
CHAPTER-1 
BASIC CONCEPTS

1.0 Introduction ;
To study the admissibility of a decision rule it is

necessary to study the statistical decision theory. In
the following we introduce the statistical decision theory
along with the basic concepts. The statistical decision
theory deals with the choice of a decision to be taken on < % *
the basis of some relevant information. Here decisions

iare not only based on the possible inferences that ‘are 
listed, but also depend on
(i) the assigned loss resulting from wrong•decisions.

(ii) the prior information about the true',state.
Thus the statistical decision theory consists of three!! ■

basic elements u: ,
(I) In each decision problem there is a certain unknown^

’ L ■'*quantity. - & called the 'state of nature and this affects
t , , cthe de.cision procedure. The set of all ap'ossible states 

of nature denoted by (h) is called the parameter space.
(tl) In literature decisions are celled actions, and a 

particular action will be denoted by 'a1 while the set of 
all- possible actions denoted by ft .

v .. ' v 1 . „

(ill} A Key elewent of decision tneory is The loss function,
1 ■ f -
If nature chooses a point 9 in and the statistician

' *
chooses an action ' a£ in A , as the consequences of these



two choices the statistician loses an amount L(©,a).

This loss L(©,a) represents the loss to the statistician 

if he takes action a when © is the true state of nature,
* • t - , . ’ ' . '

i.e. L is a non-negative re'al valued function defined on 
©x A.

To obtain the information about © the statistical 

investigation is performed. The experiments are designed 

such that the observations X are distributed according to 

some probability distribution Pg, -the state of nature © 
is called the parameter which is unknown. Then the out­

come that is a random variable will be denoted by X and 

the particular value of X will be denoted by x. The set 

of all possible outcomes is the sample space, and denoted by ft.
Thus a statistical decision problem is a triplet( (fi),

. /A, L) coupled with an experiment involving a randqm vari­

able X whose distribution Pg, depends oh the state >Q € 
chosen by nature. On the basis of the outcome of the 

experiment. X = .x-, ,-the statistician chooses an action' , 
dCx),^ /A . ‘Such a function d which maps the sample space 

into <A>; . Corresponding to the- decision d the loss is 
now the random ^quantity. L(©, .d(x) ,). , ,The .expected value 

-of L(0, d(x)' )■ when 0 .i-s, the true- state, of nature is, called
t

the risk' function,'. • . ...
- R(©,d)r = Eq-.L(.©,, ,d(x) * , .

this -represents vthe average loss to the statistician when 

the true state .of nature is © and the statistician uses the 

decision, d..'



Definition (1.0.l)
Any function d(.) that maps the sample spaced into 

h is called a non-randqmized decision rule or a non-random- 
ized decision function; provided the risk function R(0,d) 
exists and is finite for all © ?, (R).

The class of all non-randomized decision rules is 
denoted by D.
Definition (1.0.2)

A randomized decision rule cr*(x..) is for each x, a 
probability distribution on JA, with the interpretation that 
if x is observed, a*(xfA) is the probability that an action 
in A (a subset of /A ) will be chosen. The class of all 
randomized decision rules is denoted by D*.

1.1 Some optimal decision rules ;
The aim/- of'statistical decision theory is to determine 

the decision function' cr that minimizes the-risk'function,
'• R(©,o) = EQ ’ [L(©,o(x) ]

For each fixed state of nature, there is a decision rule 
for which the risk is small, so that the statistician 
take this decision. But this decision rule is differ for 
various values of 0. So that no one action can be takc-n 
as a ‘best decision rule’ as compared to all other possible 
decision rules.
For example- J Con-sider the problem of estimating the parar<

* %rt - rymeter 0 when the loss is'squar'o'd error L(@,a)=(©-a) ,
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If ©„ is the true state of nature then the best action to o
be taken by the statistician is a = ©Q for which the risk 
function is zero, and the best decision rule is the non-
randomized decision rule dQ(x) = ©0< If ©^ is the true 

to take the statisti-state of nature then the best action 
cian is a =* ©■£,, and the non-randomized decision rule 
d^(x) = ©jl* Thus for different values of © there may be 
different decision rules for which the risk is minimum. 
So that there does not exist best decision rule (best in 
the sense that for all © this decision has smallest risk

Le).
ale usually does not

as compared to any other decision ru 
Thus we have seen that a best r 

exist. But for to get a better docilsion rule, we have to 
propose the two general methods so that a decision rules

I
i

are satisfactory.
(1) Restriction to some classes of 

As described above uniformly be 
ally does not exist. Thus to choose

decisicm rules % 

st decision rule gener- 
a rule which is better

(in some sense) than the other available decision rules,
we need to put some restrictions on
rules, so that the choice of best decision rule is .meaningful.

By putting the appropriate res

the available decision

rictions the class of
decision rules will be a smaller onp and from this'smaller

I
class a best decision rule can bo chosen. Commonly used 
restrictions (can also be viewed as, desired properties)

Iare £±$>iunbiasedness (II) invariancje. In the following we 
describe these properties.
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tlj Unbiasedness i

An estimate cr(x) of g(9) is said to be unbiased if, 
when 9 is the true value of the parameter, the mean of the 
distribution of d(x) is g(9)

E^(g(*)) = g(9) for all 9.
Thus an unbiased estimate in a very weak sense treats all 
states qf nature equally.

Heftce we apply, the principle of'1 unbiasedness and 
restrict the available rules to be unbiased, it is then

i

possible that a ‘uniformly best unbiased estimate* of 
9 will existi 
(II) Invariance s

The invariance principle basically states that if two 
problems, have identical formal structures (i.e, have the 
Same sample space, parameter space, densities and loss 
functions)then the same decision rule should be used in 
each problem, This is called a principle of invariance;
In this principle by considering the transformations-t the 
given problem is transformed, and this transformed problem 
has the identical structure to the original problem* The 
decision rules in the original and transformed problem's 
be the same, this leads to a restriction to So Called as 
'invariant*. decision rules. This class of rules will be 
small- so that a ‘best invariant* decision rule will exist; 
To describe the above concepts we need to define some 
additiorial terms arid we define these in the 'following.
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Groups of Transformations s

Let 3£ denote an arbitrary space (in the present context 
is the sample space) and consider transformations of 5E 

into itself. We will be concerned only with transformations 
that are one-to-one and onto.

