CHAPTER - IV

DETERMINATION OF IRON

.

4.1 INTRODUCTION :

Iron is a key element in industrial civilization and plays an important role in science, health science, technology and metallurgy. The analytical chemists are concerned with iron in the samples ranging from food materials, medicinal preparation, blood and other body fluids, ores and minerals, metals and alloys etc. Several techniques were applied for the determination of very low to high percentage of iron. Although several reagents such as ammonium sulphocynide, 2,2'bipyridine¹ and 1,10-phenanthroline² are known as colorimetric reagents, the search for new reagents continues. 2-Benzoyl pyridine guanylhydrazone has distinct advantage over the previous methods. The present section deals with application of BPG for estimation of iron and analysis of fesovit syrup.

For the determination of tracer quantities of iron, numerous colorimetric reagents are reported. Phenolic compounds give purple or violet colour complexes with iron(III). Several reagents including salicylic acid³, sulphosalicylic acid⁴, salicylaldoxime⁵, pyramidone⁶, cupferron⁷ and protocatechuric acid⁸ are used in the estimation of iron.

In case of α -pyridyl hydrazone⁹, glycinecresol red¹⁰, pyridil-**g**-monoxime¹¹ and 2-benzoylpyridine hydrazone¹², heating is necessary due to slow rate of formation of complex.

In case of reagents like O-dianisidine¹³, catechol¹⁴, formaldoxime¹⁵, quinisatin oxime¹⁶, 2-pyridyl glyoxime¹⁷ and dimethyl triketone¹⁸, colour formation is very slow and requires longer duration of time. Complexes of p-amino-NNdimethylaniline¹⁹, 5-sulpho-*B*-resorcylic acid²⁰ and 8-hydroxy -7-nitrosoquinoline-5-sulphonic acid²¹ are only stable for 10-20 minutes. Methods involving violuric acid²², 2-thenoyl trifluoroacetone²³, dinitrosoresorcinol²⁴, **o**-hydroxy acetophenon**e** oxime²⁵ and morin²⁶ as reagents are not selective, whereas sensitivity of the methods is very low in case of **o**-hydroxy acetophenone oxime²⁵ and chromotrope 2R.²⁷

Recently for trace determination of iron, some thiosemicarbazones²⁸⁻³⁵ are reported. But most of them are affected by some drawbacks. The proposed reagent, BPG,forms complexes instantaneously and the method has the desired sensitivity for colorimetric determination of iron in μ g level.

4.2 EXPERIMENTAL :

4.2.1 Standard solutions :

Standard iron (II) solution :

Stock solution of Fe(II) was prepared by dissolving A.R. grade ammonium ferrous sulphate hexahydrate in distilled water followed by 2-3 drops of concentrated sulphuric acid and was standardised volumetrically³⁶ by using literature procedure.

The reagent forms colour only with Fe(II) ion and not with Fe(III). Therefore this method is useful for the determination of Fe (II).

Reagent solution :

0.6 mg/ml in ethanol $(2.511 \times 10^{-3} M)$.

Buffer solution :

1:1 ammonia solution of pH 10.0 was used.

4.2.2 <u>Recommended procedure</u> :

An aliquot of the solution containing about 2.5 μ g of iron (II) was taken in a 10 ml volumetric flask. Then 1 ml of 0.6% (2.511 x 10⁻³M) reagent (BPG) solution was added which provides desired excess quantity to complete the complex formation. By adding 1 ml of 1:1 ammonia solution, the pH was adjusted to 10.0; and the solution was diluted upto the mark with distilled ethanol. The absorbance was measured at 415 nm against corresponding reagent blank. The concentration of iron was read out from a calibration curve.

