# <u>CHAPTER-V</u>

# DETERMINATION OF PALLADIUM

# 5.1 INTRODUCTION

Palladium is a silver white metal and is capable of taking high polish. It is both malleable and ductile. Palladium melts at 1556<sup>°</sup> and hence is the most fusible of all the platinum metals.

The ability of palladium to take up large volumes of hydrogen makes it a useful catalyst in hydrogenation reactions and in some analytical operations. In many chemical reactions, surfaces of palladium which are normally deposits of palladium on inert supporting material, function as excellent catalysts. Its permanence in the air and its high reflecting power makes it useful for optical mirrors. Palladium is used in stainless steel and high chromium steel from 1 to 10 %.

Alloys of palladium with other precious metals have found uses in dentistry and jewellery. Alloys of palladium with noble metals are used as electrical contacts, resistances, thermoelectrodes, solders, etc. The propertions of the alloys of palladium are strictly governed by the concentration of palladium and hence the estimation of the palladium contact of the alloy is of analytical importance. In the present investigation, it was observed that cinnamaldehyde guanylhydrazone (CAG) is comparable with other known reagents for palladium. It is superior to some known reagents which suffer from slow rate of complex formation; whereas CAG forms complex instantaneously.

The literature is rich in methods for the spectrophotometric determination of Pd(II). Several spectrophotometric reagents have been proposed for the determination of palladium, but only a few are selective and sensitive.

Beamish<sup>1</sup> has reviewed the photometric determination of palladium.Numerous oximes have been proposed for the extractive photometric determination of Pd(II).

Due to low sensitivities, reagents like dimethylglyoxime<sup>2</sup> (0.06  $\mu$ g/cm<sup>2</sup>), 8-aminoquinoline<sup>3</sup> (0.04  $\mu$ g/cm<sup>2</sup>) and acenaphthenequinone monoxime<sup>4</sup> (0.084  $\mu$ g/cm<sup>2</sup>) are not suitable for trace determination of palladium.

Some reagents are not selective though sensitive. Reagents like 2-mercaptoquinoline<sup>5</sup>, bismuthol  $II^6$ , 2-diethylamino ethanethiol hydrochloride<sup>7</sup> and crystal violet<sup>8</sup> suffer from numerous interfering ions.

102

Due to low kinetic stability, complex formation in case cf 4-methylcyclohexane-1:2-dioxime<sup>9</sup>, 5-amino-2benzimidazolethiol<sup>10</sup>, aluminon<sup>11</sup>, phthalimide dioxime<sup>12</sup> procaine<sup>13</sup>, chrome azurol S<sup>14</sup> and azurubine<sup>15</sup> takes place after 30 to 90 minutes. Rate of formation of complexes is slow in case of nitroso-R-salt<sup>16</sup>, glycine thymol blue<sup>17</sup>, 3nitrosopyridine-2,6-diol<sup>18</sup>, melamine<sup>19</sup> and tropolone<sup>20</sup> and hence requires heating.

In case of N,N'-bis (2-sulphoethyl) dithiooximide<sup>21</sup> and 2-diethylamino-ethanethiol hydrochloride<sup>22</sup>, rate of complex formation is slow. Moreover, they are not selective.

Though furylpentadienal thiosemicarbazone<sup>23</sup>, 6-methyl picolinaldehyde thiosemicarbazone<sup>24</sup>, phthalimide bisthiosemicarbazone<sup>25</sup>, bis-acetyl bis-4-phenyl-3thiosemicarbazone<sup>26</sup>, p-ethylsulphophenyl benzaldehyde thiosemicarbazone<sup>27</sup>, and glyoxal bis-thiosemicarbazone<sup>28</sup> are used for colorimetric determination of palladium. Most of the reagents suffer from one or the other drawback.

Reagents like 2-mercaptobenzoic acid<sup>29</sup>, <sup>4</sup> o-mercaptobenzoic acid<sup>30</sup>, benzoylmethylglyoxime<sup>31</sup>, 1-(2-pyridylazo)-2-naphthol<sup>32</sup>, palladiazo<sup>33</sup> and eriochrome cyanine  $R^{34}$  are selective and sensitive and hence can be successfully used for the trace determination of palladium.

