
CHAPTER - 2

PROPAGATION CHARACTERISTICS OF 
MULTILAYER SLAB WAVEGUIDES
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2.i Introduction t

In the previous chapter we have introduced 
electromagnetic theory and discussed its application to a 
three layer asymmetric slab waveguide. In the early 60’s the 
theory of this waveguide was applied to fabricate the 
semiconductor injection laser. At that time the device 
consisted of a GaAs film incorporating a p-n junction. By 
applying a forward bias, the laser radiation at a wavelength 
of 0.9 jum could be achieved. In order to reduce considerably 
the current density required for the lasing action, 
heterojunctions were later introduced in place of a single 
p-n junction. This was possible due to a liquid phase 
epitaxy technique, in which a epitaxial growth of successive 
layers of specified material could be achieved on the n-type
GaAs substrate. These layers were of the alloy A1 Ga As.

-X

which could help to improve the performance of
heterostructure laser in two ways : by confining the
carriers to the active layer and simultaneously confining 
the electromagnetic radiation in this region. A typical 
double heterostructure is as given below >

Superstrate ! p-Al^Ga^As 
Guiding region : p-GaAs 
Substrate t n-Al Ga Asx i-x

In order to achieve large optical confinement 
regions for high power output a four-layer structure was 
proposed. This structure differs from the conventional 
double heterostructure laser, in that the p-n junction is
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displaced from one of the heterointerfaces into the central 
region. Such a four layer structure exhibits gain only in 
the p-layer of the region between the heterojunctions. 
A typical four-layer structure is given below t

Superstrata : n-Al^Ga^As
Guiding region : p-GaAa 
Additional layer : n-GaAs 
Substrate j p-Al Ga, As

X t-x
Four-layer structures are useful to fabricate optical 
waveguide lens, tapper couplers and metal-clad waveguides.

Later on five-layer structures were introduced 
which were found to be useful in devising the so-called 'W* 
guide (having a refractive index distribution resembling the 
shape of the letter ’W) and separate confinement 
heterostructure (SCH) lasers. The W-guide is seen to have 
interesting properties regarding mode cut-offs, confinement 
factor and mode filter characteristics. It offers an 
increased range of single mode operation as compared to 
symmetric three-layer slab. In SCH laser, the layers are 
fabricated so asto confine the electron-hole recombination 
process to the central layer. The resulting confinement of 
radiation to the recombination region can be made superior 
to that for the conventional double heterostructure laser. 
As a result, there is more efficient pumping of the optical 
field by the recombination process. A further advantage 
offered by the SCH structure is that it may be used in 
devices where it is desired to prevent current carriers frost
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reaching a region where nonradiative recombination may 
occur, while permitting the optical field to penetrate this 
region, e.g. the use of SCH structure has solved this 
problem in the distributed feedback (DPB) laser and resulted 
in room temperature c.w. DFB semiconductor laser.

Multilayer structured waveguides have been widely 
used recently in many optical devices, such as modulators, 
switches, directional couplers, Bragg deflectors, spectrum 
analysers, and semiconductor lasers. A three-layer slab 
waveguide is the simplest optical waveguide that has been 
well studied and documented1We have already studied its 
theory in Chapter 1 as applied to a three-layer asymmetric 
slab. Waveguides with more than three-layers have been 
theoretically studied by many authors?"** The eigenvalue 
equations for the four-layer structure have been derived by 
the wave theory and the ray theory?-** The five-layer 
symmetrical guide with anisotropic dielectric permittivity 
has been considered by Nelson and Mckenna?2 Ruschin and 
Maram** have obtained the explicit eigenvalue equations of 
the symmetrical seven-layer waveguide for both even and odd 
modes by using matrix treatment. Multilayer waveguides with 
periodic index distributions have also been studied?0-*7 An 
explicit eigenvalue equation of a periodic stratified 
waveguide has been obtained by Yeh et alt7 By using the 
matrix method, Walpita** and Revel ii** have studied the 
general N-iayer waveguide, but their results involved 
complex matrices?*-** More recently Li and Lit** have
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obtained general formulae describing field distributions and 
eigenvalue equations for both TE and TM modes in a 
multilayer slab waveguide. Their results show that 
additional multilayers can produce useful effects such as 
increasing the cut-off values and the confinement factors of 
guided modes.