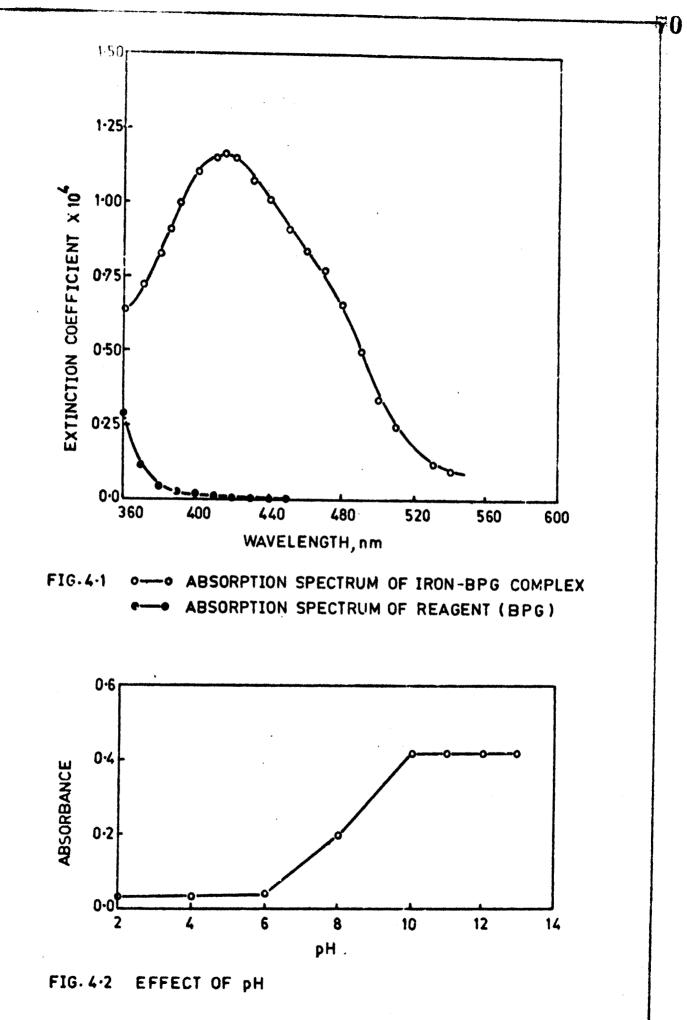
4.3 RESULTS AND DISCUSSION :

4.3.1 <u>Spectral characteristics</u> :

The absorption spectrum of Iron (II) - BPG complex of the solution containing 4.476 x 10^{-5} M iron and excess of the reagent (2.570 x 10^{-3} M) was recorded at pH 10.0 against reagent blank. The complex shows absorption maximum at 415 nm. The molar extinction coefficient at 415 nm is 1.1610 x 10^{4} 1 mole¹cm.⁻¹ The reagent does not absorb in this region. Absorption spectra of the complex and reagent are shown in figure 4.1. The observations for the spectra are given in table 4.1.

4.3.2 Effect of pH :

To study the effect of pH of the solution on the absorbance of the complex, a series of solutions containing 4.476×10^{-5} M Fe(II) and 2.510×10^{-3} M reagent (BPG) was prepared as per the recommended procedure over a range of pH from 2 to 13. The absorbances were measured against corresponding reagent blank. It was found that the complex has maximum and constant absorabance over the pH range 10 to 13. Therefore **p**H 10.0 was selected as the optimum pH and further addition of 1:1 ammonia solution was preferred for further study. The plot of observations is shown in figure 4.2.


Table 4.1 : Molar extinction coefficients of the Fe(II)_BPG

. .

complex and the reagent (BPG).

.