A transformation g is said to be one-to-one if 
g(x^ = g(x2) =#■ xi = x2? and ^ 0n^0 if ihe range of
g is all of ge .
If gx and g2 are two transformations, the composition of g2 
and gx, which is the transformation to be denoted g2gx> 
which is defined by

t

g2 g-^x) = g2 (gx(x))
For g £. G, the inverse of g denoted by g“^ is defined as 

g~1(g(x))= x
- 1 a, 4 -

Definition- .(1.1.1)p, . . - ;
A <group of'..transformations, of to>,be denoted. G, • , 

is-, a set "ef^one-tqHgne and onto transformations of $ into 
itself-, which satisfies the following- conditions ; , ,
.\i)„ If gx<£-G.-and-.g^G then,g2g1£_ G. 
ii) Jf r,g -4 . G- thqn g”n£:G ...

iii) T;he.videntity trapsformation^e defined by 
_• e(x). =*x, t-is in G.

Example;,(-1'gl.lK v *.■ •. . .. t.n c„ f

■ .Let %, =• R > b. Consider. thek.group- of. transformftj,or^s 
.-i-'.-.G = ( g> it ch>, 0*1 , whore g (x) = cx.V C ' J c
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It is easy to verify that G is a group of transformations 

This is called the group of scale transformations. '

Invariant Decision Problems ;

Let X denote a random vriable having density f(x|0.)
J1 »* » * ■> i *

with sample space %. Also IF denote , the class of all 

densities f(x|9) for 9 €© . If G is a group of trans­

formations of (which we call a group of transformations 

of X). Vile want to consider the problems based on obser­

vation of the random variables g(X), g is a specific 

member of G.

Definition (1.1.2) :

The family of densities IF is said to be invariant 

under the group G if for every g £ G and 9 £ (Hj, there 

exist a unique 9* £ @such that Y= g(X) has density 

f(y|©*), and let 9* be denoted by, g(9). * , , ,

Definition (1.1.3) ; - .

, A loss fpnction”L(9,a) is said to be invariant under
i

G, if for every g, £ G and a. £ there exist an a* £

such that L(9,a) = L(g(9) ,a*) for all 9 -£ (Hf and let

the action a*,,denoted by 'gi a).
' 1

Definition (1.1.4) :
IH«W> II.ILIMHI.I I'.’imriM. % '

The decision problem is said to.be invariant,under-G.
• - . , f

it (i) IF is invariant under'G, .and -
* s

(ii) the lo’ss function L(9»a) is invariant under G.'

/A
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Example (1 ■. 1 i 2)

Suppose.X^N(Q, 1) , © = ( —00,0°) f ^ i-ico ,oo)

Consider the grpup of transformations on 95 > defined fey, 
gAx) = x + c for all x £ R, all c£ R-o x 1 1 2* PQ[X < x] = / f(t,9)dt where f(t) — JL e“• • y "■ -co V2n

and P = f f(t,0) 1 0 € (R)l
Now PgtgCx^ < *3 = P.q[X 4- C < x]

•• « Pq[X < X - c]

= L f~C e"i (t"0)2 dt 
f2% -00

— i- / e”~2 t y~(0+c) 3 dy, y =x+c
Y" 2it —00

Y. * gG(x) ~ n(q+c, 1)
hence f(y/©*) £ IF,-for all g_€ G, 0 6 QJc
hence P is invariant under G and g_(9) = ©+C

v

Let fiA, = ' that is the problem of interest is to esti­
mate the parameter ©t and further g (a) = g + a and L(©,,a) 
be inyarihnt under G.

'Thus the problem of estimating © is invariant under G# 
Remark*

In the above example if ©or/ and /Ais proper 
subset 'of R, then IF will not be invariant under G*
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Invariant Decision Rules

We have seen in an invariant decision problem, the 

formal structures of the problems involving X and Y=g(X) 

are identical. Hence the invariance principle states 

that cr and a*, the decision rules used in the X and Y 

problems respectively should be identical*

Definition !(1.1.5) ;
* i •

If a deci's‘i,on problem is invariant under a group G 

of transformations, a (non-randomized) decision rule 

cr(x) is invariant under G if for all x£X and g G.

.c*(g(x)) = g(a(x))

Definition (i>1.6) s
I1* * ^

Two points ©^ and in (H/ are said#|to be equivalent
f 4 * 7 ~V, ^

if ©2=s ©(Q^) tor some g f. 3. An orbit in%(H; is an 

.equivalence class of such points. '.Thus1 the ©Q-orbit in 

(h) , to be denoted (h) (0q) , is the set

© l°0) = [ 5(e0) :5e5] '
*#•

Theorem (1.1.1) ;

The risk function of an invariant decision rule a 

is constant on orbits of(fi), o-rj, equivalently,

R(e, cr) = R (g(0), a)

for all 9 € (§) and g 4 G.
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By definition,
R(@ ,cr) • = Eq L(9, a(X)) = EQL[g(0) ?g(a(X))]*invariance of loss 

= Eg L [g(9), es(g(X))] $ (invariance of cr)
= Eg(©) cr(X)] (invariance of distributions)
= R (g(S), o(X)] D

Definition (1.1.7) :
A group 3 of transformations of (h) is said to be 

transitive if (Hj consists of a single orbit, or equi­
valently if, for any 9^ and.©2 in rtf) , there exists 
some g C S for which ©2 Y= 5(0-^) •

If 3 is transitive, then from, theorem 1.1.1 it is 
clear that*any invariant'decision rule has a constant 
risk. An invaria'nt decision rule which minimizes tnis 
constant risk will be called a best invariant decision rule. 
Location Parameter'Problems t

Consider the problem of estimating a parameter 0 £ (g) ,
in whichX = (fi) = = R , and 0 is a location parameter
of the distribution of the observable random variable X.
We assume that the loss function is a function of (a-©) 
alone, i.e. L(0, a) =fo(a-0).

This problem is clea'rly invariant under the group G 
of transformations ■, g ; g (x) = x + c and

V V

g„(0) = 0 + c and gta) = a+c. c
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An invariant non-randomized estimate a is such that 
cf(g(x = g(o(x) ) 
becomes,
cj(x + c) = o(x) + c 

. o(x + c) - cr(x)
•• ------------ c--------- = 1 : ■

0% 0 °(* + c) -°(x) _
c 1

a* (x) = 1
a (x) = x + c' (1)

(where c' = cr(0)). Any invariant rule must be in the form
I '

of (1). The risk function of any invariant decision rule 
o £ D* satisfies

R(9,o) = R (Q+c, o) for all ©ife ® and all c. 
Thus the risk is independent of 9.

j

The risk of the non-randomized rule! is
„ i

R(9, o) = Eg L (X + c* -9 ) j
= E0 L (X + c> ) j (2)

The best invariant decision rule is simply that rule of 
the form (1) for which c' minimizes'., (2),
Example (1.1.3) !

iLet X^,...,Xn be a random sample of size n from the 
exponential distribution, whose density function given by 
f(x|9) = e7(x~e) I (9,°°) (x) , j® =R
Take L(9,a) = (a-9)2.



