CHAPTER-I
BASIC CONCEPTS

1.0 Introduction :

To study the admissibility of a decision rule it is
necessary to study the statistical decision theory. In
the following we introduce the‘statist%cal decision theory
along with thg basic cpncepts. The statistical decision
theory deals with the choice of a decision to be taken on
the basis of ;ome relevant informatien. |Here decisions
are not only based on the possible inferences that ‘'are
listed, but also depend on

(i) the assigned loss resulting from wrong decisions.
(ii) the prior information about the trueﬂstaté.
Thus the statiﬁﬁipal decision theory consists of three
‘basic elements:u

(I) In ecach de0131on p:oblem there ie a certain unknown
quantity. - 0 called the'kctaye of nature qnd this affects
the de0151on procedure. Thp set of all apossible states
of nature denoted by &:) is called the parameter space.

(1) In literature decisions are czlled actions, and a
" particular action will be denotcc by 'a' while the set of
all possible acflons denotced by A .
(III) A Key element of decision tneory is the loss funckion.
If nature chooses a point ©ip (H) and the statlstlc:Lan

4

chooses an actlon taf in A , as the consequences of these



two choices the statistician loses an amount L{©,a).
This loss L(8,a) represents the loss to the statistician
if he takes action a when @ is the true state of nature,
i,e. L is a honéhégative real valued function defined on
Bx . -

To obtaiﬁ the information about © the statistical
inVestigation is performed. The experiments are designed
such that the observations X are distributed according to
some probability distribution Pg,'the state of nature @
is ca}led the paraméter which is unknowﬁ. Then the out-
come that is a random variable will be denoted by X and
the particular value of X will be ‘denoted by x. The set
of all possible outcomes is {ihe sample space, and denoted by i.

Thus a statistical decisioh problem is a triplet( &),

.#A, L) coupled with an experiment involving a random vari-
able X whose distribution P, depends 9'r1 the state @ € @&
chosen by nature. On thc basis of the outcome of the
experiment,x.=~xysthe é%afiatician chooses an action:
“d(x)e. A . “Such'a function d which maps the sample space
¥ into A< .Corresponding to the decision d the loss is
now the';gndom»quantity,L(é,_d(x).)«L,The.gxpected value
.of L(©, d(x)- ) 'when © .is, the true statec, of nature-is.called
the risk'funation}.- R ..
R(8,d) = Eg- L(®, .d{x) ). -
this -represents the average 'loss -to the statistician when
the true state of nature is © and the statistician uses the

decision. de



Definition (1.0.1)
Any function d(.) that maps the sample space® into

.

s

ized decision function; provided the riSk function R(©,d)

STy

exists and is finite for all 8 € @).

The class of all non~randomized decision rules is
denoted by D.
Definition (1.0.2)

A randomized deccision rule o*(x,.) is for each x, a
probability distribution on /A, with the interpretation that
if x is observed, o*(x,A) is the probability that an action
in A (a subset of A ) will be chosen. The-class of all

randomized decision rules is denoted by D¥,

l.1 Some optimal decision rules ¢

The aif’- of statistical decision theory is to determine
the decision furictien'c'‘that minimizes the-risk function,
R(6,0) = Eg [L(6,0(x)] -
For each fixed state of nature, there is a decision Trule
for which the risk is small, so that the statistician
take this decision. But this decision rulc is-differ for
various values of 8. So that no onc action can be takecn
as a 'best decision rule! as Eompared to all other possible
decision rules,
For examglé'a‘“Qons;de;]tbe pfoblﬁm of cstimating the paras

v

meter © when the loss is squarcd error L(e,a)=(9=a)?,

*

¥ -
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If ©, is the true state of nature then the best action to

be taken by the statistician is a = Qo for which the risk
function is zero, and the best decision rule is the non-
randomized decision rule d (x) = O, .| If ©; is the true
state of nature then the best action to takc the statisti-

cian is a = gl” and the non-randomized decision rule

dl(x) = ©;. Thus for different valués of © there may be
different decision rules for which the risk is minimum.
So that there does not exist best decision rule (best in
the sense that for all @ this decision ‘has smallest risk
as compared to any other decision rule).

Thus we have secn that a best rule usually does not

exist. But for to get a better decision rule, we have to
propose the two gencral methods so tbat a decision rules
|

are satisfactory.

(1) Reéstriction to some classes of |[decision rules

As deséribed above uniformly best decision rule gencr-
ally does not exist. Thus to choose a rule which is better
(in somc sense) than the other available decision fulcs,
we need to put some restrictions oﬁ the availablc decision
rules, so that the choice of best décision rule is,meaningful.“

By putting the appropriate restrictions the ciass 6f

decision rules will be a smaller one and from this 'smaller

class a best decision rule can bc cposen. Commonly used
restrictions (can also be viewed as, desired properties)

|
are (i%*unbiasedness (II) invariance. In the following we

describe these properties.

|
|
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zI) Unbiasednegg :

An estimate o(x) of g(®) is said to be unbiased if,
when © is the true value of the paramcter, the mean of the
distribution of a(x) is g(o).

Eg(g(xl) = g(©) for all @.
Ihus an unbidsed estimate in a very weak sensc trcats all
étates of natu¥e equally.

Hence we apply the prineiple of" unbiesedness and
restkrict the av&ilable ;ules to be unbiased, it is theh
possible that a 'uniformly' best unbiased estimate! of
8 will exist,

(I1) Invariance :

The invariance principle basically states that if two
problems have identical fermal struetures (i.e, have the
same samplce space, parameter space, densities and loss
fqpqtions}then the same decision rule shoukd be usod in
each problem. This is ca’led a principle of invariance.
In éhiq principle by considering the transformations; the

given problem is transfermed, and this transformed problem

has the identical structure to the original proBlem: The
de¢ision rules in the priginal and transformed problems
be the same, this leads to a rostriction to o talled as

'invariant! decisioh rules. This class of rules will be

small so that a 'pest ihvariant' decision rule Wwill ckist.

e e ¥ ean

To desc¢ribe the above concepts we necd to defince sdme

additiodal terms and we definc these in the‘f&liéﬁing.
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Groups of Transformations :

Let 2¢ denote an arbitrary space (in‘the prescnt context
% is the sample space) and consider transformations of %

into itself. We will be concerned only with transfcrmations.
that arc one-to-one and onto.