Wavelength	Molar extinction	coefficients, ϵ	
λ , nm	Fe(II)-BPG complex	BPG	
	$\epsilon \times 10^4$ l mole ⁻¹ cm ⁻¹	$(\pm \times 10^4) \text{ mole}^{1} \text{ cm}^{-1}$	
360	0.641	0.2948	
370	0.719	0.1115	
380	0.821	0.0509	
385	0.915	0.0422	
390	0.994	0.0387	
395	1.083	0.0341	
400	1.117	0.0298	
405	1.150	0.0199	
410	1.158	0.0174	
41 5	1.161	0.0124	
420	1.155	0.0049	
425	1.117	0.0040	
430	1.072	0.0030	
440	0.016	0.0010	
450	0.916	0.0000	
460	0.838	-	
470	0.770	-	
480	0.648	· _	
490	0.491	-	
500	0.335	-	
510	0.245	-	
520	0.156	-	
530	0.125	-	
540	0.103	-	

4.9

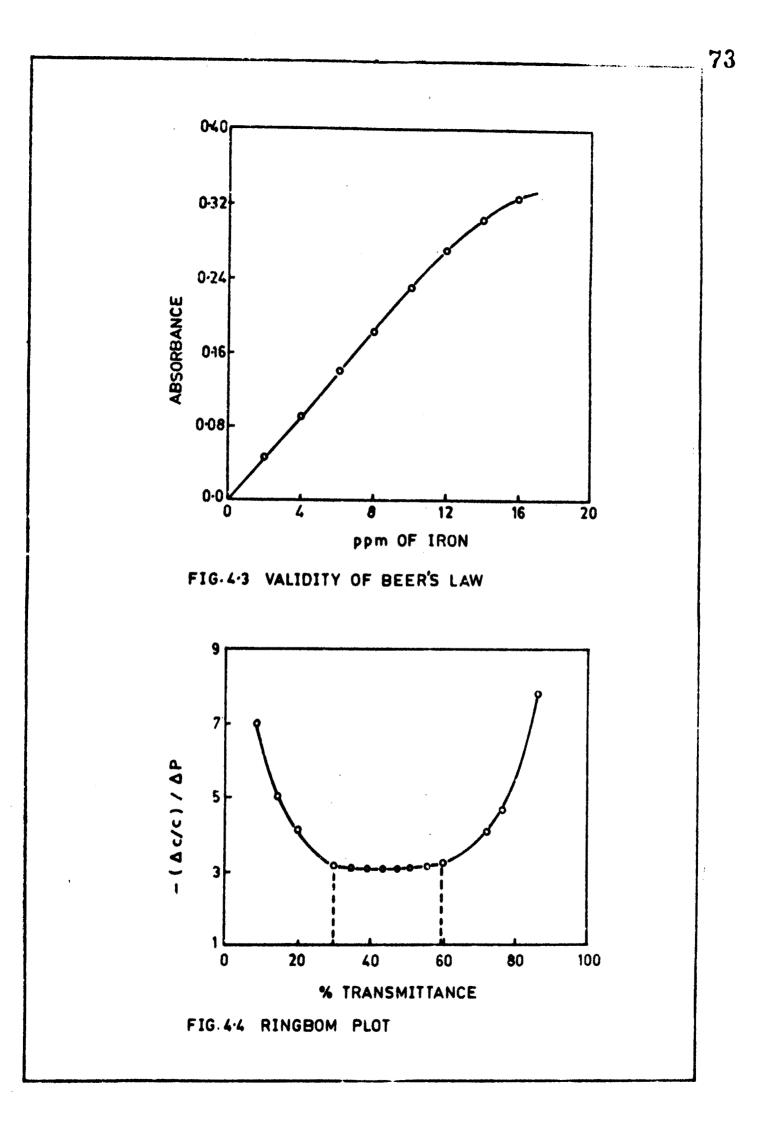
4.3.3 Effect of reagent concentration :