Recently, reagents such as bidentate pyrimidine-2-thiols $^{35}$ , diphenylthiovioluric acid $^{36}$  and p-nitroso-dimethylaniline $^{37}$  are used for the spectrophotometric determination of palladium.

# 5.2 EXPERIMENTAL

All the chemicals used were of analytical grade.

## 5.2.1 Standard Solutions :

# Standard Palladium Solution ;

A stock solution of palladium (1mg/ml) was prepared by dissolving 0.166 g of A.R. grade palladium chloride in 100 ml distilled water containing a few mls of concentrated hydrochloric acid. The solution was standardised with dimethylglyoxime<sup>38</sup> gravimetrically. Further dilutions for experimental purposes were done with distilled water.

# Reagent Solution :

A stock solution of the reagent, cinnamaldehyde guanulhydrazone (CAG) was prepared by dissolving 188 mg of it in 100 ml ethanol (1.88 mg/ml i.e. 0.01 M).

# Buffer Solution :

Buffer solution of pH 10 was prepared by dissolving appropriate amount of sodium hydroxide and boric acid.

#### 5.2.2 Recommended Procedure

An aliquot of the solution containing 10 ug of palladium (II) was taken in 10 ml volumetric flask. To it was added 2 ml of the reagent (CAG) solution of concentration 0.001 M. The pH of the solution was adjusted to 10.5 with buffer solution and was diluted upto the mark with ethanol. The absorbance of the palladium (II)-CAG complex was measured at 370 nm against reagent blank. The concentration of palladium in an unknown solution was determined from a calibration curve obtained under identical conditions.

#### 5.3 RESULTS AND DISCUSSION

#### 5.3.1 Spectral Characteristics

The absorption spectrum of Pd(II)-CAG complex contianing 0.9398 x  $10^{-4}$  M palladium (II) and 0.001 M reagent (CAG) was recorded at pH 10.5 against reagent blank. The complex has absorption maximum at 370 nm and molar extinction coefficient of the complex is

104

 $0.7455 \times 10^4$  l mole<sup>-1</sup> cm<sup>-1</sup> at 370 nm. The molar extinction coefficient of reagent at 370 nm is  $0.015 \times 10^4$  l mole<sup>-1</sup> cm<sup>-1</sup>

(Fig 5.1). The observations for the spectra are given in table 5.1.

### 5.3.2 Effect of pH

A series of solutions varying in pH were prepared as per the recommended procedure. The complex has maximum and constant absorbance over the pH range 9.5 to 11. It falls below pH 9.5 and above 11. Hence, the pH value 10.5 was selected for the study of Pd(II)-CAG complex. In acidic medium the complex shows comparatively less absorbance. The observations are given in table 5.2. The plot of observations is shown in fig 5.2.

Molar extinction coefficients,  $\epsilon$ Wavelength  $\lambda$ , nm Pd(II)-CAG complex Reagent, CAG  $\varepsilon \times 10^4$  l mole<sup>-1</sup> cm<sup>-1</sup>  $\varepsilon \times 10^4$  l mole<sup>-1</sup> cm<sup>-1</sup> 0.025 360 0.6596 0.020 0.7021 365 370 0.7455 0.015 0.6915 0.015 375 380 0.6596 0.010 385 0.6383 0.010 390 0.5745 0.006 0.0025 400 0.4260 410 0.3404 0.0020 0.001 0.2556 420 0.1915 430 0.1489 440 450 0.1171 460 0.0957 470 0.0745 0.0638 480 490 0.0532 500 0.0425 510 0.0319 \_\_\_\_\_

complex and the reagent (CAG).

| Table 5.2 : | Effect of pH on the absorbance of   |
|-------------|-------------------------------------|
|             | Pd(II)-CAG complex.                 |
|             | [Pd (II)] = 10 ppm; [CAG] = 0.001 M |
| pH          | Absorbance at 370 nm                |
| 2.0         |                                     |
| 2.0         |                                     |
| 4.0         | 0.01                                |
| 6.0         | 0.09                                |
| 7.0         | 0.30                                |
| 8.0         | 0.50                                |
| 9.0         | 0.52                                |
| 9.5         | 0.70                                |
| 10.0        | 0.70                                |
| 10.5        | 0.70                                |
| 11.0        | 0.70                                |
| 11.5        | 0.53                                |
| 12.0        | 0.50                                |
|             |                                     |