A transformation g is said to be onc—-to~one if
g(x) = g(x2) % X; = X, and it is onto if the range of
g is all ofx. |
If g; and g, arc two transformations, the composition of 9o
and gy » which is the transformation to bec denoted 9097 »

~

which is defincd by

g5 91(x) = g5 (g;(x))
For g € G, the inwyerse of g denoted by g"l
g'}(g(X))= X

Definition (1.1,1), . -. ;

is defined as

A .group of :,fcr@i:nsf@_rmati_@n&of.'ae to. be deneted G, - .
is-a set '@fu;orge-tq-ggr_lge and onte transformations of ¥ into
itself, which satisifies the following' conditions :,
-4), If g1&-G-andugy&G then gyq) & G.
i1) §£.9€.G then g €:G
iii) The,identity transformation_c defined by _--.

e(x).=x,.is in G.

Examglez.('l'z»(l.l‘)f. R N O S T U T A T T |

.Let,ﬁn;~R;;.;LGom§id@r.theLgroup.oﬁhtransformqﬁgoqs

c1en@ = {g(': .2 C‘r«,?, O} 9 where gc(x) = CX.
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It is casy to verify that G is a group of transformations.

This is called the group of scale transformations. b

& ¥ 1]

-

Invariant Decision Problems @

~ Let X_deqéte;a random v-oriable having density f(x|e)
with sample spacex. Also T denote the class of all
densities f(*lé) fr © €@ . If G-is a group of trans-
formations of % (which we call a group'oﬁ transformations
*of X), We want to consider the probiems based on obsér—
vation of the random variables g(X), g is a specific

member of G.

Definition (1.1.2) :

The family of densities F is said to be invariant

under the group G if for every g€G and @ ¢ {H), there
. 1
exist a unique 9% & {H)such that Y.= g(X) has density

£(y|e*), and let ©* be denoted by g(8). .
Definition (1.1.3) :- .

A loss function'L(©,a) is said to be invariant under
G, if for every g. € G and a_ g fA',zl. there exist an a*g /A
such that L(0,a) = L(g(0);a*) for la:ll o -¢ { and let
the action a* denoted by g(a).

Definition (1.1.4) :

The decision problem is said to be invariant.under -G,
L e r
if (i) IF is invariant under ‘G, and -
\ ) S '
(ii) the loss function L(©3a) is invariant under G.'

L W



20 .
Bxatple (1.1:2) '
Supposc.X~'N(0,1), H) = (-o.o), ¥ = (uwo,=)
consider the group of transformations on% , defined by,
gc(x) =x + ¢ for all x € R,all c¢ R

x 1 ”
* Pglx < x] = J£(t0)dt  where £(%) =L o~ 3(t-8)7
~ oo V-21c

and F .-=. Efgt,g) : O & @3
Now Pg[g(x) < x] = P.Q[X + ¢ £ x]

= PQ[X £ x - c]
- L j‘x-c e"% (t-—@)z dt

Von =
X 1 2
= 2 7 35l y-(6+c) ] dy, ¥ =x+c

Vo
* ¥ = g (X) ~ N(6+c, 1)

.
hence £(y/o*) &I, for all g & G, © € {8
hence F is invariant under G and EC(G) = ©+C
Let A= @ that is the problem of interest is to esti-
mate the naramcter O, ‘and further é“c(a) = ¢ + a and L(@,a)
be inyariant under G.

Thus the problem of estimsting © is invariant under G
Remark:

In the above example if (H{)or/ anc /Ais proper

subset of R, thcn IF will not be invariant under Ga
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Invariant Decision Rules

We have seen in an invariant decision problem, the
formal structures of the problems involving X and Y=g(X)
are identical. Hence the invariance principle states
that o and o¥, the decision rules used in the X and Y
problems respectively should be identical.,

Definition /(1,1.5) :

If a déciﬁipn problem is invariant under a group G
of trénsfcrméﬁions, a (non-randomized) decision rule
o(x) is invar;énﬁ under G if for all x € X and g ¢ G.

o(g(x)) = TG(o(x))
Definition (ré%;:l.é) :

5
L]
Y .

Two poi:'i'm’r:s_Ol and ©, in (H) are said-%,t.o be equivalent
if 6,= 'g'(Ol,“)Nfo::: some § & G. An orbit in::;:'gfi} is an
equivalence class of such poihfélté&hug the 6 —~orbit in
# , to be denoted {H) (e_), is the set

® (o) =[5, : 5e &
Theorem (1.1.1) :

The risk function of an invariant decision rule o
is constant on orbits of(ﬂj, oxﬂ e%uivalently,

R(e, o) =R (3(0), o) |

for al1l 6 € () and g & G.
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Proof :

By definition,
R(8,0) "= Eg L(8, o(X))= EgLlg(e) ,6(o(X))]yinvariance of loss
Eg L [G(e), «(g(x))] ; (invariance of o)

I

1i

Ea(g) L[g(e), o(X)] (invariance of distributions)
= R (5(8), o(x)] O

Definition (1.1.7) :

A group G of transformations of (H) is said to be
transitive if (3 consists of a single orbit, or equi-
valently if, for any 6, and_Oé in EHZ , there exists
some g & G for which e, = E(Gl).

If G is téansitive, then from thecorem 1.1.1 it is
clear thatany iévariant'dééision rule has a constant
risk. An invériahtidGC}sion rule which minimizes tnis

constant risk will be called a best invariant decision rulec.

Location Parameter Problems @

Consider the problem of estimating a parametcr @ € 'Hy ,
in which¥ = @: /A =R , and 8 is a location parameter
of the distribution of the obscervable random veriable X,
We assume that the loss function is a function of (a-0)
alonc, i.e. L(0, a) = h(a-8).

This problem is cledrly invariant under the group G
of transformations : 9. : gc(x) = X + ¢ and

SC(G) = © + ¢ and gla) = atc.
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An invariant non-~randomized estimate o is such that
a(g(x) = g(a(x) )
becomes,

o(x + c) = o(x) + ¢
. o(x 4+ c) = o(x) L | .

c
iim__) o o(x + c) =o(x)
c =1
..o o! (X) =1
n.o c (X) =X + ¢! (l)
(where ¢' = o¢(0)). Any invariant rulé must be in the form

of (1). The risk function of any invariant decision rule
o £ D¥ satisfies '
R(6,0) = R (6+c, o) for all ©'g # and all c.
Thu$ the risk is independent of ©.
The risk of the non-randomized ruleéis
R(6, ) =EgL (X +c' -0 )
=E L (X+c') (2)

The best invariant decision rule is éimply that rule of

?
|

the form (1) for which c¢' minimizes. (2).
Example (1.1.3) !

