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CHAPTER 2

ADMISSIBILITY OF ESTIMATORS FOR EXPONENTIAL FAMILIES WITH
- QUADRATIC LOSS _

RO TSR v 3 seemvAs e ¥ 8 ——

2,0 Introduction:

In dealing with estimation of a single unknown para-
meter the criteria employed in evaluating the worth of
given estimates is to make comparisons of the expected
square deviation (say) of the estimates from the true
values Suppose on the basis of an observation x (or
series of observations) on a distribution P(x,®) depend-
ing on an unknown parameter é, it is desifeq to estimate
some function g(é). The quahtity p(x,0) may be regarded
ws the density of P(x,8) with resSpect to measure p.

This measure p dominates Pg for © € . A non-randomi-
zed estimate of g(®©) is described by a(x), a function of
the observations, and when the error of an estimate is
evaluated in terms of quadratic loss, the risk for the
estimate a(x) when the true parameter value is © is
calculated by means of the formulay

RO, a) = JTa(x) - g(0) 1° p(x, ©) du (x) (1)
The object is to sélect estimate 'a' which minimizes
(1) in some sense.

The quadratic loss as a measure of the discrepancy
of an estimate is derived from the following two chara-
cteristics,

i) in the case where a(x) represents an unbiased esti-
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*mate of g{@), and the equatibs (1) is represented

'as the uwariance of a(x); and
ii) from a technical and mathematical viewpoint square

error leads itself most easily to manipulation and

computation.,

Different optimizatiéns criteria afe : the minimax
criteria, Bayes procedures, uniformly minimum variance
unbiased estiﬁates etc. Another desirable property of a
statistical procedure is the 'admissibility'. An estimate
'a' is said to be admissible if there exists no other
estimate a¥* such that

R(®; a*) < R (8, 2)
with sirict ineguality for some ©. In other words estima-
ting procedure is admissible if it cannot be uniformly im-
proved interms of risk by any other procedure.

Certainly an estimator ol.should not be preferred if
there exists an estimator o, which i$ better than o, for
every value of © €& @.

The general question of resolving admissibility of
all estimates measured with respe&t to thg quadra#ic loss
function is difficult, it seems worth wﬁile to coricentrate
on the investigation of whether some of the most éﬁmmonly
employed classical estimates are admissible. |

In this chapeler we study the problem 6f admissibility
of certain estimators for exponential family with density of

the form
P(x, ©) = p(o) oT(X)
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2,1 0On a theorem of Karlin &

In this section the random variable X is assumed to
have the density,
P(%,0) = [p(0)1™F 5%
w.r. to a o - finite measure B (The above density is of the
form of‘ihe density given in (144.1). Here for convenience
g(e) is té&eﬁ as the deuisbor ingtead of the multiplier as
taken in (1.4.1)) defined on the real line, and © the un-

known state of nature belongs to the set
@ {e/ f % qu(x) <=}

which ;'s an interval of the real line. Let & and @ be the
upper %nd‘loyer end points of (:) respectively, 8 and @
may or;may nét belong to (), © 'and & may be equal to ==
and e respectlvely.

The problem for consideration is the estimation of the
quantiﬁy,g(e) = Eg(x) = %TéTI based on a random sample
Xl,XQ,;.,Xh of size n, There is no less of generality in
restricating on attention to th? case of a single obser-
vation for, as is well known, J sufficient statistic for
n observatlons from an exponenﬂial distribution is the
sum of the observations whose dlstrlbutlon is also a
member of %he exponential family.