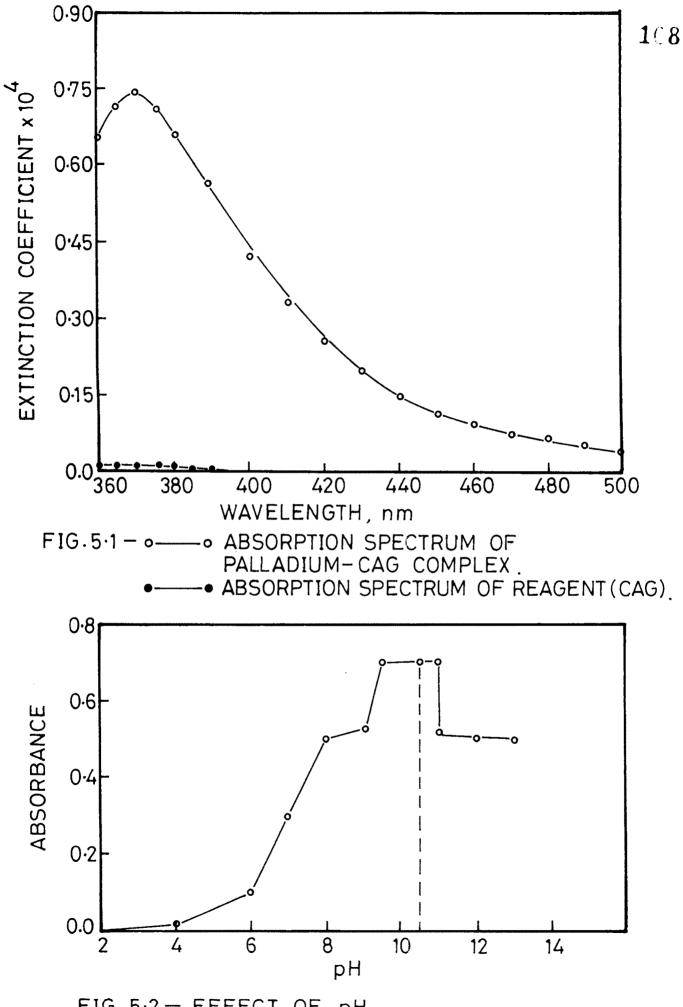



FIG. 5.2 - EFFECT OF pH.

### 5.3.3 Effect of reagent concentration :

A series of solutions containing constant concentration of palladium (10 ppm) and different amounts of CAG ranging in concentrations from  $0.5 \times 10^{-3}$  M to  $3.0 \times 10^{-3}$  M were prepared. Complex was developed as per recommended procedure and its absorbance was measured. Results in table 5.3 show that 2.5 fold molar excess of the reagent was sufficient for full colour development of 10 ppm of palladium.

| Table 5. | .3 : | Effect | of | reagent | concentration |
|----------|------|--------|----|---------|---------------|
|----------|------|--------|----|---------|---------------|

[Pd (II)] = 10 ppm; [CAG] = 0.001 M

| ml of CAG | Absorbance at 370 nm |
|-----------|----------------------|
|           |                      |
| 0.5       | 0.42                 |
| 1.0       | 0.47                 |
| 1.5       | 0.63                 |
| 2.0       | 0.70                 |
| 2.2       | 0.70                 |
| 2.5       | 0.70                 |
| . 3.0     | 0.70                 |
|           |                      |

# 5.3.4 Stability :

The complex formation is instantaneous and colour of the complex was stable for several hours. Complex formation was independent of temperature.