!
Let Xl""’xn be a random samgle of size n from the

exponential distribution, whose deﬁsity function given by

f(xlg) = eT(x—G) I (e,») (x) 9 @ =R

Take L(9,a) = (a-0)2.
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Solution :
Here © is a location parameter,
Now,

. = -]
E,L(X+¢,0) = J (x+ct)? | e™*  dx
' 0
= ¢c'2 4+ 2¢c' + 2 ( on simnlification)

Thereforé, Eo L(X + c', O) exists for every c'.

To. find minimum of E_ L(X +.C! S 0), we find

d .
-+ E, L (X +ct, 0)

8

%E' E,L (X+C',0) =2+2C" =0

it implies that C' =-1
hente best invariant decision rule is o(x) = x~1 and its
risk is unity, which is constant

2. Ordering the Decision Rules :

Instead of restricting the claés of procedures, one
can approach the problen some what differently, consider
the risk functions corresponding to two different decision
rules o, and oy. If R(@,cl) < R(e, o,) for all @, then
oy is clearly preferable to o, sincé its use will lead to
a smaller risk no matier what the true value of © is.

However, the situation is not clear when the two risk

functions intersect as in figure.

/\

R(0,0) ;::i§\\
A

\

A
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The statistician may introduce a principle by which he
chooses a decision rule. Such a principle will lead to
an ordering of the auéilable decision rules, and any such
ordering maytbe considered a.principle.

Tpere are two important and useful principles in tle
Study’'of decision theorys

(A) : The Bayes Principle :

As usual the aim.of statistical decision theory is
to find-estimator that minimize the risk R(©,0) at every
value of @ and this is possible by réstmicting the avai-
lgbe rules; by the use of unbiasedness or invariance
principle, - Now, we shall drop suéh restrictions and
admitting all estimators into competition and we shall
look for estimators that make the risk function R{(©,0)
is small in over all sense,

Now, the problem of minimizing

J R@,0) d, (0 (3)

where we .assume that the weiéhts represented by A
add up to one, that is,

J ‘dA (@) =1
so that A 1is a probability distribution.

An éstimater ¢ minimiziﬁg (3) is called a Bayes
esfimator'witﬁ-reSpect to A . The value of (3) is

known as the (minimum) Bayes risk.: Equivalently we have,
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Definition (1.1.8) :

A decision rule g, is said to be Bayes with respect to

the prior distribution, A defined on (H)if,

r( pn, co) = inf r( A, o)
g eD*
we use the notion @) to mean -

i) parameter space and
ii) The variable which takes the values in a parameter
space, however the meaning of Qb will be clear as per
the context.
Thus we have seen that A 4is a probability distri-
bution of GE) and therefore, in Bayes principle inv-
olves the notion of a distribution on the parameter

space @ , called a prior distribution,

A choice of prior distribution ,\ is typically
made like that of the distributions Pg by combining
experience with convenience.

Definition (conjugate families) (1.1.9) :

Let IF denote the class of density functions
f(xle), o @ . A class IP of prior distributions is
said to be a conjugate family for F if h (posterior
distribution) of () given X is in the class P for
all f € IF and h € ¥ .,

We give below some conjugate prior distributions.,
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Distribution Parameter Conjugate
prior
— S aistribution
Binomial Probability of Beta
‘success
Poisson Mean Gamma
Exponential Reciprocal - Gamma
of Meanf
Normal Mean f Normal
' (variance known)
f
Normal Variance Inverse
(mean known) Gamra,

Definition (1.1.10) : ‘ - !

Let€> O. A rule o 1is said to be ¢g-Bayes with
respect to the prior distribution A if,

r( Ay, g )& inf r( A, g) +€.
= o gD¥

The following example shows that there exist € -Bayes but

not Bayes.

1

Example (1..1.4) : , :
Let '® = A= R, L(0,a) = (6-a)2
Let the distribution of X given @ be normal with mean &
and variance unity, and the prior distribution of © is
normal with meanio and variance unity.
It can be easily shown that the postcrior densiiy
of © given X = x is,

Xy 2 ) .
* g(e]x) = L -(e "ﬁ)

T,

which ka8 normal with mean ; and variance 1/2.
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X
2
which has Bayes risk, r(d) (say)

r(d) =E [(6 - d(x) )%/x] = }

Let d(x) an estimator of the form ax.

The Bayes rule is d(x) =

1f D, ={aX / a€ R} then it is easy to verify that,

d(x) = %

If D, = {ax, a > 1/2} , is the class of decision rules

X is the Bayes estimator of ©.

then note that there does not exist a Bayces decision rule.
However,
The Bayes risk is,
r(d) =E{E [ (ax-0)2 /% ]]
= a2+ (a—l)2

hence every decision rule bX ( % <bX:
i

Nl

+ V% ) is not
a Bayes rule and is a &-Bayes rule,

To find the Bayes estimator one can use the following
result :

Theorem (1.1.2) :

Let ) have distribution A and given (B =9,
let X have distribution Pg. Supposc in addition, the
following assumptions lold for thc problem of estimating
g ( ) ) with non-negative loss function L(8,d).

a) There exists an cestimator o, with finite risk.
b) For almost all X, there exists a value op(x).
minimizing . ’

E[ L(@® ,0(x))/ X=x]

then o}\ (X) is a Bayes estimator.
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For a proof sec Lehmann{1982) pp 239.

As an application of the above thcorem we have the following:
For various loss functions the.Bpyes decision is
an estimator c/<(x) which minimizes the posterior risk.
In the following we present some loss functions and the
corresponding:Bayes estimators.,
1) If L(e, d) = [d - g(©)]® then the Baycs rule is,
oa(X) =E [o({) / x]
which is the mcan of the posterior distribution of
@ given X.
I11) If L(0,d) = w(e) [d - g(8)]?
then the Bayes rule is
s (x) =4 wO) g(8) a, (8/x)

A J w(e) d(8/%)
E[W(@( g(@)/XJ

, E Low (&D) /rx1o )
I1I) 1If L(Q d) = Id - g(@)l thcn thc Bayes rule is any

medlan of the condltlonal dlstrlbutlon of o glvcn X,

“

IV)’ _ 0 whon ld-el |
Y Leeya) =[ CoL
’ wh ld-el > c

then the Bayes rule 1s the mldp01nt of thc Interval
I of length 7C which maximizes P{@E € I /X]
We have seon thﬂt for Varlous loss functlons and

- -

prior distributions, we can find the Baycs estlmqtors
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provided it exist., .But unti}l

-

Wé have not seen when

and where the éayes estima%érsrare'unfque; The following
lemma gives sufficiént cgnd;tiop§ for the'Bayes cstimator
to be uniqﬁe when the lo§s’functiqq ig‘strictly convexe.
Lemma (1.1.1) . T "

If the los§‘function L(e,d) is squared crrecr or more
generally if it‘is.strictly conyex in d?'q Bayes solution
o 1is unique (a.g;)iP), where, WP is the class of distri-
butions Pg, prévi;ed .

i) its avergéé ?isk with.respect to A is finite and
ii) 4if Q is the marginal distribution of X given by

Q(A) = J Pg(XEA) dp(0) -

then a.e. Q implices a.e. P.