24
Solution :

Here 0 is a location parameter.
Now,

00 nE L (x + c', 0) = J (x+cr)2 e"x dx 
0 o 1
= c*2 + 2c! +2 (on simolification)

Therefore, EQ L(X + c', oy exists for every c*.
To. find minimum of Eq L(X +\C’ , 0) , we find

Eo L (' X + c' , 0)'
« d

EQ h (X + C ,- 0‘) = 2 + 2C' - 0 
it implies that C1 =-l

hen'ce best invariant decision rule is o(x) = x-1 and its 
risk is unity, which is constant 
2. Ordering the Decision Rules s

Instead of restricting the class of procedures, one 
can approach the problem some what differently, consider 
the risk 'functions corresponding to two different decision 
rules cfj. and cr2* It R(0,cj^) < R(0, Gq) tor all 0, then
0^ is clearly preferable to 02 since its use will lead to 
a smaller risk no matter what the true value of 0 is.

However, "the situation is not clear when the two risk 
functions iritersect as in figure. !

R(0,.a)

0
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The statistician may introduce a principle by which he 

Ghooses a decision rule# Such a principle will lead to 

an ordering'of the available decision rules, and any such
, f

ordering mfry be considered a principle.

There are two important and useful principles in the 

study'of decision theory,*

(A) : The Bayes Principle :

As usual the aim of statistical decision theory is 

to find-estimator that minimize the risk R(9,o) at every 

value of 0 and this is possible by restricting the avai- 

labe rules, by the use of unbiasedness or invariance 

principle, - Now, we shall drop such restrictions and 

admitting all estimators into competition and we shall 

look for estimators that make the risk function R(9,o) 

is small in over all sense,

Kow, the problem of minimizing

/ R.(9, a) d A (9) (3)

where we -assume that the weights represented by ft 

add up to one, that is,

/ dA (a) = i

so that ft is a probability distribution,

An estimater xs minimizing (3) is called -a Bayes 

estimator with respect to ft , The value of (3) is 

known as the '(minimum) Bayes risk,' Equivaleptl-y we have,
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Definition (1.1.8) :
A decision rule aQ is said to be Bayes with respect to
the prior distribution, /\ defined on (IT) if,

r( O = inf r( A , o)0 cr CD*
we use the notion to mean -
i) parameter space and

ii) The variable which takes the values in a parameter 
space, however the meaning of (§) will be clear as per 
the context.

Thus we have seen that a is a probability distri­
bution of © and therefore, in Bayes principle inv­
olves the notion of a distribution on the parameter 
space © , called a prior distribution.

A choice of prior distribution /\ is typically 
made like that of the distributions Pg by combining 
experience with convenience.
Definition (conjugate families) (1.1.9) ;

Let 3F denote the class of density functions 
f(x|e), eg ® . A class 2P of prior distributions is
said to be a conjugate family for 1 if h (posterior 
distribution) of © given X is in the class IP for 
all f £ IF and h € «P .

We give below some conjugate prior distributions.
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Distribution Parameter Conjugate
prior
distribution

Binomial Probability of 
'success

Beta

Poisson 1 Mean Gamma

Exponential Reciprocal - 
of Mean |

J

Gamma

Normal
1

Mean I
(variance known)

Normal

Normal Variance 
(mean known)

Inverse
Gamir/a.

Definition (1.1.10) : ' -

Let £> 0. A rule is said to be £-Bayes with

respect to the prior distribution A if?

r( A, cl )< inf r( A, <?)+€• 
c a £D*

The following example shows that there exist 6 -Bayes but 

not Bayes.
. * 4 - .

Example (1..1.4) :
Let ® = /A = R, L(‘9,a) = (9-a)2

Let the distribution of X given 9 be normal with mean 9

and variance unity, and the prior distribution of 9 is

normal with mean O and variance unity.

It can be easily shown that the posterior density

of 9 given X = x is, "
• g(©| x) = - e"(e -5)

V« .
which la normal with mean ^ and variance l/2.
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The Bayes rule is d(x) = | 

which has Bayes risk, r(d) (say) 
r(d) » E [(0 - d(x) )2/x] = |

Let d(x) an estimator of the form ax.
If =£aX / a € then it is easy to verify that, 
d(x) s | X is the Bayes estimator of 0.

If D2 = £aX, a > 1/2} , is the class of decision rules 

then note that there does not exist a Bayes decision rule. 
However,
The Bayes risk is,
r(d) = E[E [ (aX - 0)2 / X ]]

- a + (a-1)
hence every decision rule bX(~<b<«+V"j|) is not 

a Bayes rule and is a €-Bayes rule.
To find the Bayes estimator one can use the following 
result s
Theorem (1.1.2) :

Let {§} have distribution A and given © =0,

let X have distribution Pq. Suppose in addition, the 
following assumptions hold for the problem of estimating 
g ( (h) ) with non-negative loss function L(©,d).

a) There exists an estimator oQ with finite risk.
b) For almost all X, there exists a value cr^x). 
minimizing .

E[ L((g) ,a(x))/ X=x]
then cr (X) is a Bayes estimator.

A
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For a proof seo Lehmantt(1982) pp 239.
As an application of the above theorem w® have the followings 

For various loss functions the-Bayes decision is 
an estimator cr^(X) which minimizes the posterior risk.
In the following we present some loss functions and the 
corresponding Bayes estimators.

I) If L(0', d) = [d - g(©)]2 then the Bayes rule is, 

o^(X) = E [g(@) / X]

which is the moan of the posterior distribution of 
0 given X.

II) If L(0,d) = w(0) [d - g(0)]2

<v

then the Bayes rule is 
a (X) = / w(0) g(0) dA (0/X)

/ w(0) d/s(0/X)

/- E S ^ ©A, ,?{®) / X3
. . , . " E.f w (t ® ) / X ]

III) If L(0,d) =,jd -fg(S)| then the Bayes rule is any

median of the conditional distribution of 0 given X,
IV) fO when jd-0| < C

>1 whon | d-Q [ > C
* •»*! - J * , * »

then the, Bayes rule is the midpoint of the Interval 
I of length 2C which maximizes P[ (££)£■ I /X]

We have seen that for various loss functions and
* , t* , ,

, 1 „ i 1 4 t * k

prior distributions, we c^n find the Bay^s estimators
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provided it exist. -But untill we have not seen when

' * A T 1 t

and where the Bayes estimators are unique. The following
lemma gives sufficient conditions for the Bayes estimator
to be unique when the lo,ss function is strictly convex.

