Moda Treatment, of Asy—trlc M.electric Slab Wavguld*

A typical lossless asymmetric dielectric waveguide 
is shown in Fig.Cl.43. It is considered to have a thickness 
typically of the order of an optical wavelength supported by 
a substrate many wavelengths thick. We find the modes guided 
by this slab waveguide directly from Maxwell's equations, 
which are written in terms of the refractive indices of the 
three layers. We also assume the magnetic permeability to be 
the same as that of free space.

’ * H - -o-ir- ........  (1”
* x E - - *o-3f-   <110>
V • E « 0   (1.11)
V * H - 0   (1.12)

where n^« (j« 1,2,3) - refractive index of layer. 
By applying curl operator to equation (1.10) and
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simplifying we get 

7*E .n* d*E
° ° j dta

Assuming E ex exp (-loot) with k* ■ « we obtaino o
9*E + k*n* Ej 0 .....  (1.13){

which is the familiar wave equation for the uniform
dielectric with reractive index n,. For a two dimensionalj
situation O/Oy « 0 i.e. the guide extends to infinity in the 
positive and negative y-directions, so that the waveguide 
geometry and the field distributions of the modes are 
uniform throughout the y-direction. This restriction 
id/Oy * 0) allows us to decompose the field of slab 
waveguide into TE and TM modes.

Case Cm3 : In order to simplify the analysis we 
shall first omit the time and z~dependence factor from the 
expressions for the fields and shall consider only 
x-dependence. Then Equation (1.13) may be rewritten for the 
three regions of the guide as t

Regoin 3 t

Regoin 1 <

Regoin 2 :

0*E_

Ox
a* e
ox
OzE_

r*E.

+ q*E

p*E

(1.14)

(1.15)

(1.16)
Ox‘

where q*"« t* * 7»* - njc*
% m 9

Similar forms of the wave equation in the three 
regions may be derived for the magnetic field. H tx&k 

Maxwell’s equations.



TE Guided Modes :

in
*

The assumption d/dy ■ 0 when applied to
Eqn.(1.9)-(1.12) leads to the result that the only non-zero
field components for TE modes are Hx and H2. The
Eqn.(l.lO) yields

V X E dHMo~sr
L * H • S • *

V X E «
i J k 
d d

0 By 0
w ■)

R.H.S. » - *i0-£g> ( i Hx + k Hz J - 1U/j0m)Hx + k (i #jq»)Hz 

Simplifying further we get

Hx * _J2— e“ y (1.17)

dl.
H

co (JQ dx (1.18)

These express the two nonzero magnetic field 
components in terms of the single nonzero electric field 
component Ey , which itself is given by the solution of wave 
Eqns.(1.14) — <1.16) in each region.

The other requirement to be satisfied by these 
field components is that the tangential components Ey and Hz 
should be continuous at the interfaces 1-2 and 1-3 between 
dielectric layers. Let us choose the origin of the x-axis at 
the 1-3 Interface, so that the 1-2 interface is at x ■ -2a.
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For guided modes we require that the power be 
confined largely to the central layer of the guide i.e. 
region 1. The form of Eqns.(1.14)-(1.16) then implise that 
this requirement will be satisfied for an oscillatory 
solution in region 1 (q* £ 0) with evanescent tails In the 
cladding regions 2 and 3 (p*,r* fc 0). Combining these 
conditions on ft we have

n k St (i £ n k £ tt k »12 8
From the above consideration we may write down the 

solutions for Ey in the three regions for a guided mode.

Ae ■TH X > 0
E„ * A cos(qx) + B sin(qx) 0 > x St -2a ...(1.19)

(A cos 2aq - B sin 2aq)ep{***0> -2a > x
The form of Eqns.(1.19) has been so chosen that

the requirement of continuity of Ey at x * 0 and x ■ -2a is
satisfied explicitly. To complete the boundary requirement.
the continuity of Hz is to be ensured. This component is 
given from Eqn.(1.18) as

H_ JZL.
CO fj

•r xrAe *" x > 0
■ q(-Asin qx + Bcos qx) 02x2 -2a ..(1.20)
p(Acos2aq - Bsin 2aq)e**<*'f*a> -2a 2t x

The continuity condition yields
tan(2aq) q(p + r) (1.21)q - p r

which is the eigenvalue equation for TE modes.
For TM guided modes the similar eigenvalue

equation can be obtained as
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(n*p + njr)n*q
tan(2aq) » ----—.. f-...... .....  <1.22)

n* n* q - n*pr
9 V »

Mode Nuawbars and Cut-offs *
He use the notation TEm (and similarly TMM for a

mode possessing N nodes in the field distribution. The value
of N is obtained by taking the argument of the tangent in
the eigenvalue Eqn.(1.21) or (1.22) to be (2aq - Nn) and
using the cut-off condition ft • k na which corresponds in
the modal analysis to loss of optical confinement and field
spreading throughout the region 2.