For a proof see Lchmamm(1982) pp 240.

Definition (Formal Bayes rule) (1.1.11) :

A Bayes rule can be found by choosing for cach x,
an anction which minimizes the posterior expccted loss
or equivalently which minimizcs

- JL(s,a) £(x/6) d, () (4)

®

If the Bayes'risk is infinite, we define a Bavyes
rule as givecn by (4), such a rule is called as a formal
" Bayes rule,.

‘Definition (Generalized Bayes rule) (1.1.12) :

If A is an improper prior in a decision problem
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with Loss L, a gcneralized Baycs rule, for given x, is
an action which minizes

®f L(e,a) £(x/0) d,(8)

that is, which minimizcs the posterior expccted loss,.

We prescnted above the Bayes cestimatews, for specific
prior distributions and less functions. We procecd now
to discuss minimax estimntors. The objective is to derive
an estihator which minimizes the maximum possible risk.

(B) Minimax Estimation s

i

A rulc oy is preferred to a rule Oo if,

sup R (8,0,) < sup R(©,0,)
oeld.. Y Toep 2

A rule g, that is most preferred in this ordering (60 is
preferred to any other rule o € D¥) is called a minimax

decision rule,

Definition (1.1.13)

A decision rulc O is said to be minimax if,

sup R(G,co) = inf sup R(0,0)
9&@ ogD¥* o€

Definition (1.1.14) :

Let €> 0. A decision rule S, is said to be
€~ minimax if,

sup R(Q,oo) < inf sup* R(©,0) + €
ee¢ seD* o ¢ @



32

Definition (1.L15) :

Afprigi distribution,A is said to be least favourable

A}
!

if, o -

Tp 2 T for all prior distributions  al.
where. ) C .

r, = R(©, © c, (O

A- .-_f‘ h( 7 /\\ ).1' A (“ ): /!, . .j

We have scon thot for small risk a scarch for such
¢stimator is ¢nly restricted to Bayes estimator and sui-

table limits of such Bayes estimnﬁ?rs. But for what

1

prior.distribution A is the Bayes, soluticn g, likely
}
j

to be minimax ?
The following theorcm providks a sinple condition

for a Bayes estimator Ip to be minimax.

Theorem (1.1.3) : : '
Suppose fhat Nis a distributicon of {H} such that
T T R T .
S R(6,9,7) 4 (@) = sup R (9, g)
Then ' S "

i

i) ©, is minimax . . - . -
() [N

™

ii) 1If Gﬁ,is the uvnique Bayes solutinn with respcct
to A, %t_ﬁé,thq upiquefqinimax proccdure,

4

iii) A 4is-least favourabloe.

»-" For a-proof’ séd Lichmann(1982) pp '250.

0t



(1.2) Admissibility : >

The earlier two principles, Bayes principle and mini-
max principle have there own limitations., As the Bayes
rule depends very much on the choice of prior distribution,
it is not desirable to adopt Bayes principle when the
chioice of prior distribution isnot strongly justified.

Let o, and g, be such that

R(G,al) < R(G,cz) < R(qyo2) < R(Go,cl)
then according te minimax criteria one has to prefer o, to
Oy But however, if according to the prior distribution
Qo is very unlikely then the choice of g, is not that
desirable. A very satisfactory criteria’ to choose (if
possible) one among the two possible decisions is by com-
pering therg risk functions for all possible wvalues of
“"the parameter. i.e. prefer oy to o, if

R(©,0;) < R (8,0,) for all 0 &€ &)
1f R(9,0,) = R(8,0,) for all @ ¢ ({} then
the performance of the two rules is the same, the choice
is only the matter of convenience .. If R(Q,cl)< R(E—),cz)
for some © & @ ‘then o, is preferreito o, and write it
as 'cl < 62'. The above ordering is of course a partial
ordering and- however the class of decision rules will be
significantly reduced by using the above partial ordering.
Definition (1.2.1) :

i) A decision rule 6y is said to be as good as a

H

rule Oo if,
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R(€,0,) <& R(0,0,) for all © & ()

ii) A decision rule o; is said to be better than a
rule o, if}
R(6,0,) < R(8,0,) for all @ €& @
and R(Q,cl) < R(Q,Gz) for at least one 9&43}
iii) A rule bl‘is said to be equivalent tc a rule o, if,
R(0y0;) = R(©50,) for all 2 ¢ & .
Definition (1.2.2) @ '
A rule o is said to be admiss.ole if there exists
no rule better than o.
A rule is 'said to be inadmissible if it is not admissible.
Thus any admissible rule is one that cannot be do-
minated.
It is clear that an inagmissible decision rule shouid
not be used, since .a decision ruie_witn;smaller risk can
be_found., . -- R
Remark :- s
In the{abovevdgfinition 'there '‘exists no rule'! we
mean there exists no rule. in a specified class D of
_decision ;Qle§. If the class D is not specified it -is
undersitood tec be the tlass of all possible, decision rules.
Sometimes D is: specified by the form of tne cecision rules
or by certain desired property of thc rule e.g.

{I) D=jJcx: Cc> o0}



(11) D:=n£d(&)':EEQo(x))f;'@;} " the class 6f all un-
biased estimates..

E%amgie:(l;2.l)‘:
X ~P@e), @ -=(0,0), A ="[0,°].

The loss function L(©ja)= (Qﬁé)z
Consider' the decision rules of the form

s '6c(x)=cx .

Now R(Q,oc),=.Eé-L(G;cé(x)]

o 522K (0m0) 2.

RS

O

” . R - -
R e S I

=c% + 6*(1ic)*
R(8,0;) =0

R(6,0,) = 6 < R(6,0_) = C°0 + 0%1-C)°.

This implies, cb'are inadmissible if € > 1.

On the other hand for 0 <c< 1 the rules are non=comparskle,
e.g. The IlSk functlonQ of the rules %y and cyz are gra-
phed they clearly cross., It is secn that for 0 { C<£ 1,

°C is, adm1551ble?