** * , • *
* - N * M

Lemma (1.1.1) .
If the loss function L(9,d) is squared error or more

i ‘

generally'if it is strictly convex in d, 'a Bayes solution
‘ ' j

cr. is unique (a.e*) tP), where, \P is the' class of distri-
^ i1 '

buttons Pq, provided
i) its average risk with-respect to a is finite and 

ii) if Q is the marginal distribution of X given by 
Q(A) = / Pq(X€ A) dA(Q) 

then a.e. Q implies a.e. ®P.
For a proof see Lehmann(1982) pp 240.

Definition (Formal Bayes rule) (1,1.11) :
A Bayes rule can be found by choosing for each x, 

an anction which minimizes the posterior expected loss 
or equivalently which minimizes

/ L(0,a) f(x/9) d (0) (4)

If the Bayes'risk is infinite, wo define a Bayes 
rule as given by. (4) , such a rul© is called as a formal 
Bayes rule,.
Definition (Generalized Baves rule) (1.1.12) s

If A is an improper prior in a decision problem
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with Loss L, a generalized Bayes rule, for given x, is 
an action which minizes

/ L(0,a) f(x/0) dA(9)

that is, which minimizes the posterior expected loss.
We presented above the Bayes estimators, for specific 

prior distributions and loss functions. We proceed now 
to discuss minimax estimators. Tho objective is to derive 
an estimator which minimizes the maximum possible risk.
(B) Minimax Estimation :

A rule 0^ is preferred to a rule 0^
sup R (9,0-,) < sup R(9,0O)OS®.- 1 06# Z

A rule 0Q that is most preferred in this ordering (cQ is 
preferred to any other rule 0 £ D*) is called a minimax 
decision rule.
Definition (1.1.13) i

A decision rule aQ is said to be minimax if,

9 <c
sup R(9,0 ) = inf sup R(9,0) 0 cr € D* 96®

Definition (1.1.14) :
Let €> 0. A decision rule aQ is said to be 

£- minimax if,
sup R(9,0O) < inf sup- R(0,o) + £

©S(H> o£D* 06®
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Definition (1.L15) :
■. , ,

A-'prior distribution /\ is said to bo least f-avourablo 
f • ■ .if,

r- > r, i , .for all prior, distributions , a* .
" f\ g\

wpero, . ,

V = ./ R(e' 0A \ °A <el ,
We have soon that for small risk a search for such 

estimator is qnly restricted to Bayes estimator and sui­
table limits of such Bayes estimators. But for what

t

prior.distribution A is the Bayesi solution a likelyI ' A
to be minimax ? i

The following theorem provides a simple condition 
for a Bayes estimator cj^ to be minimnx.
Theorem (1,1.3) :

Suppose that A is a distribution of (§) such that 
R(9,cr^~) ’dA(0) » sup E (9, 0A)

Then , ;
i) -gt 'is minimax - r . .

ii) If 0 . is the unique Bayes solution with respect
f\

to a 9 it i'S-the unique jnindmax procedure, 
iii) a j-S-least favourable*.

: For' a;'proof' see- L’etamannC 1982)' pp '250. 1 ; '
- * 4 }

' ‘ ~ ^ ! ! , ' - • '

i
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(1.2) Admissibility :

. The earlier two principles, Bayes principle and mini­
max principle have there own limitations. As the Bayes 
rule depends very much on the choice of prior distribution, 
it is not desirable to adopt Bayes principle when the 
choice of prior distribution is not strongly justified.

Let and cr2 be such that 
RCO,^) < R(0,o2) < R(0rfo2) < RC©^) 

then according to minimax criteria one has to prefer e2 to 
cr^. But however, if according to the prior distribution 
0Q is very unlikely then the choice of o2 is not that 
desirable. A very satisfactory criteria'to choose (if 
possible) one among the two possible decisions is by com­
paring there risk functions for all possible values of 
the parameter,, i.e, prefer to cr2 if

R(0,ax) < R (0,cr2) for all O € ©
If R(Q,o1) = R(Q,or2) for all 0 € © then
the performance of the two rules is the same, the choice 
is only the matter of convenience „ . If R(0,a^)< R(0,o2) 
for some 6 $ ® then cr^ is preferred to cr2 and write it 
as 1 cr^ < <j2’ . The above ordering is of course a partial 
ordering and-however the class of decision rules will be 
significantly reduced by using the above partial ordering. 
Definition (I.2.1) :

i) A decision- rule a. is said to be as good as a
rule o2 if,
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R(Q»al) < R(0i<*2) for a11 0 k ©

ii) A decision rule is said to be better than a
rule or2 if*
R(0,ax)'< R(Q,cj2) for all 9 % ® 

and RC©,^) < R(©,cr2) for at least one ©£<© 
iii) A rule cfj. is said to be equivalent to a rule cr2 if,

RCe-jO^) = R(0^of2) for all 9 <c © .
•»

Definition (1.2.,2) ;
A rule a is said to be admisslole if there exists 

no rule better than a.
A rule is'said to be inadmissible if it is not admissible.
Thus any admissible rule is one that cannot be do­

minated.
It is clear that an inajdmissible decision rule should 

not bemused1, since ,a decision -rule wittv smaller risk: can 
be, found..,. ■ ,
Remark

I,n the1', above-definition ?there-exists no rule1 we 
mean tftere 'exists, no lule, in a specified class D of 
decision rules. If the, class D i.s not specified it'is 
understood -fo be the -plass of all possible, decision rules. 
Sometimes D, is- specified by the form of the decision rules 
or by certain desired property of tho rule e.g.
.(I) D = JCx S C > oj
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(IX) D's-j^dOx) i ^E('0(x) )/= '9j \ the class’ of all un­

biased estimates..
Example1 (l‘;2.1)

X wp(Q), '© - = (0,=°), A ='[0,-]. •
The loss function £(©*a)= (0^)2

Consider- the decision rules of the form 
- * - <*c (x) =c x . '
N6W R(9,ac) = E*-L(@,ac(x)]

I Tv
CeJ. (e-qc)"
■'E^fe^fX)'

■* ’ = 'C20 + 02(l^c)2,
RCQ,^) = 0
R(9,cr1) = 0 < R(9,ac) = C20 + ©2(l-C)2.

This implies, afc are inadmissible if C > 1.
On. the other hand, for Q <c< 1 the rules are nonrcomparafole*- l ^ /.r *
e.g. The risk-functions of the rules a, and crv are gra- -r” »1. a *2
phed, thpy clearly cross. It is seen that for 0 < C < 1, 
cu is, admissible..--C i- \ £ > , ir.J - ( . - ' ,-v ,

,Thus the 'standard* estimator cr. is admissible.
1 % , ' " ' - r * j »*•>.■» -L

From the above example it is clear that the'admi- 
ssibility gives no assurance that, the decision rule is 
quite, appropriate.,,
t ‘" v ^ ^ i f . A *r '
Note that .