In principle, a waveguide which is perfectly plane 
and uniform along its length can permit various modes to 
propagate without attenuation. However all practical 
waveguides and waveguide devices are imperfect. The 
important imperfections are found to be losses of the 
dielectric material, departures from perfect straightness, 
inhomogeneities of the dielectric material, and departures 
of the core cladding interface from a perfect plane. These 
induce some energy loss in the propagation so that 
electromagnetic waves are attenuated. Four-layer structures 
have been used to model a variety of low-loss planar optical 
waveguides formed on silicon substrates with a silicon 
dioxide cladding layer21"24 so that the attenuation is 
reduced considerably. The attenuation properties of 
five-layer planar waveguides have been investigated using 
perturbation approach and other techniques?'1*'20'2’"2*

After introducing the subject of multilayer planar 
structures and taking a brief literature survey, we shall 
first give the standard analyses of four-layer and 
five-layer slab waveguides. At the end we shall present an 
account of mode treatment of inhomogeneous planar
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waveguides.

2. 2 Four-1 ayr Asywmirlc Slab Theory z

Consider the geometry and dielectric distribution 
of the general four-layer waveguide as shown in Fig.(2.1). 
He take Region 1 as the primary region of electromagnetic 
confinement although for some cases region 2 can also be 
chosen. The structure is regarded as a real guide with 
refractive index distribution as n^i n^> na2 n^.

For guided modes there are two cases to be 
considered as :
case Ca5 : kn 2 ft £ kn1 ...... 21 8

For this case the TE and TM modal fields may be 
expressed as :

h (H ♦ ta)(-A sin 2aht + B cos 2aht> e * x 5 -2a
-2a £ x £ 0

1 H y# y

A sin h&x + B cos h^x 
B cos (h#x 4- »)

cos a
B cos (2dh_4- a) H < Id - to9

cos a

0 3 x s£ 2d 

x 2 2d

where 1
2

k nt

(2.2)

....  (2.1)

h‘ - kana - (f 
2 2

l£ - (f - kana
ha - f? - kana

Applying the boundary conditions at the three 
dielectric interfaces and simplifying we get the eigenvalue 
equation for the asymmetric four-layer structure as :
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2ah - Nr + tan

+ tan

-4

{"uTT- tan [tan~* (' h,
^•““TT - 2dh

2 0}
(2.3)

where (N * 0,1,2, ...), and

r 1T> a» / 2.2% \ n./n. ,
for IE modes 
for TH modes

Case Cb3 : kn £ £ kn_
..... . '•■■■........ 4 2

For this the modal fields may be written by 
analogy with Eq.(2.1) as i

h <X t 24)(-A sin 2aht + B cos 2ah4) e * x £ -2a
A sin h x + B cos h x -2a ■& x £ 04 4

EH*, y > y
B cosh (h£x + *) 

coiE“*
B cosh (2dh£+ *) ha<2d - x> 

cosh x ®

0 £ x £ 2d 

X 2 2d

(2.4)
where h4 # h , h4 are defined as in Eg. (2.2) and
h"a « - k*n*. Applying the boundary conditions at thez a
three dielectric interfaces and simplifying, the eigenvalue 
equation is found to be

h
2ah * Nr + tan4

-4 (v-hH
+ tanh [tanh"*^-!;^- + 2dh;jJ

(2.5)
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Numerical solutions of the eigenvalue Eqs.(2.3) 
and (2.5) for real four-layer dielectric waveguides are 
easily obtained.
2.3 Five-layer Symmetric Slab Theory8 x

The five-layer symmetric slab waveguide is shown 
schematically as in Fig.(2.2). He take the refractive index 
distribution as n > n 2 n . The structure is symmetric about12 9

the midpoint of the core region which is designated as x*0. 
As in the case of asymmetric four-layer guide, there are two 
cases for the guided modes. For simplicity we consider only 
even-order modes so that zero-order mode is also included. 
Case Ca) : kn > ft > kn

The field distributions for even-order modes are 
written as:

E H y > y

where

A cos hftx
A cos h4a cos (h2|x| + x)

cos (ha + a)2
A cos h a cos (h b + *) . .1____________2__________ h (bcoe (jL a + n) e

2

x 5 |x| < a 

a < |x| < b

,x|> |x| > b

....  (2.6)
h* - k*n* - /f*
h* « k*n* - (f 2 2
h* - ft k*na9

(2.7)

Applying the boundary conditions and eliminating x we 
obtain :
h.« - •*" + tan",{»„-Tr t,n [tan“(ll..ir) - \(b - •>]}

(2.8)
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where (M * 0,1,2, ...) and