#### 5.3.5 Validity of Beer's law :

The measurement of absorbance of Pd(II)-CAG complex at pH 10.5 containing varying, amounts of palladium, showed that Beer's law is valid upto 8.0 ppm of Pd (II) (Fig 5.3; Table 5.4)

The optimum concentration range for the determination of palladium was studied from Ringbom  $plot^{39}$  and was found to be 3.8 to 7.5 ppm at the conditions chosen for the experiment (Fig. 5.4).

| Palladium (II), ppm | Absorbance at 370 nm |
|---------------------|----------------------|
| 1                   | 0.075                |
| 2                   | 0.15                 |
| 3                   | 0.22                 |
| 4                   | 0.30                 |
| 5                   | 0.37                 |
| 6                   | 0.46                 |
| 7                   | 0.52                 |
| 8                   | 0.64                 |
| 9                   | 0.67                 |
| 10                  | 0.72                 |
| 11                  | 0.77                 |
| 12                  | 0.80                 |

Table 5.4 : Validity of Beer's law

# 5.3.6 Composition of the complex :

The composition of the Pd(II)-CAG complex was ascertained by Job's method of continuous variation<sup>40</sup> (Table 5.5), mole ratio method<sup>41</sup> (Table 5.6) and slope ratio method<sup>42</sup>. Complex was developed by using equimolar solutions of palladium (II) and the reagent (CAG). Job's plot (Fig 5.5) indicated the formation of 1:2 complex of Pd(II) : CAG and this composition was confirmed by the mole ratio method (Fig 5.6) and slope ratio method.

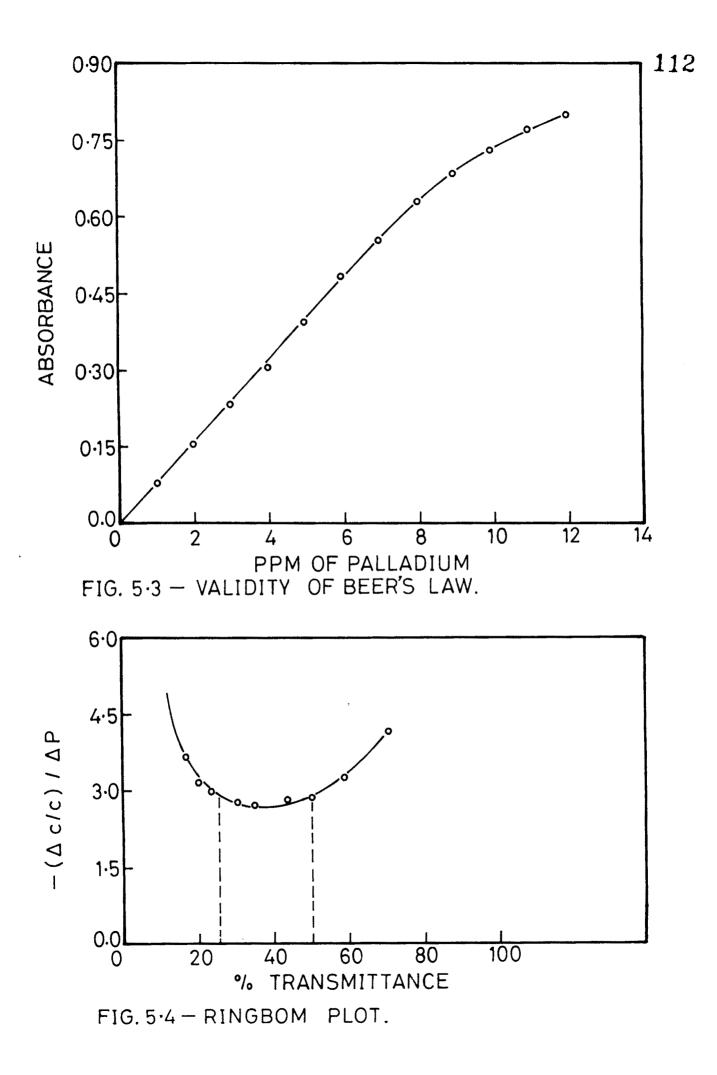
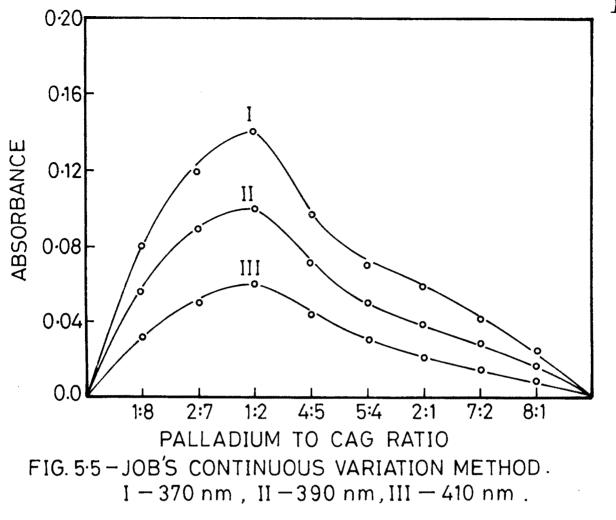
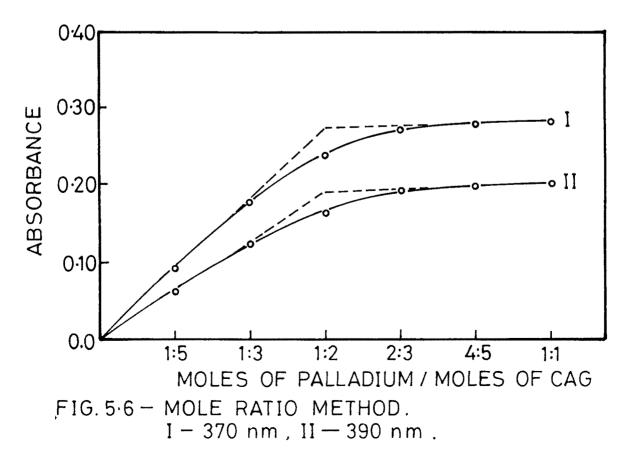