1' - * -'""l , t

R(0,0^2) <l'|>).R(©,cj1), 0 < 0 < 3, (0 > 3)
-- o -1- 02'

a ■>
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Definition (1.2.3) :
A class C of decision rules, CCD* is said to be 

complete, if given any rule a £ D* not in C, there exists 
a rule aQ£C that is better than a.

A class C of decision rules is said to be essen­
tially complete if given any rule o(not in C) , therG 
exists a rule qQfe C that is as good„ as a.
Lemma (1.2.1) s

If C is a complete class, and A denotes the class 
of all admissible rules then ACC.
Proof s

A C

. -Let a be.a.rtyie such that a C, since C is complete
therfc, exists a rule a 6 C such that cr is better than a,o o
i.e. R(9}a0) < R(9,d). , for all 9 t © 
and R09,qo) < R(9’,s0 for some 9.6 (ED •
If a were admissible then there should not be any rule 
better than a.
Therefore, cr is inadmissible.
That is , g. ft A
Thus a C a £ A ’
it follows, .that a C A ^ <f ,6 ,C
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Lemma (1.2.2) i

If C is essentially complete class and ,thej?9 exists 
an admissible o ^ C, there exists a o' £ C which is 
equivalent to 0,
Proof s

-- . . i-------------- ^

class C1

*

1 1 1 ! 1 V

e* i
•

----------------- /
*»

Admissible class A

Since C is essentially complete and <s £ € then 
there exists a decision rule a' 6 C which is as good as cr. 

Further, since cr is admissible, cr* cannot be better 
than a. i.e.
i«e* thejee exists o1 t C such that cr' is as good as -0 
and cr* is -not better than a,
ive. Cr and cr* atre equivalent. Q
Definitibh (1.2.4) s

A class C of-decision rules is said to be minimal
i

complete if C is complete and if no proper subclass of
C is complete; !

\

■Definition (1*2,5) %

A ’Class E of decision rules is said to be minimal 
essentially complete if C is essentially complete and-if. 
no proper subclass, of C is essentially complete.,
Not©' s- £ <L C,.
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Theorem (1.2.1) :

If a minimal complete class exists, it consists of 

exactly the admissible rules.

Proof i

(Essentially complete)

As we .have, shown that ACC. It is enough to show

that their exist no rule cr such that a & C and o £ A.

If there exists a a C A Af then C - a will be complete
contradicting the fact that C is. minimal complete. Hence CfiA 
is empty. , i.e. C A A* = 0 ===> C CA

•hence A.= C fl

Lemma (1.2.3)

Let a be a Bayes (admissible) estimator of g(e) fcr 

squared error,loss. Then, acr+b is Bayes (admissible)
1 i, * *

for a.g(0)+b.

Proof i

This follbws immediately from the fact that 
R(a g(9)‘-fb, ao+b) = a2 R(g(©) ,cr) []

Lemma(1.2.4) :

I’f an estimator has constant risk and is admissi­

ble, it-'Is minimax.

Proof :
MMMMM

Let' Gq be admissible and has constant risk,
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i$e. R(©, cr ) for all @ 4

Suppose aQ is not minimax, there exist a rule a such that

sup R(9*cr) < sup R(9,o )
9 ©■. r < 0

' ' rV
Since R(9taQ),'^ c .for all © £ 

R(©,cr) < R(9,k ) for ali © £ ©

mA
€o

<s
it implies that, <$0. is not ad,oissible>which is a ,

• i *

contradiction.

Therefore, ts- is rftinimax. D
Hedgfes and Lehman^ (.1951) Rave showri that fdj? a

' - ' ij;-v ' . , *•
sample of. n' jiridepenaent, observations from a univ&riat& 

fibrdiai population the sample mean!is an-a'ctnissibld esti-

mStbf of the, parent mean. Now, wei will discuss, fdr a

sample of n independent observations from a poissoh^po^

phlatiph thd Sample mean (3t) is an admissible estimator 

o£ the 'parent mean. This problem Is solved by two dif'f*-

erent procedures with respect-to the squared error loss a 

I) §y information Inequality Methods 

II) By Limiting Bayes Methodi

(i) Admissibility of 5J for poisSon distribution .by
* m fiW.—.■■'■■■ y i^—t- > mm HiaMfi n r u »i > in «■ *>*# mr- -w^jm     i »ihbi,»- mt tm *■> 1 ■ ■ •rwaaan

I

Iftformiatioh -Inequality Method %
"«m.»--m-PT»r „ „ir-rr..-r- «r-« «*ammr"i~r.

Let o be any estimator of then 

E L(0,o)

. k E (©-o)2 

-= E, ( d=©)2
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R(9,o) = E O(X) - E o(X) + E o(X)-9 J2 

= vare(0) + [E(o(x))- ©]2 

= vare(0) 4- (E(o)-©)2 ■

=varQ (a) + b2(9)

where b(9) is the bias of a i.e. b(9)=Eg(a)-9

The family of density functions {f(x,9)j © £ (H) J 

with respect !to p, which satisfies 'tne 0ramer-Rao regul-
1 -'i ■

arity conditiohs, so that
[b>(9)+l]2

varQ(d) >
n. 1(9)

where l(0) is the Information about 9 contained in X 

R(© ,<J) > b2(9) 4

Consider,

f(x‘9)

log f = 

d"

e“90x

xl

9 + x log 0 - log xl

■J5 log f = -1 + |
d2 -i j; -x 
—o log f = --
d©“

Therefore, 

1(0) .=

9'

E ( l09 f
d9^

E(x)

5 = - H( =§) 
y

9 = 1_ 1
95 ©

Therefore (l) becomes, , o
~ [ 1+br1 (0)] ,©

R(&,cr) > b2(0) 4- —------ -
n !