17. ■ " { 1
2 . 2 n. / n.V J

for TE inodes 
for TM modes

Mote that the index M in the eigenvalue Eg.(2.8) 
gives only the even-order modes i.e. M * 2M in the notation 
previously used.
Case CfcO : kn,2: ft 2s kn_ft Z

In thi8 case the even-order field distribution
becomes <

Ey* Hy

A cos htx
A cos ha cosh (h"|x| + a)ft Z

cosh (h"a + a)Z
A cos h£a cosh (hjjb + a)

" cosh (h"a + a)2

0 < |x) 5 a 

0 S |x| S b

,K,> |x| > b

.....  (2.9)
where h , h are defined as in Eg. (2.7) and h" ■ k*n*.ft 9 Z Z
The corresponding eigenvalue eguation is t

h a & Mjt + tan”1 tanh + h"(b - z
(2.10)

where M * 0,1,2, ...
The eigenvalue Egs.(2.8) and (2.10) may be 

conveniently re-written in terms of normalised variables 
(for the weakly-guiding situation at l) which are defined
as :
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2 2, 2 / 2 2 %v ■ a k (n - n ) 1 2

U
W 9

a*h*t
2 2 v - u a*hi

t* « Ua- v*c*
t“*« v*ca- u

a na 
aah!

where
2 2 n - n2 12C « ■ ■■ ... at2 2ni ‘ n2

2

n - n
n - n.

Case (a) t c £ u/v £ 1

(2.11)

u » Mtt + tan"*-^-^— tan ^tan 41 “.j - t |b/a - ljjj .. (2.12)

Case (b) » 0 £ u/v £ c

u Mrc + tan”4|-~- tanh Jtanh"4J + t" |b/a - ijj^ ..(2.13)

These equations may easily be solved numerically 
to yield, say, u as a function v for various values of the 
two parameters c and b/a.

We have noted in Sec.(2.1) that a simple 
application of five-layer symmetric slab is found in SCH 
lasers. This structure is advantageous regarding the 
confinement of radiation to the recombination region. This 
is measured by the power confinement factor r « P / P.cor#
Using the field distributions and the normalised variables 
we can obtain expressions for r factor for the two cases 
discussed above. Fig.(2.3) shows r versus v for the 
five-layer structure. For comparison such a plot for 
the equivalent three-layer slab is also given.
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From the figure it is seen that for small v, the 
values of r obtained with the five-layer structure are 
larger than those for the equivalent three-layer slab. 
Higher r values correspond to lower threshold current 
density in a semiconductor laser. Thus SCH laser has a lower 
threshold current density as compared with the equivalent DH 
device.
2.4 Two-Dimensional Parabolic—index Media8 :

In this section we deal with waveguides whose 
refractive index is inhomogeneous in the direction(s) normal 
to the waveguide axis, i.e. graded index guides. This 
grading occurs as a result of the fabrication process, e.g. 
diffusion or ion implantation in planar guides, and may 
produce waveguides with characteristics unique to the 
specific variation of refractive index obtained. He consider 
the simplest form of symmetric refractive index variation 
n(x), that obeys the parabolic law :

„■<*, -«: [ i - 2a ] (2.14)

where x is the distance normal to the axis of propagation 
(i.e. z-axis); nt « refractive index on axis, i.e. at the 
guide centre; 2a « width of guiding layer while A is a
parameter governing the index variation which is defined as:

2 2 n - n2A « —i—...... (2.15)
n «

For the weakly-guiding approximation n^- n^ « n^ , n^.
Bq.(2.15) reduces to
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n - na i *a =■ —r
which is the relative core-cladding index difference of a 
slab waveguide.

A particular case which is often considered is 
that of a graded-index guiding layer (|x| £ a) sandwitched 
between a substrate and a superstrata each with refractive 
index n#. The index distribution is as shown in Fig.(2.4) 
for the case of no index discontinuity at the boundary 
jx| « a i.e. n(a) » n .SB
2.4.1 Electromagnetic Mode Treatment of Parabolic-Index

Media® t

For a general graded index medium with refractive 
index n(x), Maxwell’s equations can be written as :

? X H ■ n*(x)«Q4|- ..... (2.16a)
V x E - -A'o-gjf- ....  (2.16b)

V- (n*(x)« E) - 0 ..... (2.16c)o
V • H « 0 ..... (2.16d)

Applying curl operator to Eq.(2.16b) and simplifying we get

7*E + vf-E ' 7 n <x)1 + k*n*(x) E « 0 ..... <2.17)
l n* 1!*) >

with k* « «.* Eq.(2.17) is the vector wave equationo o
for the electric field E. Similar expression may be obtained 
for magnetic field H.