Table 5.5 : Job's continuous variation method

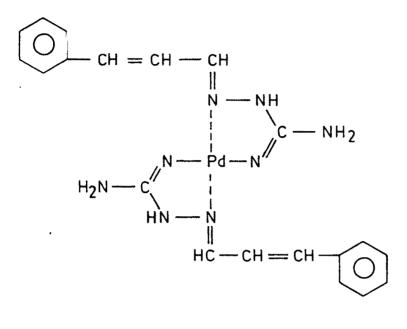
 $[Pd(II)] = [CAG] = 0.9398 \times 10^{-4} M.$ 

| Palladium(II) |          | Molar                | Absorba | ances at | λ      |
|---------------|----------|----------------------|---------|----------|--------|
| ml            | (CAG),ml | <b>R</b> atio<br>M:L | 370 nm  | 390 nm   | 410 nm |
| 0.0           | 1.8      | _                    | _       | _        | _      |
| 0.2           | 1.6      | 1:8                  | 0.08    | 0.055    | 0.03   |
| 0.4           | 1.4      | 2:7                  | 0.12    | 0.09     | 0.05   |
| 0.6           | 1.2      | 1:2                  | 0.14    | 0.10     | 0.06   |
| 0.8           | 1.0      | 4:5                  | 0.095   | 0.07     | 0.045  |
| 1.0           | 0.8      | 5 <b>:</b> 4         | 0.07    | 0.05     | 0.03   |
| 1.2           | 0.6      | 2:1                  | 0.06    | 0.04     | 0.02   |
| 1.4           | 0.4      | 7:2                  | 0.04    | 0.03     | 0.01   |
| 1.6           | 0.2      | 8:1                  | 0.025   | 0.01     | -      |
| 1.8           | 0.0      | -                    | -       | -        | -      |
|               |          |                      |         |          |        |


Table 5.6 : Molar ratio method


 $[Pd(II)] = [CAG] = 0.9398 \times 10^{-4} M$ 

| Palladium (II)<br>ml | Reagent<br>(CAG) | Molar<br><b>R</b> atio | Absorbances | at $\lambda$ |
|----------------------|------------------|------------------------|-------------|--------------|
| 111 1                | ml               | M:L                    | 370 nm      | 390 nm       |
|                      |                  |                        | • <b></b>   |              |
| 0.0                  | 2.0              | -                      | -           | -            |
| 0.2                  | 2.0              | 1:10                   | 0.05        | 0.03         |
| 0.4                  | 2.0              | 1:5                    | 0.09        | 0.06         |
| 0.6                  | 2.0              | 3:10                   | 0.14        | 0.09         |
| 0.66                 | 2.0              | 1:3                    | 0.175       | 0.125        |
| 0.8                  | 2.0              | 2:5                    | 0.21        | 0.15         |
| 1.0                  | 2.0              | 1:2                    | 0.24        | 0.16         |
| 1.2                  | 2.0              | 3:5                    | 0.26        | 0.18         |
| 1.33                 | 2.0              | 2:3                    | 0.27        | 0.19         |
| 1.4                  | 2.0              | 7:10                   | 0.275       | 0.20         |
| 1.6                  | 2.0              | 4:5                    | 0.275       | 0.20         |
| 1.8                  | 2.0              | 9 <b>:</b> 10          | 0.28        | 0.20         |
| 2.0                  | 2.0              | 1:1                    | 0.28        | 0.21         |
|                      |                  |                        |             |              |