From theorem l.4.1 the estimate a X by taking b=0)
is inadmissible if a < O or a > 1. Hence the admissibility

of aX for'g(®) is to be disscussed only for O £ a £ 1.
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1
. - et T X
For convenience a = EPT and the admissibility of Tha

is to be discussed only for u 2 O.
Karlin has considered the admissibility of linear

. X
estimates Tro where y > 0, for Eg{x) and has proved the

following results,
Theorem 2.1.1 : ,

If ©' being any arbitrary in%erior point of{f), and
u>o

o' .

a) gf g'(@) @ == and-
- '5- u

b) d{ B(0) & ==

then the estimate §34 1is admissible for estimating Eg(X).
The proof of this directly follows from theorem  1.4,2
withy = 0,
.Karlin has ‘conjectured that the conditions in theorem
2.1.1 are not merely sufficient, but are necessaf& also
e ares : X X
for the admissibility of T+ ° It can be shown that T+3
is inadmissible for g(®) for certain values of y . In
this respect we have the following result.
Lemma (2.1.E)F: ’ 2 -
The estimate =%~ " is inadmiséible for g(8) = ﬁ’—'-{ﬂ}
1+y ! -~ B(e
ifu < Ll or u> L2, where L1 and L2 are the infimum and

supremum respectively as © varies over @ s of

iy

» d  p(e) B(e)Br'(8) - (g'0))?
de gr(e) (8*(9))” -
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Where as the criteria for admissibility in theorem 2.1.1
depend on the behaviour of 5(9)‘, only near the end péints
of @ ,» 8 and 8. The criteria for inadmissibility in

leima 2.1.1 depend on the variation of B(8) over the
whole interval{ffy» It is therefore of interest to obtain

) criter:i:a for inadmi:ssibility for the estimate ﬁ_—a .

which depend on the behaviour of B(6) only at the end points

of@.,

For all @ ¢ (@) ,

g(e) = fw S a (x) >0

Br(0)Y = J x, % au (x),

Bri(0) = _i?xz. e®* du (x) > 0 which implies B(0) is
a colnvex fun‘c‘t‘ion over the domain@. Therefore we
have three possible cases :=~- B
(1) gr(o) is always positive.
In this case B(@) is always increasing in @ ,. it
then follows from the defiﬁitipn of ) that @=-,
and furthext p (x € O = 0 as otherwise B(O) Willew» o
as @ ===y =,
(I1)B*(®) is alway® negative.
In this case B(@) is always decreasing so that by the
definition of ) y & = 4+ and further p(x > 0) = O.
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(111)'(8) is negative initially but increases to a positive
value,
In this case B(©) is a decreasing function at first
until it reaches a minimum value and increaseg there-~
after, 8 and © may be finite or infinite and p(x<0)>0 and
also p(x>0)>0, Otherwise let p(x<0)=0 then we have
for every © € (H)»

I & aux) = p(e)
i.e. °
B'(e) =.JP xe9% dp(x) > O for every ©
which is g contradiction.
We giVe the only statement of the improved criteria

for 1nadm1351b111ty of the estimate 5o 1 s in the form of

+
lemma, For the proof we refer to Joshi (1969).
Lemina (2.1.2) :

The estimate x/1+u is inadmissible for .

g(Q) = ée(x) &= %EE-QL?)' ’

(I) When B'(8) is positive for all © € (), if,
1) uw > lim Supy __, _. I%(8) or

i1) u < 1im infg __ 53 I (Q)

(1I) When B'(8) is negative for all & € ®

i) u > lim Supg . 12(9) or

\+°°

ii) u ‘< lim 1infg 12(0) -

-~ 8



w1

(I1I) when B'(®) assumes both pesitive and negative values
if, ' X
i) u < lim infgy _ -3 0 I4(Q) or

ii) u < liminfy . I 2(g) 0

NeteSsary conditions for the convergence or divergence
of the ihtegrals in Karlin's theorem (2.1.1) are easily
obtaineds Noew using the improved criteria in lemma 5.1.2:
the range of values of ; for which Karlin's conjectures
Temain open, i5 narrowed down, E

Karlin's integrals
'Let Iy,denote the integral ih condition (a) and I, the
integral in condition {b) of theorem 2.1.1 that is,
I, = J'S (G) d®@ and