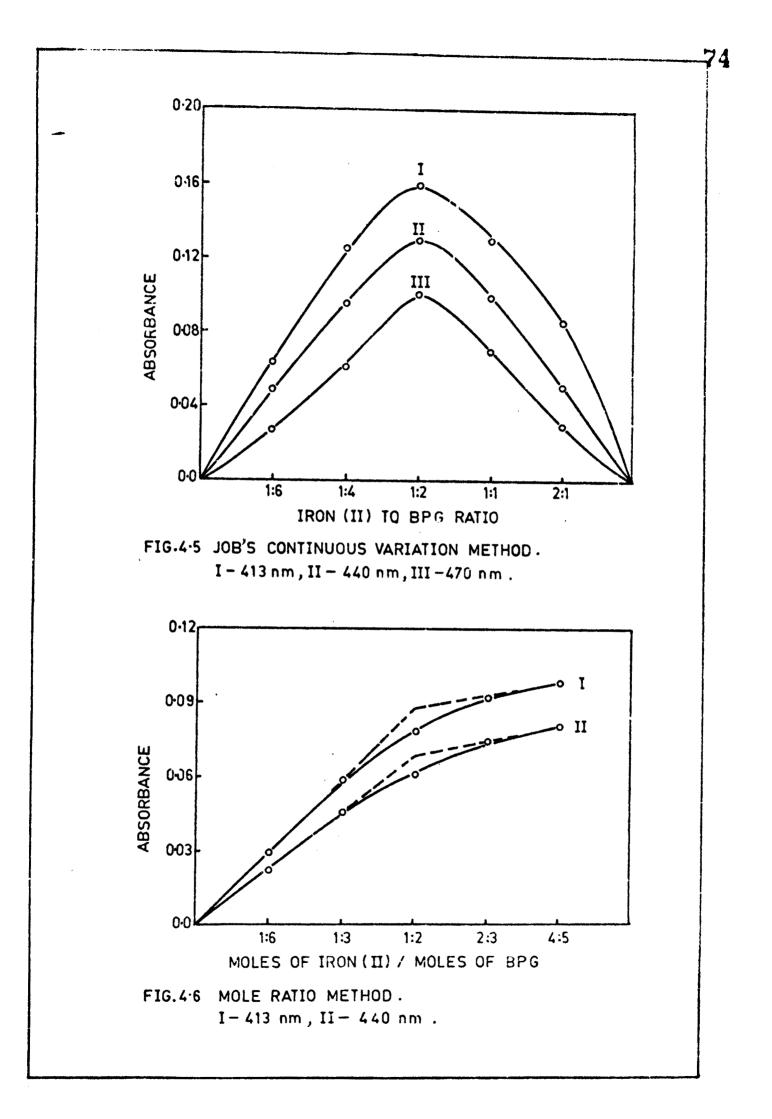
A series of solutions containing same amount of iron $(4.476 \times 10^{-5} \text{M})$ and different amounts of reagent $(5.02 \times 10^{-5} \text{M})$ to $3.514 \times 10^{-4} \text{M}$) were prepared at pH 10.0. The complex was developed as per the recommended procedure. Results in the table 4.2 show that six-fold molar excess of the reagent is sufficient for full colour development.

Table	4.2	Effect of reagent concentration	
		$[Fe(II)] = 2.5 \text{ ppm}; [BPG] = 2.511 \times 10^{-3} \text{ M}$	4

ml, of reagent	Absorbance at 413 nm
	= z# z = z = z = z = z = z = z = z = z =
0.2	0.25
0.4	0.35
0.6	0.40
0.8	0.46
1.0	0.49
1.2	0.49
1.4	0.49

4.3.4 Reaction rate and stability :


The complex formation is instantaneous and colour of the complex is stable for several hours.


4.3.5 <u>Validity of Beer's law</u>:

For the study of validity of Beer's law, the solutions containing different amounts of iron and same amount of reagent (BPG) 0.6 ml (1.506 x 10^{4} M) were taken. The absorbance measurements were recorded at 415 nm against, corresponding reagent blank. It was found that Beer's law is valid upto 12 ppm (Fig.4.3). The Ringbom plot³⁷ indicated that optimum concentration range is 1.12 to 1.37 ppm of Fe (II) at 415 nm (Fig.4.4).

