CONTENTS | ACKNOW | LEDGEMENTS | 1 | |-------------------------------------|---|---| | RESEARC | H PUBLICATIONS AND PAPERS PRESENTED AT | | | CONFERENCES | | iv | | LIST OF FIGURES | | v | | A BRIEF SUMMERY OF THE DISSERTATION | | vii | | CHAPTER-I INTRODUCTION | | 1 | | | 1.1 Ionosphere 1.2 Ionospheric absorption 1.2a Deviative absorption 1.2b Non-deviative absorption 1.3 Methods of measuring ionospheric absorption 1.4 Advantage of the riometer 1.5 Working of the riometer 1.6 Cosmic radio noise | 2
4
7
8
8
10
13
14 | | CHAPTER
ANTENNA | -li
A ARRAYS AND RELEVENT THEORY | | | | 2.1 Introduction2.2 The thin linear antenna2.3 Linear arrays | 16
17
22 | | CHAPTER
ANTENNA | -III
A FUNDAMENTALS | | | 3.4.1 Powe | 3.1 Introduction 3.2 Reciprocity theorem 3.3 Applications of network theorems to antenna 3.4 Characteristics of the antenna er gain of the antenna | 28
28
31
32
32 | | 3.4.2 Directive gain | 32 | |--|--| | 3.4.3 Effective area of the antenna | 33 | | 3.4.4 Antenna impedance | 34 | | 3.4.5 Transmission lines | 36 | | 3.4.6 Characteristic impedance | 38 | | 3.4.7 Radiation pattern | 39 | | 3.4.8 Polarisation | 40 | | 3.5 Types of antennas | 40 | | 3.5.1 Hertzian dipole | 40 | | 3.5.2 Half wave dipole | 42 | | 3.6 Antenna arrays | 43 | | 3.6.1 Broadside array | 44 | | 3.6.2 End-fire array | 45 | | 3.7 Impedance matching | 45 | | 3.7.1 Impedance matching for minimum reflection | 47 | | 3.7.2 Voltage and current relations | 48 | | 3.7.3 Standing wave pattern and standing wave ratio | 52 | | DESIGNING AND CONSTRUCTION OF HIGH GAIN NARE | W | | BEAMWIDTH ANTENNA ARRAY FOR RIOMETER | KOW . | | BEAMWIDTH ANTENNA ARRAY FOR RIOMETER | | | BEAMWIDTH ANTENNA ARRAY FOR RIOMETER 4.1 Introduction | 55 | | BEAMWIDTH ANTENNA ARRAY FOR RIOMETER 4.1 Introduction 4.2 Pilot antenna | 55
56 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array | 55
56
59 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure | 55
56
59
63 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array | 55
56
59 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure | 55
56
59
63
67 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V | 55
56
59
63
67 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction | 55
56
59
63
67 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN | 55
56
59
63
67 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction 5.2 Block diagram of a riometer | 55
56
59
63
67 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction 5.2 Block diagram of a riometer 5.3 Standard antenna to measure the cosmic radio noise | 55
56
59
63
67
INA
68
68 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction 5.2 Block diagram of a riometer 5.3 Standard antenna to measure the cosmic radio noise absorption | 55
56
59
63
67
INA
68
68 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction 5.2 Block diagram of a riometer 5.3 Standard antenna to measure the cosmic radio noise absorption 5.4 Observations with solid state riometer | 55
56
59
63
67
INA
68
68 | | 4.1 Introduction 4.2 Pilot antenna 4.3 Antenna materials for the large array 4.4 The final antenna structure 4.5 Specifications of the antenna CHAPTER-V MEASUREMENTS AND TESTING OF A HIGH GAIN ANTEN 5.1 Introduction 5.2 Block diagram of a riometer 5.3 Standard antenna to measure the cosmic radio noise absorption 5.4 Observations with solid state riometer 5.5 Antenna measurements | 55
56
59
63
67
INA
68
68
71
75
77 | | 5.6 Method of calculating ionospheric attenuation using cosmic radio noise | 85 | |---|-----| | CHAPTER- VI | | | SCOPE FOR FUTURE STUDY | | | 6.1 Introduction 6.2 Dependance of the total attenuation of cosmic radio noise on 30 MH_z on the critical frequency of the | 89 | | F ₂ - region | 89 | | 6.3 Separation of a day-time component symmetrical about noon from the total attenuation6.4 Analysis of cosmic noise absorption curves for | 90 | | future study | 91 | | 6.5 Conclusion | 98 | | REFERENCES | 100 |