£ o
- : -

PN
- L Rt e, Lox

.Thus the 'standard! estimator o; is admissible.
. s C - yoeee
From the above example it is clear that the admi-
LA I S « ' ’ - ! . oW
ssibility g*ves no assurance that the decision rule is

qulte approprlate. ]
Note that

-

.~ -
..‘(-'-L_,i

R(9,c yz) <‘(>) R(Q,Gl), 0<©< 3, (6> 3)
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Definition (1.2,3) 3

A class C of decision rules, C € D¥ is said to be
complete, if giv'en any rule o € D¥ not in C, there exists
a rule GogC that is better than o.

A class C of decision rules is said to be essen-
tially complete if given any rule o(not in C) , therxe
exists a rule o & C that is as good as oc.

Lemma (1.2,1) : ,

If C is a complete class, and A denotes the class

of all admissible rules then ACC.

Proof :

. -Let o be.a ,ryle such that o ¢ C, since C is complete
there exists a rule coe‘ C swch that o is better than o,
i.e. R(6,0,) < R(6,8). for all @ ¢ (B

and R(Q,'o:o) < R(6,¢) for some 6.¢ @ .

If o were admissible then there should not be.any rule
better than o. . -
Therefore, o 1s inadmissible. ‘
That is.¢g. £ A

Thus c¢_C = o & A -

it follows that 6 € A =5 & € C
.., e A € C
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Lemma (1.2.2) :
If é-is essentially complete class and therg ekists
an admissible ¢ é C, thewg exists a o' & C which is

equivalent to o.

Proof : T T e s> Essentially complete
class C

P i -3 Admissible class A

»

Since C is essentially complete and ¢ 4 € then
theye exists a decision rule o! € C which is as good as ¢,
Furthér, since 6 is admissible, o' cannot be better
than 0. i.e.
i.es therye exiqts o' £ C such that o' is as good as @
and o' is mot better than o,
ive, & and o' are equivalent. |
Def;nitibh (1.2.4) :
A class C of-decision rules is said to be minimal
complete if C is complete and if no proper subclass of
C is completekf
Definition (1.2,5) :

A class E of decision rules is said to be minimal

essentially canplete if C is essentially complete and if.
no proper subclass of C is essentially complete..

Note ¢+ E C €,

e,
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Theorem (1.2.1) :

If a minimal complete class exists, it consists of

exactly the admissible rules.

‘ o )
A ; -3 (Essentially complete)

Proof :

As we have. shown that ACC. It is enough to show
that their exist no rule o such that 0 & C and o $.A.

If there exists a 0 & C N A' then C - ¢ will be complete,

contradicting the fact that C is minimal complete. Hence CAA'
is empty. . i.e. C N A' = g => CCcCA

‘hence A.=C I]

Lemma (1.2;3)‘;

Let o be a Bayes (acmissible) estimator of g(e) far
squared grioHZQéss. Then, ac+b is Bayes (admissibie)
for a_g(Q);b;‘

Proof :

This follows immediately from the fact that

R(a g(Q');-'!?t;, ac+b) = a2 R(g(e),0) 0
Lemma(l.2.4) :

If 'an estimator has constant risk and is admissi-
ble, it-is minimax.

Lét‘Gé be admissible and has constant rTisk,



3¢

iwes R(9, o) =C for all & (B

Suppose o, 1is not minimax, th2re exist a rule ¢ such that

o)
N

gm&ﬁ‘

s;p R(Q;U) < sup R(Q,G ) o

.9 o L ,//"’-*“‘\\

Since R(Q o )' =C for all © € @ g
R(6,0) < R(8,b ) for ali © '
(e,0) (8,0,) €@ | 5 >
it implies that, d; is not acmissible,which is a .
ccntfadigtioﬁ. | ‘
Therefore, 6, is inimax. o O

Ho&ges and Lehmanwc195l) have showr that fox a
sample of f independent observatlons from a univariaté
fibfmal popiilation the sezaple mean:ls ap:adm1531blé esti-
ﬁé%bf of the pafent mean., ﬁbw, we{ will discus$, foér a
sample of nlindependent observatiohs from a poissonh po=
pulation thé'éample mean (X) is an admissible &stimater
of the parént meah. This problem is solved by two diff-
ereht préecedures with respect to the squared effor losss

I) By Iaformation inequality Methods
11) By Limiting Bayes Method:
(1) Adm1531b1lity of X for poisson distribution by

Lpform§t£gn Inequality Method :
Let o %e any éstimator of ©, then
B(E,8)= E L(6,0)

= B (6=0)2
(6=8)2

1

u—
—
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E[o(X) -~ E o(X) +E o(X)-6 ]2
= yarg(o) + [E(a(x))- 6]

= varg(0) * (E(0)-0)% .

=varg (o) + bz(o)

R(9,0)

i

where b(8) is the bias of o i.e. b(8)=Eg(c)-6

The family of density functions {£(x,8); o ¢ (@}
with respect!to p, which satisfies 'the @ramer~Rao regul-

arity conditions, so that

- [b'(e)+1]?

‘ ' n. I1(8)

where I(6) is the Information about © contained in X.
2
. 2 1+b!

«*« R(G ,0) > b2(e) + L_ﬁ:]_:%gg_l , (1)
Consider .

’ e_ng

f(x,8) =

x!

e log f =<6+ x log @ - log %;

o - P
36 log £ = =1 + 5
2.
0 =X
-, log f = ==
362 02 .
Therefore, f
2 v 1
16y =- E (&, 19 %) = _ (2}
. 36 "
) 1 !
a2 o o

Therefore (1) becomes, . 2 -

> [1+p7(Q)] | @

R(8,0) > b2(e) + ' (2)
n e

- ——— e
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Suppose that - :.s inadmissible, then there exists
any estimator o satisfying, \
R(8,0) < R(8,X) for all @ € (@
< E(%-0)
< var(X) | .
e for all @ € () (3)

n .
From (2) and (3) we have,'

o). s Lwi@le " ¢ @ raice® (@

I

We shall then show that (4) implies, .
" b(G) : ’ (5).
i.e, 0 is uhblased
i) Since lb(Q)I < Vb/n,'the function b is bounded.
ii) From the fact that !
1+2b'(9)+(b (8))2 < 1
it fcllows that b! (9) <0, so that b is non—lncreasing._
iii) Next, we shall show that there exists a sequence
of values Q tendlng 40 % and such that b'(Qi) -> O,
For suppose ‘that b (Q) were bounded ‘away from O
as @ =P = , say b';(O‘) £ -€ _for all © > 6,.
Then b(®) cannot be! "b‘;ounded as ' © =% =, which
contradicts (i). x o ! -
iv) Analogously it is seen that there exists a seqg=
uence of values @, --}0 and such that b'(Oi) -%0 .
Inequality (4) together ‘with (111) and (iv) -
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shows‘ thatb(®) ~»0 as 8 =90 or @ => = and (5)
foliows from (ii).
Since (5) implie's that b(8) = b'(6) = 0 for all o,
then by (2) we get