4.3.6 Composition of the complex :

The composition of the complex Fe(II)- BPG was determined by Job's continuous variation method³⁸, mole ratio method³⁹ and slope ratio method⁴⁰. The complexes were developed as per the recommended procedure and absorbances were measured. The plot of absorbances against the mole fraction of the reagent indicated the existence of 1:2 complex with respect to metal and ligand (Fig.4.5). For mole ratio method, solutions containing same final concentration of reagent (4.476 x 10^5 M)

and varying amounts of iron ranging from 0.4476×10^{5} M to 3.580×10^{-5} M were prepared and absorbances of solutions were measured. The plot of absorbance against metal to reagent ratio shows formation of 1:2 complex which confirms the results of Job's method (Fig.4.5). Slope ratio method also confirms the 1:2 complex of Fe(II)- BPG.

4.3.7 <u>Sensitivity of the method</u>:

The photometric sensitivity of the method was calculated by Sandell's method 41 and was found to be 0.04578 $\mu g/cm^2$ at 415 nm.

4.3.8 Degree of dissociation and instability constant :

The degree of dissociation was obtained by the method of Harvey and Manning. The value of α_s degree of dissociation was found to be 0.1017.

The apparent instability constant² was found to be 9.376×10^{12} for Fe(II)-BPG complex. The change in free energy⁴³ of the system is - 15.13 K cal/mole.

4.3.9 Precision and accuracy of the method :

In order to test the accuracy and precision of the method, different amounts of iron were determined in 10

identical samples. The results in table 4.3 show that there is good agreement in the experimental values. The coefficient of variation and standard deviations of methods are also given in table 4.3.

=_====================================			
Iron(II)	Mean of	Standard	Coefficient of
ppm	10 observations	deviation	variation, %
=_:	_ x_ =, _, _, _, _, =, _, =, =, =, =, =, =, =, =, =, =, =, =, =,		
2	0.044	0.001	2.27
4	0.092	0.002	2.17
6	0.136	0.003	2.20
~			

Table 4.3 : <u>Reproducibility of the method</u> :

4.3.10 Effect of diverse ions :

The effect of diverse ions was studied by using 2.5 ppm of iron and 1.0 ml of 2.008 x 10^{-4} M reagent. The complexes were developed as per the recommended procedure and the absorbances were measured. The results indicate that V(V), Cu(II), Cr(VI) and Fe(III) interfere seriously. While the tolerance limit of Ca(II) is 60 ppm. For various foreign ions, the tolerance limits are given in table 4.4.

Table 4.4 :	Table 4.4 : Effect of diverse ions :		
	$\left[Fe(II) \right] = 2.5 ppm$		
	$[BPG] = 2.008 \times 10^{-4} M$		
Foreign	= = = = = = = = = = = = = = = = = = =	• = = = = = = = = = = = = = = = = = = =	
ions	Added as	Tolerance limit, ppm	
		Ca ^a _a _a _a _a _a ^a a ~a	
Cations			
Nn(II)	NnCl ₂ . 4H ₂ O	2	
Ce(IV)	$Ce(so_4)_2$	10	
U(VI)	$UC_2(NO_3)_2$	10	
Pb(II)	Pb (NO ₃) 2^{-}	6	
V (V)	v ₂ 0 ₅	none	
Zn(II)	ZnS04. 7H20	10	
Cu(II)	CuS04. 5H20	none	
Hg(II)	HgCl ₂	2	
Cr(VI)	K ₂ Cr0 ₄	none	
Al(III)	A1C13. 6H20	1	
Fe(III)	FeCl	none	
Ba(II)	BECI2. 2H20	3	
T1(I)	TICI	4	
W(VI)	NE2WO4. 2H2O	40	
Ni(II)	NiSO4. 6H20	2	
Bi(III)	Bi(NO3)3	10	
Ca(II)	CaCl ₂	60	
CO(II)	CoSO4. 7H20	1	
Ag(I)	AgNO ₃	4	
Anions :			
Thiourea	Thiourea	30	
Fluoride	Armonium fluoride	2	
Citrate	Sodium citrate	10	

Contd.on next page.....

.