(1)

(2)

{



41
Suppose that 3 is inadmissible, then there exists 
any estimator c satisfying,

R(9,o) < R(©,X) for all © € (©
< E(X-9)2

< var{X)
< @ for all © € © (3)
~ n

From (2) and (3) we have,‘
b2(9). + < 2 for ail © € © (4)

We shall then show that (4*) implies,
b(9) m 6 ' (5),

i,e. a is ubbiased*
i) Since |b(8)| < V9/n„ ,;the function b is bounded,

. • ji
ii) From the fact that

l+2b'(9)+(b'(9))2 < 1
) , ( 1

it follows that b'(9) < 0, so that b is non-increasing,
iii) Next, we shall show* that thereiexists a sequence

. il
of values 9^ tending: to « and such that b*(9^} —0. 
For suppose that b•;(0j) were bounded away from 0 
as 9 —, say b'j(d) < -£ for all © > ©rt. .

r i[ ”* . • o
Then b(9) cannot be!: founded as '9 ^ °°f which

,1 i - , " - 1^ , , \

contradicts (i), , *
iv) Analogously it is seen that there exists a seq-

> * » i •
uence of values 9^ > 0 and such that' ^(9^) 0 •

f
Inequality (4) together with (iii) and (iv)

l
5678A.
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shows thatb(9) 0 as 9 0 or 0 —and (5)

*

follows from (ii).
Since (5) implies that b(0) = b'(©) * 0 for all 0, 

then by (2) we get
R(e,a)>! for ‘all 0 

and hence from (3) that 
R(e.a) - ®

This proves l-that" X1 is admissible for ©.
(II) Admissibility of 3? by Limiting;Bayes Method :

Suppose that X is Inadmissible then there eatists an 
estimator o* such,that

R(©,o#) < R(©,X) for all © € ©
< E(X- E(X))2 for all © € ©
< var, (X)
<| for all © £ ®

R(0,cr*) < § for all © € © 
n

and R(©,,cr*). <«• for some, ©£©

Now, R(©,<?) is a continuous function of © for
%every cr, so that there exists £> 0 and ©Q < ©^

.such, that
R(e.,o*) < 2 - 6 , e0 < 0 < 8X
R(e,o*) <2 , (e0 < e < e^0
Now we have to find the Bayes estimator.
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Let be i.i.d. random variables from the
poisson population with parameter ©, then

-n© QSx.
p( xlf * * * ,xn*®^ ** ~*"**”"

15 X. ; I
i=l

Let us take the prior distribution for © is
g{9) « | e“®* u , © > 0, u > 0 

P , otherwise.
The joint p.d.f. of X and © is
h(x,C) = S_—S—i i e-°u

it x. ! i«l. 1
-0(i+n) QSx. u/.. n\ e 'u ' © in(x#©;, ss ------------------

u» w X. *
i»l wi *

The marginal p.d.f. of X is
09

f(x) * / h(xf0) d©.
1 a8 -Q(l+n) QSx. d©rr-“- J e 'u ' 9 i—n 

U 15 X. J 04S1 x
9SS

1-...... _ 1 EXI Hh 1

„ i t l \ SXj'i'iU . 15 x. • lrj+n) i
i=l ‘U

The posterior distribution of © given X ■ x is 
h(©/X=x) •

f(x> 
(nx (

mm jmmm* mmnx ] nx
e^(i+n) 9nx ( i+n)nx+1
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The Bayes estimator is cr( x) = mean of the posterior 

distribution since loss function is squared error.

,nx+lTherefore, .
o(x) = / d©

nx nx

nxx fnx

(n+-)n*+1 
= u

f en*+1 e-e(.r+n) de
> ;I ^

f"”n£+2

nx p*“—t«.I nx (=+n)u
nx+2

_ (nx+1)__nx__]__nx_
nx | nx (i+n)

Ex-i-A
I + n 
u

. a(x) = -uJLsH±iI_
1+ n u

-4.22-
1 + n u 1+n u

+ -4..

.*• <f(x) » 3?. , X------ -- + -----------
1+ i ,r + nnu u

It was seen above that X + i is the limit of the Bayes 

estimator. as u eo» j

That is <j(X) = 2 + i. n ;1 I
.•;R(©,(?) « E(Q-cf)2 a E(©~ x - i)2

a -2E( n© - nx - l)2 
n

__ n© Hh 1
n5"~"

(
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The Bayes risk is r(©,o) = r say » / R(©,a)g(©)d©

00
= S ( 2S-+.A)» t Mo n

i„ - e"w u d©1
u

’ oo , _ 1 , oo, , , _ 1i / ©J e”9* u d© + -0 J i e“0 u d©
n o u n2 o u

= iu + i = DiLt-i n _2 2n n“
(A)

n'
Let ro* be the average risk of a* with respect to the 
prior distribution we have,

to* = f° R(6,cr*) g(©) d©

©= /'1(2 -6) g(e)ae + / c(2). g(e) ae9,

9-© 1= / 1 | g(©)d© -C/ g(©)d© + / | g(9) d©
(©0 >©i'©, ©.

combining first and third 'term we get,
© © ro* *• / X§ g(©) d© + / r | g(©) d© - €, / J(©) d©

q n • . ro a V' n , q<«w. .

* / | ?(«) ae - c J"-1 g(b) ae
e.

e.

I
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r«* - 1 / e i e-e 3de f/11 e-e = *»n b u u u

= U -[ e“9q/u - e“6l/u 3 € (B)

Now, « /
2 .[ e“Vu-.

® as U ---- -------------—:-----L

,n n,u.+l nu + 1-

nu__
1+nu

( ) . € [, e“V?- e"®l/u ]
nu :+l ;

< 1 |
i

i.e. B < A [

which contradicts the fact that ra is the Bayes risk*
t M | I ^

Thus H is admissible estimator I of - 0. Q
i

• • t

Cl.3)'Admissible decision :fulej:

Bayes rules with proper priors are uirtually
* ' : : i

always admissible. The. basic*reason is- that if a rule 

with better risk R(0,a) existed, that; rule would also 

have better Bayes risk i.e. Hj R(0, <*).«.

We dis.cuss. the following t
’ %

I) Admissible rules nepd not' be Bayes rules.

II) A Bayes rule (if exists) may be inadmissible.

III). Generalized Bayes rule nejed not be admissible.
I
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I) Admissible rules need not be Baves rules t

Let X-^,^,... ,Xn be i.i.d, random variables distri­
buted like N(9,l). Then the sample moan 3? is a admi­

ssible estimator of 9, with respect to the squared error
loss (Ref. Lehmariw(1982) pp 265).

Let the prior distribution of 9 is N(0,K), K=l,2,... 

The Bayes estimator with respect to the squared error 

loss is,

a* (X) * X( 1 + iK)_1 , K a 1,2,.... 
The Bayes risk of <r*(X) is 
r (9,o*(X)) « |(l+ ^)”2 + -IS| (1+nK)2

therefore,
r (9,cr*(X)) » |(l+ L)”2 + -r~- 2 < 

n (1+nK)^
1
■Mn

where a(X) = 1 '
it implies that, a is not Bayes tliat is q(X) » 3? is

i
not Bayesr i

From above it is clear that, admissible estimator
need not be Bayes rule. I Q

II) A Baves rule (if exists) may 

Theorem (1.3.1) :
be .inadmissible :

Let =- (-oo, oo), xf the risk function R(9fcr) is 
continuous in 9 for each 0, and il a(©) is a prior 

distribution over (ff) , whose support is (ff) , then the

1
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Bayes estimator against t c/% is admissible. 