\_\_\_\_\_\_







be presented as



# 5.3.7 Sensitivity :

The reagent or palladium complex do not show any effect due to light.

The photometric sensitivity of the system was calculated by the method of Sandell<sup>43</sup> and was found to be 0.06455  $\mu$ g/cm<sup>2</sup> at pH 10.5. Molar extinction coefficient of the system at 370 nm is 0.7455 x 10<sup>4</sup> 1 mole<sup>-1</sup> cm<sup>-1</sup>

# 5.3.8 Degree of Dissociation and Instability Constant

The degree of dissociation was calculated by the method by Harvey and Manning<sup>42</sup>. The value of degree of dissociation ( $\alpha$ ) was found to be 0.1273.

The apparent instability constant  $^{44}$  was found to be 8.35 x 10<sup>-13</sup> for Pd(II)-CAG complex. The change in free energy  $^{45}$  of the system is -16.454 K cal/mole.

# 5.3.9 Reproducibility of the Method :

The reproducibility of the method was tested by determining different amounts of palladium (II) as per recommended procedure. The results are tabulated in table 5.7, which show that the method is reproducible. The standard deviations of the method calculated for six observations and the coefficient of variation are also given in table 5.7.

Table 5.7 : Reproducibility of the method

| Pd (II)<br>ppm | Mean absorbance<br>of six<br>observations | standard<br>deviation | coefficient of<br>variation, % |   |
|----------------|-------------------------------------------|-----------------------|--------------------------------|---|
|                |                                           |                       |                                |   |
| 1.5            | 0.11                                      | 0.0030                | 2.727                          |   |
| 3.0            | 0.21                                      | 0.0055                | 2.619                          |   |
| 4.5            | 0.34                                      | 0.0092                | 2.706                          |   |
| 6.0            | 0.45                                      | 0.0118                | 2.622                          |   |
|                |                                           |                       |                                | _ |

### 5.3.10 Effect of Diverse Ions

To study the effect of diverse ions of Palladium (II)-CAG complex, various cations and anions were added to the solution containing 2 ppm of Pd(II) and 2 ml of 0.001 M reagent. The complexes were developed as per the recommended procedure and the absorbances were measured. The results indicate that V(IV), Ni(II), Cr(III), EDTA<sup>-4</sup> and citrate anion interfere seriously. The tolerance limit of oxalate anion is 360 ppm. The tclerance limits for the ions are listed in table 5.8

Table 5.8 : Effect diverse ions

 $[Pd(II)] = 2.0 \text{ ppm}; [CAG] = 1.0 \times 10^{-3} \text{ M}.$ 

| Foreign ions     | Added as                                        | Tolerance                                |
|------------------|-------------------------------------------------|------------------------------------------|
|                  |                                                 | limit,ppm                                |
|                  |                                                 |                                          |
| <u>Cations</u> : |                                                 |                                          |
| Cr(VI)           | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>   | 0.8                                      |
| V(IV)            | voso <sub>4</sub> .H <sub>2</sub> O             | None                                     |
| Ba(II)           | BaCl <sub>2</sub> .2H <sub>2</sub> O            | 9.0                                      |
| Zn(II)           | ZnSO <sub>4</sub> .7H <sub>2</sub> O            | 10.0                                     |
| Mn(II)           | MnSO <sub>4</sub> .H <sub>2</sub> O             | 1.0                                      |
| Fe(III)          | $Fe_{2}(SO_{4})_{3}(NH_{4})_{2}SO_{4}.24H_{2}O$ | 0.9                                      |
|                  |                                                 | ANN 122 718 102 22 100 27 102 25 108 109 |

on next page . . .