Foreign ions	Added as	Tolerance limit,
Anions :		
Oxalate	Potassium Oxalate	10
edta ⁻⁴	Disodium salt	б
Acetate	Sodium acetate	20
Tartrate	Antimony potassium	
	tertrate	10
Phosphate	Potassium hydrogen	
	orthophosphate	1
Thiocyanate	Potassium thiocyanat	e 20

Contd. from previous page

4.4 APPLICATIONS :

Analysis of Fesovit syrup :

0.1 ml of commercially available fesovit syrup was taken in a 50 ml conical flask. To this, 2-3 ml perchloric acid was added and was evaporated almost to dryness. It was then dissolved in distilled water and diluted to 25 ml with distilled water.

0.5 ml of above diluted solution was taken in a 10 ml volumetric flask. To this 0.5 ml reagent solution (2.008 x 10^4 M) was added and pH was adjusted to 10 with 1:1 ammonia. It was then diluted upto the mark with distilled ethanol, and

absorbance was measured at 415 nm against reagent blank. Results are given in table 4.5.

Table 4.5 : <u>Analysis of Fesovit syrup</u> :

▆▆▀▅▔▅▀▅▔▅▔▅▔▅▔▅▔▅▔▅▔▖ゔ▖ゔ▖ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠ゔ゠			
Syrup	Certified value of Fe, %	Experimental value of Fe, %	Relative standard deviation for 10 observations.
	_ = = = = = = =		
Fesovit	1.226	1.218	0.07
	했는 그는 않은 그는 그는 그는 그는 그는 그는 그는 그는 것은 것을 가 하는 것을 수 있다. 것을 하는 것을 수 있는 것을 수 있다. 그는 것을 수 있는 것을 수 있다. 그는 것을 수 있는 것을 수 있다. 그는 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 수 있는 것을 수 있다. 그는 것을 것 같이 수 있는 것을 수 있다. 것을 것 같이 않는 것을 수 있는 것을 수 있다. 그는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 그는 것을 것 같이 않는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것 같이 않아야 수 있는 것 같이 않아. 것 같이 않아. 것 같이 않아. 것 같이 않아. 것 않아. 것 않아. 것 않아. 않아. 것 않아. 않아. 것 않아. 것 않아. 것 않아. 것 않아. 것 않아.		

4.5 REFERENCES

- 1. Brandt, W.W. and Smith, G.F., Anal. Chem., <u>21</u>, 1313, (1949).
- Fortune, W.B. and Mellon, M.G., Ind. Engg. Chem., Anal.Ed.,
 <u>10</u>, 60 (1938).
- 3. Mehlig, J.P., Ind. Engg. Chem., Anal. Ed., <u>10</u>, 136 (1938).
- 4. Thiel, A. and peter, G.,Z. Anal. Chem., <u>103</u>, 161 (1935).
- 5. Howe, D.E. and Mellon, M.G., Ind. Engg. Chem., Anal. Ed., <u>12</u>, 448 (1940).
- 6. Van Urk, H.W., Pharm. Weekblad, <u>63</u>, 1121 (1926).
- 7. Beckwith, R.S., Cher. Ind., 663 (1954).
- 8. Pereira, R.S., J. Biol. Chem., <u>137</u>, 417 (1941).
- 9. Graciani, C.E., An. Quim., <u>67</u>, 607 (1971).
- Takayoshi, S. and Ikuko, S., J. Chem. Soc. Japan, pure chem.
 Sect., <u>87</u>, 372 (1966).
- 11. Notenboom, H.R., Holland, W.J. and Soules, D., Mikrochim. Acta, <u>1</u>, 187 (1973).