I, = QJ';B (8) do

We have seen that there are lthree possible cases, As
the same method is applicable td all the cases, we shall
consider only the case (I) that is g'(©) always positive
and prove the following :
Lemma (2.1.3) @

If B%(©) >0 for all @ €, then the integral Iy,
1%e) and
12(e). Similarly

i) converges if'u > 1im supy i_% oo
ii) diverges 4ifwu < lim infy

‘the integral 12

u-uﬁ -0

iii) converges ifu < Tim anfQ L 12(9) and

- O
“w) diverges 4f u » lim 'supg _, I (Q)

-3 8
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Proof : ©)
_— - d _le
1%(0) = [ ] (1)
de gr(o)
) — » - ! 2(
Let . ,k1. = lim infy Ly 1°{e) (2)
Suppose k'.1>0, and let u be_ar;ly number less than k‘l‘
Let y =k;-¢, €>0 (3)
(2) implies :that we can obtain o, such that
12 _ &
I%e) 2k; -5 forjall 6 <8, (4)

Hence by (#;ﬁl

d ¢i8(e € .
- aﬁ’E’%%T%) 12y +3  for @28, (5)
1
Integrating,both sides of (5) with respect to © from an

arbitrary pdint © up to the poiﬂt ©,» We have

|
- f° o[ B) ] ldg'g‘rgo(“+§é)d9

!

8y % ' € %
- | LS <
PRSI 2(u+§) le]
g(e) _ g(eo) > u+f)(e -0
51(8)  B'(9) 2lurs) B9
putting C = B(So). > 0, therefore
g'(e,)
€
E{%) 2C, + (u 4 5 ) (6, - ©), for all €40,
and hence, ‘
B ¢ c, + (u+ ¢ ) (e,]- 9) ]"1 for all 646, (6)
g(e) 2

Again integrating both sides of (6) with reSpect to e,
from an arbitrary point © < Q mpto Q
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. J-eé Q_!_
e B(

I~

, e ,
L-lde J° It +(u+-§)(e -0 twe
G =) ‘0 2 (s
(‘J'go - l, I .
L . e
| ec c\o +(u+,-2-)(eo-9)
[ Tog (@)% ¢ F° ¥ -G
g B ]Q S -(u+~é)

where C_ + (u + ‘-) (Q '@)

N

. -
EMng1°_
e

- ( u 4+ -2-“'-1 ‘f\-\' ’ a! du'

{

. - Co C
~a e u-si-)"'l [ L&g’:u'] .

i
I

: ({Hé) 1 1ogi o - log u']
“iG‘-

« (u+$"" 109 (123 )

i
i

¢,

¢t (u +€-)(e )
C + {(u +e/2)(9 -0)

v

0O

='-(u~r~§)*"' Log (

(u+ -') “1 109 (
= Cu+9™ 1og [1.' Hu +$) it (o0 ]
log (8 )-Iogh(e) & (u +§)™11 og'¥_1+(u + %’)c;lceoé‘)']

o
o € y . SL o
log g-% 3)2) <(uw+ ) log{ 1+ (wt»%)- ¢t (o 0)]

putting B(Qé).= Bos Therefore
‘ o a €1 €y o1 :
log SQ $ (W+%)7™ logll + (M +5) C: (6, - 0) ]
it implies that ‘

fLT v+ D e, =9 ]
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U E 2 [ 24 (i ~) Cs ( c0) Tu+ers
and hence u

' 2 gy [1+ (u+ 5) c;t (e, -g)]- Wr€ /2

for all 9590 '(13,.-ﬁ
Integrating both sides of (7) with respeét to © from

- o to 90, we get u

Jg ¢ (6)d0 3 fg'° Pl +(u+§icle 0] TFE 2w (s)

Now con81der R.H.S. of (8)

P )

e i [1*(u+“-) ot (eae)] “*6/2 &

ally
R Bu 1 -t “‘1—3— TR |
. 6o W U4 6/2 ..99..