. . . continued

| Foreign ions       | Added as                                                                             | Tolerance<br>limit,ppm |
|--------------------|--------------------------------------------------------------------------------------|------------------------|
| Ni(II)             | Ni(NO <sub>3</sub> ) <sub>2</sub> .6H <sub>2</sub> O                                 | None                   |
| Cr(III)            | CrCl <sub>3</sub> .6H <sub>2</sub> O                                                 | None                   |
| Mo(VI)             | (NH <sub>4</sub> ) <sub>6</sub> [Mo <sub>7</sub> O <sub>24</sub> ].4H <sub>2</sub> O | 12.0                   |
| Ag(1)              | AgNO <sub>3</sub>                                                                    | 5.0                    |
| Ce(IV)             | Cerium (IV) ammonium sulphat                                                         | 5.0                    |
| Cd(II)             | 3CdS04.8H20                                                                          | 1.0                    |
| Anions             |                                                                                      |                        |
| Citrate            | citric acid                                                                          | None                   |
| Oxalate            | sodium oxalate                                                                       | 360.00                 |
| Thiourea           | Thiourea                                                                             | 170.00                 |
| edta <sup>-4</sup> | Disodium salt                                                                        | None                   |
| Urea               | Urea                                                                                 | 18.0                   |
| Acetate            | Sodium acetate                                                                       | 35.0                   |
| Tartrate           | Tartaric acid                                                                        | 11.0                   |
|                    |                                                                                      |                        |

#### 5.4 APPLICATIONS

# <u>Analysis of Palladium (II) in Pd/charcoal and</u> Pd/carbonate catalysts

A weighed quantity (0.3 g) of the catalyst sample (fluka) was digested with a mixture of perchloric acid and nitric acid and then centrifuged. The filtrate was concentrated by heating and diluted to 100 ml with 0.05 M HCl. An aliquot of this solution was used for extraction of palladium. The method proposed has been applied to the determination of palladium in Pd/ charcoal and Pd/ carbonate catalysts. The results obtained are in good agreement with those quoted and are given in table 5.9.

# Table 5.9 : Determination of palladium in catalyst samples.

| Catalysts    | standard<br>value of<br>Pd % | Experimental<br>value of Pd<br>% | Relative standard<br>deviation for<br>five observations |
|--------------|------------------------------|----------------------------------|---------------------------------------------------------|
| Pd/Charcoal  | 10.0                         | <b>9.9</b> 3                     | 0.08                                                    |
| Pd/Carbonate | 6.0                          | 6.08                             | 0.05                                                    |

#### 5.5 REFERENCES

- Beamish, F.E. and Vanhoon, J., "Recent Advances in the Analytical Chemistry of Noble Metals," Pergamon Press, Oxford (1972).
- 2. Nielsch, W., Z. Anal. Chem., 142, 30 (1954).
- Gastin, V.K. and Sweet, T.R., Anal. Chem., <u>35</u>,
  44 (1963).
- Sindhawani, S.K., Dutta, Y. and Singh, R.P., Ind. J. Chem., <u>12</u>, 110 (1974).
- 5. Xavier, J., Z. Anal. Chem., 163, 182 (1956).
- Majumdar, A.K. and Chakrabartty, M.M., Anal. Chim. Acta., 19, 482 (1958).
- Pilipipenko, A.T., Olkhovich, P.F. and Bondarenko, V.
  Yu., Ukr. Khim. Zh. 39, 473 (1973).
- Ulylemann, E., Hoppe, J. and Waltz, D., Anal. Chim.
  Acta., <u>83</u>, 195 (1976).
- Banks, C.V. and Smith, R.V., Anal. Chim. Acta., <u>21</u>, 308 (1959).
- 10. Sengupta, J.G., Talanta, 8, 729 (1961).
- 11. Munshi, K.N. and Dey, A.K., Talanta, <u>11</u>, 1265 (1964).
- 12. Buscarons, F. and Abello, J., Inf. Quim. Analit., Pure apl. Ind., 20, 31 (1966).
- 13. Serban, M. and Popper, E., Revue Roum. Chim., <u>13</u>, 1051 (1968).