Using the above definitions we may find
expressions for cut-off frequencies for TE and TM guided
modes of the slab waveguide. Substituting the expressions
for p, q, r at cut-off with the definition of normalized
frequency v (« a k (n* - n*)4^*) we get the cut-off value
v as c
TE (1.23)

where tan**4 is restricted to the range 0 - it/2. This 
relation may also be used as a method of counting the number 
of guided TE modes. Thus for the first mode H « 0. Then for 
a normalized frequency v, Eq.(1.23) gives the number (M) of 
guided modes as below.

TE M 2v - tan
n
n

(1.24)

where the subscript 'int'indicates the next largest integer. 
The corresponding results for TM modes are as follows t
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V ■c +-[ (f (^HH U n --- (1.25){+( 2v - tan” i tf t-^-n i l
(1.26)

Normalization in ttrac of Power flow :

The time averaged power flow in the guide is given
as>

P - / Sdx - -4— / fie(E x H*) dx 
z z Z-CD -0D

For TE inodes, Poynting vector S is given byZ

(1.27)

a . *4-8 HZ y x 2u> u ■« yl« I’
The integral in Eg.(1.27) is split into three 

parts corresponding to the three layers and the power in 
each region is obtained.

A
TY

^i"l Jw fJ 2a +f ,.(?. .14lfgL.- t.jIl f;
P . f _/?— 1 *1 5L.-LJL. |* l J p* + q* J

The total power P is given by

2 2 q + p 2 2q 4 IT

... (1.28)

P ■ PI P + P & 2 1

f * f;l Z“ »0 P* J [
2a + -i- + -i- ....  (1.29)
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Furthermore we get 

Pcor*
2a + (g* + pa)

r
<g* + r*)

P
2a + J.

r

c l ad p(q* T p*) r(q + r )

where P = P.oor* i and

2a + -A- + —p r 
P , . = P + P.clad t S

Similar experssions hold good for TM modes. 
Losses:

(1.30)

(1.31)

Consider the case of a dielectric slab waveguide 
composed of lossy medium which is characterised by a complex 
refractive index n. 4- iK. where n. is real refractive index4 4 4
and K, is termed as the extinction coefficient. It is4
related to the attenuation coefficient as

ajK « - __L.J 2k
where k is the wavenumber. We assume that the attenuation a.4
is due to (i) absorption in core region 1 (ii) transmission
into medium 2 on reflection at 1-2 interface (iii)
transmission into medium 3 on reflection at 1-3 interface.

The losses (ii) and (iii) occur because total
internal reflection is strictly only possible at an
interface between lossless dielectrics.

The result for attenuation is especially simple if
we consider the case of weakly-guiding dielectric slab which
is subject to the condition that (n - n ) « a (j • 2,3). In

* <1 •
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this case Eq.(1.21) reduces to
tan(2aq) - -ig-g.~. £

q - P
As cut-off is approached, the power spreads out

into the cladding regions until guidance is lost completely 
at cut-off. The modal attenuation coefficient a can be 
expressed with power ratios as <

- n - „ o*** + clad (1.32)4 p P
where , are the losses in core and cladding
respectively Alternatively we can define a "Radiation
confinement factor" as r ■ P /oor* P so that Bq.(1.32)
becomes

a * tuT + a^( 1 - n .. (1.33)
This result is of great practical importance in 

calculating threshold currents for semiconductor injection 
lasers.

Finally a useful relationship between phase 
velocity, group velocity and power confinement factor, 
neglecting material dispersion effects is given by

■ c* - n* T + n*(l - n .... (1.34)
p si *

Case Cb3 i Now we include the z-dependence of the fields
~ifi z

I.e. e m and present the analysis without considering 
time dependence once again.
TE Mode* s For-simplicity we take Region 3 of Fig.(1.4) as

air and t as the film thickness (instead of 2a). The new 
geometry of the slab waveguide is shown in Fig.(1.5). Them 
the wave equations for the three regions are written as *
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dx~

with

02
s(x)

E (x,2) 4- <o«(x)u E (X>2) y © y

o
:«o
>o

in air region 
in film region 

in substrate region

where n^ * refractive index of film

n * refractive index of substrate2

and

H

H.