R(8,0) » 2 for all @
and hence from (3)‘ that
= @
R(9,0) = =

This proves 'that X is admlssmle for 6.
(II) Admissibili z of X by lel'tlng Baxes Method :
Suppose that X is inadm:.ssa.ble,then there edists an

estimator o* such that

‘R(6,6™) < R(8,%) for all @ € (®
< E(X- E(R))?2 for all o' @
£ var (X)

A2

for all 0 ¢ ®

<
«*« R(0,0%) £ for all e € &

310 SOOI

and R(@,c*) < for some 6 ¢ @

Now, R(©,0) is a continuous function of € for

%
every o, so that there exists ¢> O and 90 < 91

such_that
R(G,0%) <2 -~ , o, ,¢<0¢0
R(©,0%) 5% . (8, ¢ 0 <0

Now we have to find the Bayes estimator.
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Let XIQ...,Xn be i.i.d. random variables from the

poisson population with parameter 8, then

-no X
P(Xy5000,%,30) = ?n 8.
: T Xl
g=) L

Let us take the prior distribution for © is
L B
g@) =2 ¢y , 650,u>0
- 0 » otherwise,

The joint p.d.f. of X and © is
-nG LLX. 1
h(X,O)‘=en ’9 1 _..!.‘ e—QE
. u
T X ¢
i=1 *

1
- =-0(=+n) LIX,
’ us T Xy H
. i i=1
The marginal p.d.f. of X is

f(x) = f”h(x,e) de.
0

[- -]
SN e—-O(;lﬁn) oiX; 4@

umTXx.! o
i=] *

1  [Eme1

n
Us T xi! (L+n) in+1
i=1 u

The posterior.distribution of © given X = x is

h(g/x-.-..-x) = E‘-&.&gl
- . - f(x)

1 _ANX 4 1, \nX+1
eq9(5+n) (G‘ .( 5+n)

@? [nx
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The Bayes estimator is o(x) = mean of the posterior

distribution since loss function is squared error.

Therefore,

4l
o o +n) nx( n) X+
o(x) = [ - e 4 Q. { de
‘ o nX [ nx
o (o)X R e’-e(-+n) o
nX [nx 0 !
(n+1)nx+l [n5+2
= ® ‘
nx ! (&n)ni"*g
. u z
i
_ (nX+1) nX | nX A g%_t;;
nX [ n% ( Lin) ; g +n

l+ nu

unx i
- nx + u ‘
l14+nu 1linu

+Il
ﬁ-+n | -

is the limit of the Bayes

e d(x) =

+ Xl

1
1+ 7

u

St

It was seen above that X +
estimator.asy == .

That is o(X) = X + %

.*iR(0,9) = E(6-0)? = E(e= % - 3)2
=1, E( no - n% - 1)?
n? .

_ ho +
B ""E“
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The Bayes risk is r(8,0) = r, say = [ R(8,0)g(8)de

1l
= J(EL 1 PF w
o’ n ’ .
1 : N |
1 j° 1 -0, = 1 1 .9 =
= = 0=e a4 do+=, [=e7 U do
n o u n2 oY
1 1 nu+ 1
g n2
.‘. :a.-.-E.'P..‘.‘.‘.]; (A)
n2

Let ro¥* be the average risk of o* with respect to the

prior distribution we have,

ro* = J R(0,0%) g(6)
(o)

<°' -
= S8 -e)g@mw+ S (D). gle) @
Sy . - (8548;)
o ®1 - e
% 9(e)ee - g(6)wo + S = 9(e) deo

o, (8558

o
90
combining first and third ‘term we get,
o _ e,

rot = [ g0) @+ S € ge)a -€ [ 4(6) o

go . (85089 Lo 8

- 8,
g(e) .- ¢ J-X gle) g

e, .

- .£°°

S0



* u
LY} Qo
=t -[ePfu - P1fule ()
Now P '
’ I e"gg/ U e"Ol/“] né
B =10 .. .. .
K: Bonuel nu+l
= W __ (B Yy .¢ [,e'%/.“ e'gl/u]
1+nu nu +1 i
<1 5
I
i.6e BXA g

which contradicts the fact that ro is'lthe Bayes risk.
Thus X is admissible estimator|of.e. 0

]
b

§1.3) ‘Admissible decision ¥ule :

H

' Bayes rules with proper priors are uirtually
aiways édr‘n;if.ssible. The. bagic*f;‘ejagqn is. that if a rule
with better risk R(S,0) existe!d?.‘ that, rule would also
have better Bayes risk i.e. & R(a, o).

We discuss. the following :

1) Admiésible r‘ules‘ need ncti' be Bayes rules,

II) A Bayes rule (if exists) may be inadmissible.

I1I).Generalized Bayes rule neggd not be admissible.
\ " g i .
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I) Admissible rules need not be Bayes rules

Let Xl,xz,...,xn be i.i.d. random variables distri-
buted like N(@,1). Then the sample mcan X is a admi-
ssible estimator of €, with respect to the squared error
loss (Ref. Lehmanw(1982) pp 265);

Let the prior distribution of © is N(0,K), K=1,2,...
The Bayes estimator with respect to the squared error
loss is, -

*(X) =R(1+5)7, k=1,2,....

The Ba&es risk of o*(X) is

r (0,0%(X)) = Fl1+ )72 4 K2,

 (14nK)
Therefore, %
r (0,0%(X)) = g(1+ )2 + Koo' < r(0,0) = 1

where o(X) = R
it implies that,.d is not Bayes t%at'is o(X) =X is
not Bayesw ]

From above it is clear that, ad%issible estimator
need not be Bayes rule. ] O

I1I) A Bayes rule (if ex;sts)lgaylbe.igégmissible :

Theorem (1.3.1) : !

Let (E) = (=», =), If the risk function R(8,0) is

continuous in © for each o, and if M(©) is a prior

distribution over () , whose support is ) , then the

t
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Bayes estimator against A , Ox is admissible,
Proof

1f o is inadmissible, then there exists an
estimator o¥ satisfying .