Since n(x) is a function of transverse coordinate 
x only, the Eq.(2.17) can be expressed as scalar wave 
equation in the component E^ and is written as :
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d*E* ♦ d
dxJ dx

E d2n2(x)
n (x) dx

+ (k2n2(x) - f?)R - 0

(2.18)
In order to eliminate the (dE / dx) term in (2.18) weX

introduce the transformation as t
E nTxT (2.18a)

Putting in Eq.(2.18) we get scalar wave equation for w >

d2y
dx2

d2n2(x) d2n2(x)
2n (x) dxJ 4n*(x) dx2

+ k2n2(x) - (f V » 0 ... (2.19)

a 5 TE solutions :

For the TE modes of the general graded-index 
medium, we take E * 0 and assume H is a solution ofX X

equation with d/9y « 0
d’Hx a a _a
----- + (k n (x) - (T) H - 0 .....  (2.20)dx2 *

The other field components are given from Eqs.(2.16a) and 
(2.16b) as t

E - H « 0x y

E

H i

to u

dH
H

a ~7T “dx"
case of theWe consider the special

parabolic-index medium with n2(x) given by (2.14)
Consequently Eq.(2.20) becomes :

d*H
■zr + [k*n* (1 • 2i(-H • ^ ] H - 0

X
... (2.21)
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Let Its trial solution be
H, - X<*> .» [

so that we get
d*X _ 4x _ 
dx* w*

dXax -2|1] x
wo >

^ ] X “ 0 *

(2.22)

(2.23)

We eliminate the x -terms by appropriately defining the
'beam-waist', w^ as s o

W* <■o
2a 2a4

knt(2A) 1/2 (2.24)

Using this definition alongwith the transformationx y~r
w.

Eg.(2.19) is written in the form given below :

—----2x'~3Fr + [(k*n* * /?*) - 1 ] x * 0 ••• (2.25)

The solutions of Eq.(2.25) are found to be the Hermite
polynomials Hn(x’), where n and (i are related by

2W2N - (k2n* - - 1 (N « 0,1,2,...) ... (2.26)

Thus solution for the TE modes of the parabolic 
medium is given as Hermite-Gausslan functions t

.1/4
H ni/4(2*» Wo)ty* '*■ [ JLS£r ) “p )

(N 0,1,2, ...) (2.27)
where the constant has been so chosen that the modes are 
normalized according to
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00/ |H i* dx « 1 ...
x-»

The Eg. (2.27) may be expressed in terms of v rather than vtQ 
by using Eg.(2.24)

.»/*
H nl/4(2m N! a)1'* H M-(--rf)

(N Ori|2f * * » ) • * • • » (2.28)
The eigenvalue eguation for these modes given by 

Eg.(2.26) may be re-written in terms of normalized variables 
and propagation constant which are respectively defined as » 

u* « v (2N +1) (N - 0,1,2, ...) .. (2.29)

b - 1 - ^ 2-v* (R - 0,1,2, ...) .. (2.30)
Plots of b versus v calculated from Eg.(2.30) for 

a few low-order modes are given in Fig.(2.5). It is to be 
noted that the condition b « 0 {ft * ka#-) occurs for values 
of v given by

v - 2N + 1 (N « 0,1,2, ... ) . . (2.31)
But this does not correspond to a definition of waveguide
cut-off in the usual sense. At values of v given by
Eg.(2.31) the modal fields will not P088e88 the
characteristics of modes at cut-off as in, say, the
three-layer slab guide, discussed in Sec. (1.4.2) In the
lattercase field distributions become constant in the 
cladding layers so that power is distributed uniformly 
throughout all space. For the Hermite-Gaussian modes the 
fields will still possess the characteristics of guided 
modes at all v values, since the refractive index

12866A
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distribution of Eq.(2.l4) is unbounded in the x-direction. 
Hence the results of parabolic-index medium are only a 
approximation to those of a real cladded waveguide for modes 
that are tightly confined in a region near the axis x * 0. 
b) TM Solutions :

In this case we assume 0 and suppose that Ex 
can be a solution of Eg. (2.19) under the transformation 
Ex<* y / n(x). The remaining field components are given from 
Eqs.(2.16a) and (2.16b) as :