_ i
JfC91

U ~w

m
« fjQ dx

(1.35)

(1.36)

(1.37)

Other symbols have their usual meanings. The solutions 
of Eg. (1.35) for mth mode guided in the three regions are as 

below i 
1> air

sin (h t + 4>) exp t-p (x - t)3 exp C-j/Tjzl m m m m m m
2> film

sln (V * V exD . . .  a-38)
3> substrate

Km"S» sin (g> ) exp £gm x ] exp ‘-V 
with k ■ t. u ■O O K

The above solutions are respectively subjected to the

following conditions t

(/5m / k)* ” (pm / k)* “ 1   (1.39a)

{ftm / k)* + (h^ / k)* - n* ...... (1.3fb)
/ k)* - (g^ / k)* - n* ...... (1.39c)

with tan (g> ) * .....  (1.39d)
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Here h , a end p are the rath set of real roots ofm TB IB ’ V
transcendental equation.

tan Kh^ / k) k t + / pa .... (1.40)
The values of (h / k), (q / k) and (p / k) are 

dependent on refractive indices. For a qiven normalized 
thickness (kt) there is only a finite number of roots 
leading to a descrete set of real values for h, q and p. 
Thus the guided inodes are also called as descrete modes and 
are labelled by the subscript m which takes values 0,1,2,... 
so that hQ < hj < hg ••• . From Eq.(1.39) it is obvious that

n2 < I '’m * k I < ”,
From Eq.(1.40) we have

cot £(1^ / k) k t + qj * ~ Pm / hm * * <1.41) 

Using the trigonometric relation
tan ^--jn - & J ■ cot d with m « 0,1,2, ...

we can rewrite Eq.(1.411 as
tM {pq-i}.. - tth. / u* t ♦ *m ]} - - pm / ^

which after simplification gives

kt * ‘““O’* > "J ' tan~1*hm > ‘V’} ' <h»/lc>

-----  (1.42)
From Eqs.(1.39a)-(1.39c) we can obtain the values of 

(p^/k), (hm/k) and (q^/k) vdiich yield the ratios.

<pm/hm> * [</5m/k)* ~ l]*~/ [nJ ~ ---(1.43)

[^1/2 e ^1/2
and
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At cut-off of mth mod« we have <<1^*0), ao that 

Eq. (1.39c) qives (/? /k) * n^. Using this we have

<pm/hm) * (n* " inl " nly*~ ..... U.45)
and

(h^/k) « (n* - n*)4^* ....  (1.46)

Applying ■ 0 and using Eqs.d.45) and (1.46) in 
Bq.(1.42) we get the expression for the minimum film 
thickness

k tm ..(1.47)

where m ■ 0,1,2,3, ...
TM Modes s

The guided wave mode treatment for this class is 
similar to TE case described above. The main results are 
given here. The wave equation for nth mode is

H (x,z) + »*«(x)u H (x,z) « 0 y o y (1.48)

. m . mE . _JL_y_ c ____L__y_“x w m dz ’ Bz co « dx
where «(x) is given by Eqs.d.36). The 

different regions are given below.
1> air

.... (1.49)

solutions in

Hn ' Bi *ln <V * '‘V* - UI 8xp ‘-W.*1
2> film
Hn - sin (hRx + 0^) exp l-j/?nzl 

3> substrate
Hn * B^ sin (^) exp Cqn x 3 exp £-j/*nzJ



25

These solutions obey the conditions (1.39a)-(1.39c)
except for

tan 4>' * (n./n )* h /q_ ..... (1.50)n s * n n
Here h , a and ft„ are the nth set of real roots of the n n n
transcendental equation.

tan C(hn / k) k t ) « * hfl / (a* pR) ..... (1.51)
where n ■ 0,1,2, ... so that hQ < h^ < l^...
The minimum normalized thickness is given by

ktn -|n -> + ■ Jj(n* - . (1.52)

Comparing the cut-off thickness t and tM it is81 u
found that tR needed for nth order TM mode is always larger

iKthan t for the m order TE mode. From this it is possible m
to design the thickness of the guide with appropriate n& and 
n2 for the desired mode to propagate in that structure.
1.S Summary :

At the outset the importance of the field of 
integrated optics in various applications including 
nonlinear optics is brought out. This is followed by a brief 
outline of electromagnetic mode theory which is essential 
for analysing the propagation of light waves through the 
thin-film optical waveguides. Maxwell's wave equation is 
given and its solutions as plane electromagnetic waves in 
unbounded, free space and dielectric media are discussed. 
Subsequently the propagation of plane waves in bounded media 
is explained with reference to both TE and TM polarisations. 
The mode treatment of an asymmetric dielectric slab



waveguide is discussed in detail by both excluding and 
including the 2-dependence of electric and magnetic fields 
in the case of TE and TM guided modes. Also the expressions 
for the minimum film thicknesses at cut-off are obtained in 
each case.
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Fig. 1.1 : Propagation of Wave Across A Boundary Surface
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Fig. 1.2 : Reflection and Refraction at a Boundary airface



X
A.

*■ z

Fig. 1.3 : Goos -Haenchen Shift on Reflection
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Fig. 1.4 : Propagation of .a Ray in Dielkectric Slab Waveguide
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Fig. 1.5 : Electric Field Pattern of A Typical TE Guided
o

Wave Mode