R(e,0*%) S R(6,0n )  for all @ €
and R(Q,0%) < R(;,05 ) for dome 0, ¢ ().
There 'exisf;‘s a positive real €;, g; > O such that

R(8,,0%) £ R(010n ) - €4
Since R(®,0*) is continuous in @, there exists a2 6 -
neighborhooé of 8;, say N(Ol); such' that

R(©,0%) < R(Q,o‘,\_) » ¢, for all ® € N(Ql)

Finally,
(A ,0%) = f R(6,0%) dn(e) + J R(o. _o*) d A(0)
N(&y) , N(e,)
¢ E IRE,08)% €] 4n(0) + I R(9,00) 4 A0)
N(S,) N(e;)

-/ R(0,0,) da(8) + [ R(6,q )dn (8) - €1 f da ()
N( ). : N(8,) N(e,)

4

$ T 0R) = €y R (N,(0)))
But sinceA(8) > O for all © €@, n (_N,('é‘l),) >0
hence, — ‘ .
r(A50%) < r(A, O8 )
This congradicts the fact that ¢, is Bayes.

hence o, is admissible. D

) 5
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We note that if the support of prior distribution
is not entire the parameter space then the Bayes esti-
mator neced not be admissible. This fact is clear from
the following :
Let cl‘and 62,be such that .

i) oy is Ba&eé with respect to a prior distribution

~ (e), who‘s;.> support-is ®l’ proper subsct of @

ii) (A ;61) = 1‘(/\ 762) s G€ ®l and
r(/\;_o'l)'>r(;\,62)' 9GE® "@l

| 7N, O

b i

: ; %,

[Ee— e
7/

r(}\,o’l) —_,_'d"f‘\\-ﬂ-‘o‘é’--_,/ e :
i

I
It is easy to observe that ol’is also a Bayes rule
|
with respcct to (@) and oy is not admissible.

III) Gerieralized Bayes rule need not be admissible :

Let Xu~G(a,B) (o known) is observed, and that ‘
it is desired to estimate B under}ioss L(B,a) =(B-a)2ﬁ-2.-
It isdecided to use the improper péior density
g(B) = iz .

p

£(x / @,) = Fme X7 e/ xi>0,a>0,8>0
[Tap | ’

= 0 , otherwise
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and ‘
= L
The joint p.d.f. of X and B is
h(x,B) = :‘:‘l-a;;z xa"l e""/B

| B
The marginal density function of X is

xa-li

[+ -]
£(x) = Eo=m [ 7Y y¥ qy (wheny=%)
[@.; 0
= & .
X2 X

The posteribg’distribution of B given X = x is

when the loss is weighted squared error,the Bayes
estimator of:ﬁ is given by,

Z“

o +2

:.d'c(x) =C x

o(x) ='§'
: consiqér. y
The risk of %ﬁe estimator OC(X) is,
R(B,0;) =E(Cx = § %'ﬁ.z
=p"2 E* [ c(X -aB) + (Ca~1) B ]
=872 [ ap%c?® + ¢Cu-1)% 3

= c2a+(aC =1)2 (_2; E(X) = ap
~ . var(x)= ag2 )

2

o

- w
N
6?-:'
i
~'r-..

1
L
A



Thus

31

Differentiating with respect to C and setting equal to

zero shows that the value of C minimizing this express-

ion is unique- and is given by,
2Ca+2a (Ca=l) =0

F—3 —4 !-n-

; B Co(say).- I+a

It follows that if C # C_, then
R'(B, 6C,) < R (B, og) , .for all B

. it implies that, -SC (X) is inadmissible.

Therefore,

o(X) ='&%§f2 is inadmissible,
géheralized Bayes rule neéd not be admissible;
Lemma (1.3.1) :

Ay unique Bayes estimator is admissible.

Proof :

If o is unique Bayes with respect to the prior

distribution A , and is dominated by o', then
S R(,0') da(0) & S R(8,0) da (8)

i.e. r(6') £ x(a)

Further, $ince.  &s>Bayes we have
x(6) < r(o*)

hence r(o) = r(o?')

which contradicts the uniquéness.
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(1.4) Inadmissibility of linear estimates for gxponential
families :

In this section we consider the admissibility of
a linear estimator a X+b of E(X) with respect to the
squared error loss when the probability density function
is given'by |

Pg(x) = p(e) & T(x)

We obtain sufficient conditions for admissibility
of the above ‘estimator. These resulis are obtained by
Karlin (1958).

Theorem (1.4,1) :

Let X bé a random variable with mean © and variance
G? and the loss function is squared error. Then aX+b
is an inadmissible estimator of 6 whenever

i) a> 1, or
ii) a< o0, or
iii) a=1, b #£0 .
Proof :
Let the risk of aX+b be ,
R(a,b) = E( aXx+b-8)2 = a%> + [(a=1)0 + b]?
1) Ifa> 1l
R(a,b) > a%c? > o? = R(1,0) -
that-is R(1,0) £ R(a,b)
so that aX+b is inadmissible.

then
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i1) If a < O; then (a=1)2 > 1
hence
R(3,b). Y [(a=l)Em]®
> (2-1)2 (0 + 2p)2
2 (e + -521)2
2 R(O, =~ 521) )
So that ‘aX+b is dominitéd By the constant esti-
fator o ='=b / a=l
iii) Ifﬁ,a =1, b # 0 we have
. R(a;b) = o + b2 3 ¢® = R(L,0)
s*« R(1,0) < R(a,b)
Ihénce
aX+b is inadmissible. I
Theorem (Karlin 1958) (1.4.2) :
Let X have probability density
Po(x) =p@) e © T(X) (0,1 zeal valued) (1)
with réSpect to u and let@ be the natural parameter
space with end points say @ and & (~= < @ & 5.5_—,“).
Let 6 be a point-in (e,8)
i.6.8< 0 &8 andy, 0< u<® avalue for which

lim 8 ¢~Yu®’

— 2
°=28 o @ I 2

i
8.



and
lim 2] -Yu®
638 J° Zemee 5 00 =e (3)
e [s(e)] ~
Then )
I-+ X% - 5 (say) is an admissible estima-

i—!—u 1 +u
tor for estimating g(8) = EQ(T).with respect to the squ-

ared error loss,
Proof : |
p(x,0) =p(e) &°T(X)
s logp = logB(e) +0. T

9 1ogp=2 10g8(0) +T
26

00
E ( -2-log p) =E ( -2- 1og B(0) ) + E(T) =0
09 00

S Eg (T) = - Eg" log B(6)

soEy (1) = BUO) L g 4)
e 5(0) g ‘(say) | (4)

varg (T) = E (T = Eg(T))?