Ey
E

Hy

H - 0
i d

fin*(x)
« nz(x)« o

------------^----------------------

(n2(x)E )
X

E
X

In the case of parabolic-index media, Eg.(2.19) 
may be solved by expanding terms in n*(x) as a power series 
and neglecting A*(x/a)*and higher order terms. The equation 
then reduces to t

dxy
dx* [(>■>: --• - -JH - 2A 16A*

V * 0 

(2.32)
This equation has a form similar to that of Eq.(2.21). Hence 
its solution would be of the form

E v"nTxT n(%)nty*H! Wq)1''*
-■> (- )

(E - 0,1,2, ...) ....  (2.33)
where the ’beam-waist* wq is now given by
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k*n* 2A
w. 2 /R 4? ■ 2a*

• • * * (2.34)
a a

The corresponding eigenvalue eguation is

J j . 24 . .,f k*B! 2A . 164*1
1 a* { a* a4 J

(N - 0,1,2, ...) ....  (2.35)
Note that for 2A « k*h*a* the TM and TE solutions 

become similar.
c) Group Daisy and Radiation Confinaasni Factor *

The expressions for propagation constant and hence 
group delay can be obtained for TE and TM modes from the 
expressions derived above. For this purpose we expand 
Egs.(2.26) and (2.35) in ascending powers of A*"'*. Retaining 
terms upto order A, Eg.(2.26) yields :

TEs ft st kn - 1!£I-.1*(N + i )
£ A m

and Eg.(2.35) gives

-=--- (■+!)*..(2.36)
a kn *

TM« ft ae kn--- ii^-"Z(N + ~ ) -
X A X

I— r<N +1 )* +1]
a kn ■* **

...... (2.37)
Defferentiating each of these eguations, we find the group 
daisy t as >

Id ftTE « r * _i I 1 + —A....s.„ (N + i )* | ............. (2.38)
c I a*k*n* *

.>■]

11 ♦ — r1 a*k*n* L
^ a

l*. I . , 4T “ — ( 1 + -Tin. ‘U(N + i )* + lj J. .. (2.39)TM i
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The following points are noteworthy from these 
equations *(i) Except for a few low-order modes, the group 
delay is very similar for TE and TM modes, (ii) For small 
(A/a*k*n*), the TE and TM modes are quasi-degenerate, (iii) 
For small (A/**k*n*) ,tha. group delay is the .am for all 

modes independent of mode number.
The result (iii) can be re-interpreted for the 

weakly-guiding case (quasi-degeneracy of TE and TM modes) by 
using the normalized Eq.(2.30). From this equation the 
normalized dispersion parameter d(vb)/dv is given by

d(vb)
3v 1 (all N)

i.e. to this level of approximation the group delay is the 
same for all modes. Also in this limit of small A, the 
radiation confinement factor F, is given by

, a l-^r)^am I a.ft 2 N! a -a
H dx

(2.40)
The values of r may always be evaluated in terms 

of the error function erf(v4^*). e.g. For the two 

lowest-order modes we find.
H - 0 : r - erf (v4~)
U - 1 : r * erf (v1'2) -

n

....  (2.41)
Since v > v is an artificial cut-off condition, theC

confinement factor does not go to zero at v > vq and great 
care should be taken in applying these results to real 
waveguides of parabolic-index variation.

2vi/i .-V for v > v
1/2
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The above discussed mode treatment applies to a 
guiding layer having infinitely extended parabolic-index 
profile defined by Eq.(2.14). In reality this profile has a 
discontinuity at |x| * a due to the presence of substrate 
and superstrate. Such guiding layers are required to be 
treated by approximation methods like peturbation technique 
and WKB approximation.
2. 5 Summary :

At the outset of this chapter we have given the 
practical applications of three-layer and four-layer 
asymmetric slab waveguides. The need for introducing a fifth 
layer is also mentioned. This is followed by a brief survey 
of the theoretical studies of multilayer structured 
waveguides. The references on the studies of attenuation 
properties of four-layer structures are also noted. Further 
we have given outlines of the theoretical analyses of 
four-layer asymmetric and five-layer symmetric slab 
structures. Finally we have introduced the inhomogeneous 
planar waveguide and have discussed the electromagnetic mode 
treatment of parabolic-index media by obtaining both TS and 
TM solutions. At the end the importance of group delay and 
the radiation confinement factor has been explained.
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Fig.2.1 : The Four-layer Asymmetric ?Slab Structure

Fig.2.2 : The Five-layer Symmetric Slab Structure



Fig.2.3 : Confinenent factor versus v for TE^ mode

Fig.2.4 : Parabolic Refractive Index Profile
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Fig.2.5 : b-v Curves for Parabolic Index Medium