Proof s -

If is inadmissible, then there exists an 

estimator a* Satisfying

R(9,0*5 £ R(9,oa ) for all 9 

and R(%,o*) < R(9jL,aA ) for dome 9xfc ©.

There exists a positive real > 0 such that

R(91,cr*) < R(9raA ) -

Since R(9#d*) is continuous irk 9, there exists a 9 - 

neighborhood of 9^, say N(9^) i Such'that

R(9,o*) < R(9,o/s>) r* for all 9 £ N(9X)

Finally,

(e)r(A ,a*) = / R(e,o*) dA(e) + / B(6.o*) dA
N<»i> me.)

4/ [R(e,aA')- dA(e) + /> R(e,oA ) d A(e)
NCSj^) n(e1)

4 / Ri(e,o ) dA(e) + / R(e,qA )'dA(e),-e, / dA(e) 

N<ei> R(ex) N<ei>

^ r( A A ) T C"! (N, (9^) )

But since A (9) > 0 for all 9 , A (N,(9^)) > 0

hence,
r;(A ,<** ) < r(-/> , crA ) .

This contradicts the fact that efA is Bayes-.

hence aA is admissible. Q

; \
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We note that if the support of prior distribution 

is not entire the parameter space then the Bayes esti­
mator need not be admissible. This fact is clear from 
the following s 
Let cr^ and cr2 fc>e such that

« „ I
i) a0 is Bayes with respect to a. prior distribution ^ 4 7'

A (©)j whose support *is (h)^, proper subset of (h)^

ii) r( a =r(A»cr2) , 0( ancj

r( A i'^)- > r( A ' <r2) ' f 0. £ ® ~ ® i

r(A,ox)
XV,,

al

It is easy to observe that o, as also a Bayes rule
x i

with respect to A(©) and is not admissible.
Ill) Generalized Bayes rule need not be admissible %

Let XiAG(a,p) (a known) is observed, and that
« A Ait is desired to estimate p under loss L(p,a) =(p-a) p
i *

It isdecided to use the improper prior density

gCP) = ••
P ; 

f(x / a,p) = ±-— xa_1 e_x'^ , x;> 0, a > 0,'p > 0r«Pa :
0 9 otherwise
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and

g(P) r

The joint p.d.f. of X and p' is 

h(x,p) _i__ v«-l e-x/P
fa p«+2

The marginal density function of X is

f(x)
va-l x 1 /

00

r»
e~xy ya dy ( when y = ^ )

a

The posterior' distribution of p given X = x is
h(P/X = x) = 'a+2 xa+i .-x/p

a pa p'
when the loss is weighted squared error^the Bayes 
estimator of ;p is given by.

a(x) 
consider■

, I | AIcT+S 
! :,<*C(x) C X

The risk of the estimator crc(x) is,
R(p,oc) ? E(C x ^ f? ) p-2

= p"2 :E*. [ C(X -ap) + (Ga-1) p ]
a p~2 [ ap^2 + CGa-l)202 ]
= C2a+(aC -l)2 ( V H(X) = ap 

* var(x)« ap2 }

Yl>>
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Differentiating with respect to C and setting equal to 
zero shows, that the Value of C minimizing this express­
ion is unique, and is given by,

2 C <x + 2 a (Ca-1) « 0

, ' = co<saY> “ I¥5
It follows that if C ^ Cq, then

R;(P, crC0) < R (p# oc) , .for all p 

- it implies that, (X) is inadmissible.
Therefore,

o(X) - 5“^"2 l09^!®®^!®*
Thus geheralized Bayes rule need not be acbissibiei £]

Lemma (1.3.1) s
Ally unique Bayes estimator is admissible.

Proof s
If a is unique Bayes with respect to the prior 

distribution A » and is dominated by o', then
/ ft(e,o') dA(e) < / r(0,<j) dA(e) 

i.e. r(er') < r(d)

Further, since? cf Is1 Bayes we have 
r(o?) < r(cr^) 

hence r(o) =* r(o')
which contradicts the uniqueness. Q
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(1*4) Inadmissibility of lixiear estimates for exponential

families ;
In this section we consider the admissibility of 

a linear estimator a X+b of E(X) with respect to the 
squared error loss when the probability density function 
Is given by

Pe(x) = p(Q) e& T(x)

We obtain sufficient conditions for admissibility 
of the above estimator. These results are obtained by 
Karlin (1958),.
Theorem (1.4.1) s

Let X be a random variable with mean 9 and variance
iocr and the loss function is squared error. Then aX+b 

is an inadmissible estimator of 9 whenever 
i) a > 1 f 'or 

ii) a < 0 , or 
iii) a a 1, fc> £ 0 •
Proof :

Let the risk of aX+b be
R( a ,b) = E( aX+b-9)2 = a202 + [(a-l)9 + b]2 

i) If a > 1 then
R(a,b) > a2o2 > a2 = R(1,0) 
that-is R(1,0) < R(a,b) 
so that aX+b is inadmissible.
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ii) If a < 0," then (a-l)2 > 1 

hence

R( afb), >/[(a-»l)®v'o
> (a-l)2 (0 +

£ (© + ~j)2

2 a<°, - a=x>
So that aX+b is dominated ''fey the constant esti­

mator a « -b / a-l

iii) If a * 1, bj^Owe have
• R(a,b) » a2 + b2 > c2 « R(1,0)

R{1,0) < R(a,b) 

hence

aX+b is inadmissible* £J

Theorem (Karlin ^SS) (1*.4^2) :

Let X have probability density

PQ(x) ~p(0) (0,T real valued) (1)

with respect to p, and let© be the natural parameter 

space with end points say 0 and § (~°° <©<©.< ,°°).