- 14. Ishida, R., Bull. Chem. Soc., Japan, 42, 1011 (1969).
- 15. Bosch, S.F., Inf. Quim. Analit, Pure apl. Ind., <u>27</u>, 14 (1973).
- 16. Nath, S. and Agarwal, R.P., Chim. Analyt., <u>47</u>, 257 (1965).
- 17. Shtokla, M.I., Ukr. Khim. Zh., 35, 839 (1969).
- 18. Curtis, W.M. and John, H.S., Mikrochim. Acta., <u>3</u>, 474 (1970).
- 19. Hashmi, M.H., Qureshi, T. and Chughatai F.R., Mikrochem. J., <u>17</u>, 18 (1972).
- 20. Rizvi, G.H. and Singh, R.P., Ind. J. Chem., <u>10</u>, 873 (1972).
- 21. Goeminne, A., Herman, M. and Eeckhant, Z., Anal. Chim. Acta., 28, 512 (1963).
- 22. Srivastava, S.C. and Good, M.L., Analytica Chim. Acta., 32, 309 (1965).
- 23. Masko, L.T., Kerentseva, V.P. and Lipanova, M.D., Zh. Analit. Khim., 30, 315 (1975).
- 24. Fernandez, L., Valcarcel, J.M. and Pino, P.F., Quim. Analit. 30, 8 (1976).
- 25. Guzman, C.M., Bendito, D.P. and Pino, P.F., An Quim., 72, 651 (1976).
- 26. Gonzalez, B.M., Cano Pavon, J.M. and Pino, P.F., Quim. Anal., 30, 411 (1976).

- 27. Sumio, K., Hirohumi, N. and Hiroaki, Z. J. Chem. Soc., Japan, Pure Chem. Sect., 79, 895 (1958).
- 28. Hoshi, S., Yotsuyanagi, T. and Aomura, K., Bunseki Kagaku, 26, 592 (1977).
- 29. Khosla, M.L. and Rao, S.P., Microchem. J., <u>18</u>, 640 (1973).
- 30. Dema, I. and Voicu, V., Acad. R.P.R. Stud. Cercet. Chim., 8, 173 (1960).
- 31. Shchekochikhina, R.L., Peshkova, V.M. and Shlenskaya, V.I., Vestn., Moskov, Univ., Ser. Khim., <u>4</u>, 38 (1962).
- 32. Tsurumatsu, D., Genkichi, N. and Makota, H., J. Chem. Soc., Japan, Pure Chem. Sect., <u>81</u>, 1703 (1960).
- 33. Perez, J.A. and Burriel, F.M., Anal. Chim, Acta, 37, 49 (1967).
- 34. Duchkova, H., Malat, M. and Cermakova, L., Anal. Letters, 9, 487 (1976).
- 35. Singh, A.K., Roy, Bani and Singh, R.P., J. Ind. Chem. Soc., 62, 316 (1985).
- 36. Kamil, , Chawla, and Sindhawani, , J. Indian Chem. Soc., <u>65</u>, 790 (1988).
- 37. Sarkar, Paria, and Majumdar, , J. Indian Chem. Soc., <u>65</u>, 117 (1988).
- 38. Vogel, A.I., "Text Book of Quantitative Inorganic Analysis", Longmans, London, P. 480 (1968).

- 39. Meitis, L., "Handbook of Analytical Chemistry", 1<sup>St</sup> Ed., McGraw Hill Book Co., New York, 6-17 (1963).
- 40. Job, P., Compt. Rend., <u>180</u>, 928 (1925); Ann. Chim. (Paris), 9, 113 (1928).
- 41. Yoe, J.H. and Jones, A.L., Ind. Eng. Chem., Anal. Ed., 16, 111 (1944).
- 42. Harwey, A.E. and Manning, D.L., J. Am. Chem. Soc., <u>72</u>, 4438 (1950).
- 43. Sandell, E.B., "Colorimetric Determination of Traces of Metals", 3<sup>rd</sup> Ed., Interscience Publishers Inc., New York, P. 84 (1965).
- 44. Trikha, K.C., Katyal, M. and Singh, R.P., Talanta, <u>14</u>, 977 (1967).
- 45. Grinberg, A.A., "An Introduction to the Chemistry of Complex Compounds," 2<sup>nd</sup> Ed., 1951, Translated by Leach J.R., 1<sup>st</sup> Ed., Pergamon, London (1962), P. 275.