=E (T + 2~ 1o0g g(0) )2
o0

]

E (2 log p )2
® 5
d
=« E ( ~=5 log p)
5 08

d
~ === log p
32

= % (- logp)

]

s varg (T) = g'(8) = 1(8) (5)
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where I(8) is the Fisher information.
For any estimator o(X) we:have
Eg(a(X) = g(8)]% 2 var (a(x)) + b2(6)
wheée
b(8) .= EQ(G(X)) - g(®) 4is the bias of o,

' ray 12
Egla(x)-g(0) 12 2 b2(e) + LE(R)ibI(0)] (6)
1(0)

Suppose thaf there exists an estimator O such that

E [E-iiu - g(e) ] > Eg [o (x) - g(©)J% for all @ (7)
+

L.H.S. of (7) is,

Egl L I”IB’ - o(0)]? = Ziilli EglT4yu 2g(0) =~y g(0)]?

- ‘--~'(If'3‘)2 Eg [{T- g(0)) - y (g(8) -v) J?

= i 2 Bl (T-a(e)) (a(0)21)? - 2 g(@)-1)(T- g(8))]

- (T = g2 # =22 E (g(0) - 1)2
T T2 e e G2 =TT

- 228 (q(6) - y) E (T-g(6
osala(@) - v) Eg(T-g(0))

using (4) and (5) we have,

( __”_____ - (Q))2 Ig_gl uzig(g)-\;)z (8)
1+u 1+u) (1 4u) :
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Application of (6) to s

2
Eg(0,(X) - g(8) )2 3 b2(e) + [1(9);‘:;91]

Thus from (7) we have

» [1(e)42(8)]1%  1(e) w2lg(e)- 112
bZ(e) + 2 & mm——p + 5
° ‘1(0) (1+u ) (1 +u )

Let us now choose ¢ to be the estimator S, put

h(8) = b (8) - b(e)
Now,

b(8) = Eg(a(X)) = g(6)

= By ( 12X ) - g(e)
. l+u

= =t - '
T (y - g(e) )

u
+ b'(g) = e e g'(g)
l 4+ u
using (11), (10) can be written as,

[n(e)+b(0) ]2 + LL(8) * n'(8) + b'(8)1?
1(0).

¢ L@, u’g(e)
= (14+y )2 (1+u )

2
2....:Ll

(9)

(10)

(11)

(12)

(13)

.. h2(8) + 2n(@)b(8) + b2(e) + bBL(8)L(Q) * bI(e) 42

1(e)

¢ A __ . u?(g(e) ~v)?>
B (14y )2 (1 +y )2
using (12) we have,

[ht(e)+(1(8)+b'(8))]%> 1(8)

h2(9)~2h(8) ¥ g(8)-y)+
. 1+

N 1(8) (1+w)2
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2 -
; . ' ' Nab?
h2(0)-; 2 h(e)(g(6)-y) + r{Sd + 2nr(@){L(Q)ib1(0))

bzte)+6(0)1%  '1(e)

- o 14
* 1(e) (1 % u)? 3 , (14)
using (5) and (13)
consider : ' B .
1(0)#b'(0)  I(0)+,3,9'(8) 1
ie) o) ! T 1+

Therefore, (14) reducés to,

o . 2u 4. .. _ [(e)]* 2n'(e) 1(6)  I{e)
h“(e)- — h{e)[4(e)<y]+ + + o~ 2 2
14y 1(e) 1+ u  (1+u)® (14u)
. g 2 [ht(e)]?
. n%(0) - 22 h(8)[g(e) - v+ — h'(e) + <
. 1+ u 1+ u 1(8)
which implies
o, 2 u - 2 »
h“(e) - h(e; . g(8) -~ v} + +h'(e) £ O (15)
1+ u 1+ u
Finally let
K(8) = h(e) g% (6) e YU© (16)
Differentiation of K(©) and use of (4), (15)
rgduces~to,
k2(e) =Y (8) Y ud, K'(8) € O (17)

1+ u
. We shall show that K(8) > O for all o.

Suppose that k(8 ) < O for some ©_ . Then K(8) < 0
for all @ > Qo and for © > eo we‘can write (17) as,

d 1 1+ u
& [xerl2—7— 8 %@ Y8 (18)
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integrating (18) both sides with respect to @ from S,

to © we get
e
K(e) k() = 2 8,

As 6~38 , the right hand side tends to «, while the

left hand side of (19) is bounded by ~ K%@ )y
o

Which is a contradiction this implies K(©) 2 0 for all @.
Similarly K(8) £ O for all ©
It follows that K(6) = 0, for all ©
and hence y(8) = 0 for all B.
This shows that for all © equality holds in (15), (10),
and thu§ (7)0
Therefore, there is no estimator % which is better than
S, heace S is admissible. 0
Example (1.4.1) :
: .

We know that for poisson distribution ; f(x,m) the

probability density function with respect to the counting

measure defined on the set of non-negative integers is

given by ,

f(X, m) T2 o b s e 9 X = 0,1,2’..,“’ m > 0
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However, if we take the o-finite measure p(x) = ;% ’

x =0,1,2,..o as dominating measure for poisson distri-

bution the corresponding density funetion is given by

-t X
p(x, m) = 2-—2- | x =0,1,2,¢.., m> O

X log m

putt:‘mg@=logm.‘.m=eg = =< Q<w

Therefore, : .
-° x0
Polx) = ™% € ; 0€(~=,): (20)
compairing (20) with (1) we get
)
B(O) = e ® and T =X

From Karlin's theorem (1l.4.2) we know taat S= I— + Ly
. 1+u 1l4u

= + LY%  is admissible for its expected value pro-
1+u 1+u 1

vided the two integrals (2) and (3) are satisfied. Note
i

- |
that this condition is satisfied for u=0

i.e. © _~u® | 8
S @ = [ ®i=8-0, ==
(8(0)) o,
and "0 -
- )
Oo ™Y u® 0

e W = =10 ~@=o ;
e (p(e))M 9f R
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hence S is admissible that is X is admissible for

E(X) = m.
. n ,
Since T(X) = £ va*P(nm)
i=1l
T(X) is admissible for nm and hence from Lemma (1.2.3),
T(X) -

- = X 1is admissible for m.

Thus the sample mean X of the poisson distribution

is admissible for estimating m.