Let ©Q be a, point 'in (© ,9)

i*e. 0 < ©o < § abd u » 0 < u < ®° a value for which

lim
0-^9

/ e‘Yu 9' 
e0 ?fi(9) ]u

09 (2)



and
lim0 —^ 0
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e-YUe
(3)

Then
-I- + ----- = <S (say) ,is an admissible estima-
1+u 1 +u

tor for estimating g(0) = Eq(T) .with respect to the squ­
ared error loss,
Proof :

p(x,0) = p(0) e0T^

log p « log p(0) + 0. T
- log p = - log p(0) + T 
50 50
E ( --.-log p) = E ( -£- log p(0) ) + E(T) =0 

50 50
EQ (T) = - -i- log p(0)
H 50

E0 (T) = g(©) (sa )
P(e) (4),

varQ (T) = E (T - Eq(T))
5_
50

50

E (T + -- log p(0) )2

i ( -- log p >2

- E ( --« log p)2 d02

* l“2 100 P
36 ^ “ 35 l09 P)

varQ (T) = g*(0) = 1(0) (5)
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where 1(6) is the Fisher information.
For any estimator o(X) we have 
EqOCX) - g(9)]2 > var (a(X)) + b2(0)

i

where
b(9) -= Eq(ct(X)) - g(9) is the bias of o.

E [cr(X)-g(9)]2 > b2(S) + (6)
B 1(9)

Suppose that there exists an estimator aQ such that
2E0[-I±iy “ 9(0) J > Eg [a0(X) - g(0)]2 for all 0 (7)

1 +u
L.H.S. of (7) is,

E [ Itli? - g(e)]2 = EjT+yU-g(O) -u g(0)]2
H l'+u (l+u)z w
= ■ --i— 2 Ee [(T- g(0)) - u (g(0) - Y) ]2

'■(l+u)z w
»= „ Eq[ (T-g(9))2+u2(g(9)rY)^ ” ^u(g(9)-Y) (T- g(@))j

(1+u )2 ¥
- 77r-,2 E0^T - 9<e»2 E (g(e) - y)2(l+u ) (1 +u)

- 7---T2(9(e!) “ Y> EQ(T-g(©))
(l+g)

using (4) and (5) we have,

E ( I+X.u_ g(e))2 = iiSl + iisLSh^l 
y 1+u (l+u)2 (1 -tu) (8)
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Application of (6) to cro,
E«(a (X) - g(S) )2 > b2(6) +
'©'“o-: - ■ - -o

Thus from (7) we have
2 . [i(e)+b;(e)]z i(e)

b„(0) + -0 1(0) (1+u )■

1(0)

u [g(©)“ y]‘
+---------2™

(i +u )
Let us now choose a to be the estimator S, put

Now,
h(e) = b0(e) - b(e)

b(e) = Ee(o(x>) - g(e)

T + YU= Eq ( ) . g(0)
1 + U

(9)

(10)

(11)

= -a- (y - g(0) ) 
1+u

ub'(9) = - — g1 (9)
1+u

using (ll), (10) can be written as,
[h(e)+b(e)]2 + £ll§L±_h:ieL±.b:lel]2

i(e).
< + Ji-talsl-xl:

(1+U )‘ (1+U )

(12)
(13)

h2(e) + 2h(9)b(©) + b2(9) +[f
1(0)

< -ll®i_ + -U?l2lOL=Xl2
“ (1+u )2 (1 +u )2

using (12) we have,
2, . ....... . [h1(0)+(l(0)+b'(0))]2 1(0)

h^(0)-2h(0)~l?(g(0)-Y) + 
1+u 1(0) (1+u) ’

< 0
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h2(e)-if h(6)(g(9)-Y) t

[a(©)+bA(e)32 i(fc)
(1 + u)21(0)

using (5) and (13)
consider ‘ „ - -I(Q)+b'(©) , l(0)aiSu^,(Q)

i 0 (i4)

l('©) I(©)
Thereforei (14) reduce.s to,

1 + u

2 2 u ...... > , [h'(e)]2 2h*(e) i(e)
h(9) -  --  h(©) [g(©)^Y]+ ------ +-----  +---- i(e)

l+u !(©) l + u (l+u)2 (l+u)2 < 0

«
• *

o 2u ■ 2 Ch'(©)3h2(0)------h(@)[g(e) - y)+---- h*(©) +-----— < 0
1+ u 1+ u 1(0)

which implies
" 2 u 2

n (©)------h(©)Zg(0) - y! +----- h'(9) < 0
1+ u 1+ u'

Finally let
K(©) = h(9) pu (©) e YU®

Differentiation of K(0) and use of (4), (15) 
reduces -to,
K2(©) p“u (©) e”Y u0+ K'(©) < 0

1+ u
We shall show that K(©) > 0 for all ©.
Suppose that Kj:(90) < © for some ©Q» Then K(©) < ,0 
for all © >, © and for .© > © we can write (17) as,

i V v

(15)

(16)

(17)

d 1 l+ud©~ ^ K(©) ^ - 2 ruw ©"Y U 9 (18)
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integrating (18) both sides with respect to 3 from ©0 
to © we get
_i-----L_ > i+Ji / p-u(e) e-Y u® as (19)
K(0) K(e0) ~ 2 e0
As 0—^5 , the right hand side tends to «>, while the 
left hand side of (19) is bounded by - ^

Which is a contradiction this implies K(0) >, 0 for all 9. 
Similarly K(|9) < 0 for all 9 
It follows that K(©) = 0, for all 9 
and hence ^(9) = 0 for all 9,.
This shows that for all 9 equality holds in (15)-, (10), 
and thus (7).
Therefore, there is no estimator aQ which is better than 
S, hence S is admissible. £3

Example (1.4.1) :
I

We know that for poisson distribution ; f(x,m) the
%

probability density function with respect to the counting 

measure defined on the set of' non-negative integers is

given by ,

xi
x = 0,1,2,.. ,<», m > 0f(x, m) t
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However, if we take thea-finite measure u(x) = »

x = 0,1,2,.., as dominating measure for poisson distri­

bution the corresponding density function is given by
» !

-m x
p(x, m) = s-----SL. f x = 0,1,2,..., m > 0

* e“m ex log m

Qputting 0 = log m m = e < © < oo

Therefore,
0

P@(x) = e“e e } 0£(-oo,oo>; (20)

compairing (20) with (l) we get 
_©

P (Q.) = e~e and T = X

From Karlin's theorem (1.4.2) we know t.iat S= X- + -X-
1+u 1+u

= —-- + is admissible for its expected value pro-
1+u 1+u

vided the two integrals (2) and (3) are satisfied. Note

that this condition is satisfied for u = 0

x.e,

and

©

I
e.

e“Y u © - ------- d©
(P’(©))U

i -
?= / do! = 5-0,

© e-ru6J u -------- d0
© (P(©))u

0.

®o
= / d© = ©Q - © OO
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hence S is admissible that is X is admissible for 
B(x) ® m. n

Since T(X) = E P(nm)i=l r
T(X) is admissible for nm and hence from Lemma (1.2.3), 
T(X)
..... a X is admissible for m.

Thus the sample mean X of the poisson distribution 
is admissible for estimating m.