- 12. Graciani, C.E., Cardenas, J. and Nieto, F., An. Quim., <u>70</u>, 695 (1974).
- Vassiliades, C. and Manoussakis, G., Bull. Soc.Chim.
 France, 2, 390 (1960).
- 14. Smith, A.N., Analyst, <u>84</u>, 516 (1959).
- 15. Marczenko, Z. and Kasiura, K., Chem. Anal. Warsaw, <u>6</u>, 37 (1961).
- 16. Ayres, G.H. and Roach, H.K., Anal. Chim. Acta, <u>26</u>, 332 (1962).
- 17. Wakimoto, S., Japan Analyst, <u>10</u>, 968 (1961).
- 18. Alduan, A., Castillo, J.L., Suarez, J.R. and Cacho Palomar, J.F., Rev. Acad. Cienc. Exactas, Fis. Quim. Nat. Zaragoza, <u>31</u>,91 (1976).
- 19. Ceriatti, G. and Spandrio, L., Anal. Chem., 33, 579 (1961).
- 20. Shivahare, G.C., Mathur, S. and Mathur, M.K., Z.Anal. Chem., <u>261</u>, 126 (1972).
- 21. Abbasi, S.A., Bhat, B.G. and Singh, R.S., Ind. J. Chem., A. <u>14</u>, 215 (1976).

22. Cerny, P., Chem. Listy, <u>51</u>, 735 (1957).

- 23. Khopkar, S.M. and De, A.K. Anal. Chim. Acta, 22, 223(1960).
- 24. Hassan, E.K. and Saad, E., Z. Anal. Chem., <u>34</u>, 1382 (1962).
- 25. Poddar, S.N., Ind. J. Chem., <u>1</u>, 496 (1963).
- 26. Hitoshi, K.K. and Nobuhiko, J. Japan Analyst, <u>15</u>, 1252 (1966).
- 27. Prakash, O. and Mushran, S.P., Chim. Analyt., <u>49</u>, 473 (1967).
- 28. Cano Pavon, J.M. and Bendito, D.P., Inf. Quim. Analit, Pura apl. Ind., <u>27</u>, 20 (1973).
- 29. Bahamondo, J.L., Bendito, D.P. and Pino, P.F., Talanta, 2 20, 694 (1973).
- 30. Munoz Levya, J.A., Cano **p**avon, J.M. and **p**ino, P.F., Quim. Analit., <u>28</u>, 90 (1974).
- 31. Patel, M.C., Shah, J.R. and Patel, R.P., J. Ind. Chem. Soc., <u>50</u>, 560 (1973).
- 32. Martinez, M.P., Valcarcel, M. and Pino, P.F., Anal. Chim. Acta, <u>81</u>, 157 (1976).

- 33. Bendito, D.P. and Pino, P.F., Mikrochim. Acta, <u>1</u>, 613 (1976).
- 34. Martinez, M.T., Cano pavon, J.M. and Pino, P.F., Anal. Chim. Acta, <u>90</u>, 335 (1977).
- 35. Martinez, M.T. and Cano pavon, J.M., Mikrochimica Acta, 2, 631 (1977).
- 36. Vogel, A.I., " A Text Book of Quantitative Inorganic Analysis", 3rd Ed., Longmans, London, P. 293 (1968).
- 37. Meitis, L., "Handbook of Analytical Chemistry", 1st Ed., McGraw Hill Book Co., New York, 6-17 (1963).
- 38. Job, P., Ann. Chim. Physique, 9, 113 (1928).
- 39. Yoe, J.H. and Jones, A.L., Ind. Engg. Chem., Anal. Ed., 16,111 (1944).
- 40. Harvey, A.E. and Manning, D.L., J. Am. Chem. Soc., <u>72</u>, 4488 (1950).

٠

41. Sandell, E.B. "Colorimetric Determination of Traces of Metals" 3rd Ed., Interscience publishers Inc., New York, P. 688 (1965).

- 42. Trikha, K.C., Katyal, M. and Singh, R.P., Talanta, <u>14</u>, 977 (1967).
- 43. Grinberg, A.A. " An Introduction to the Chemistry of Complex Compounds," 2nd Ed., 1951 Translated by Leach J.R., 1st Ed., Pergamon, London, (1962), P.275.