€y aml <
where 1 4 (YU + 5) ¢, (OO&Q) = y'

{ N oo u :
u @_ -l § o s o
=C, Y [u+2) lf T U s au

2
- o
- T 4+ 1
=c_pY (u+S? g.._t.a*z_e 2.
oo u = o
l‘-s m——é
u 4 5 i

e .
Thus as the integral of right hand of (8) over (= @oj

diverges, the integral of the left hand side that is I,
must alse dxvexge. Thus T, diverges if o < Iim inf 2(@).
9 e A
This proves (ii} of the lemma 2¢3+3 «
f 23, g .
Let Ky =lim Swy 5 _, 1%) (9)
Suppose-k > 0, and let u be any number greater than Ky«
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Let y =k,+ € , €>0 (10)
(9) implles ‘that we can obtain @; such that
12(@) < ko, + é for all © & O, (11)
Hence by (1),
BO) jcu-§ foroge, . (12)
d9 B' (9)

P

Integrating both sides of (12) with respect to © from an
arbitrary point © upto the point bo'

We have o o
SO [BO ] s SO - a
e dG B1(@)- .~ @
T -E&glxgc‘ , ,<.  &) (e ~0
LR < (u ="5)(0,0)
@..(9.). -~ B(80) < ;( -&)(e -0) p
B"(0) (8 AT e ~
puttihg C, = B(9)_ 5 0, therefore .-
B (00)

S'L(%)”< c_o + (u= 65) (6,-0), for all 6 @

" it impliés that,

B:(o) _>_[c + (u -€-><o-9) I
B(e) - R
" for all 9< 9 (13)

Agaln 1ntegrat1ng both sides of (13) with respect to O,
from an arbltrary p01nt Q < 9 upto O

w

therefore’ SR

e -1
‘ °§--(9 - & BTy + Q) gy, - )
* ,g.f NGt 9 gf [ o+(:p.,§)(§o, Q)] de
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'Y go go e . “ "‘l
. o [log (e)] 2 J 'Ic, +(u=-%)(8, =~ 0)] oo (14)
e~ o 2
consider,
GO € -1
o [+ (u-3 (6, -0)] a0

= [Co 1 _ __du!

' ' b
ut ut (y - %) :

€. vy ?
where CQ + (u - 3) (Oo -08) =1u

6
== (u-9"". [ 1og a1,

‘,J'
= - ﬁu -5t log ( -%7)
= - (6 =97 1og ( o7

o] .
-y (o.-
o (4o 1o Co * (? - z) (6,-0)
o
~1

== bu-9 100 [ 1+ (u-F) 65 (,70)]

1. €y o1 . -1
E;—: g ,log E 1+ (u - 5) CO (90 Q) ]

2

) _ ] € -1 Ua
=log [ 1+ (u=32)C." (8,-8) ]‘,,-: 2
Thus (14) gives us ] _;5
‘ ©5) €y =1 U= 5
1og[ B£€o) ] 2 log[ 1+ (u=-%)cCc ™ (6 -0) ]

g(e) 2 0 °

therefore,

6~) = ‘ X - ' -3
5%5‘?')" >[ 1+ (u -x%) ccl (e -0) 1V~ 3
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it implies that

. 1
— & 1 - &) C e -98)]UV
5(90) S [ + (u 2) o ( o )] o

putting B(Qo) = B,s therefore

fLe) < 8 [ 1+ (u -6-2-) czMe, @)]‘J“‘/2 for all 648,
Integrating both sides of (15) with respect to ©

from ~ = to 8,, we have .

i L
J° gleymw <

Consider the integral right hand éide of (16),

f L1+ (u-%) 2t (e, 9\1 u-"e/2 4

= . ‘f u' . 'Cl-:_é / —g._

= lu - e/2)”
where
_ €y =1
-—-l-l-(u--) CO (QO-Q)
C o
= --9—-6 S uTy --"-‘i du'!
(u - 5) 1
S S IS I
_C, u u~c./ U
- € I <o
(u-~5) 1 = e :
2 u"'E/z -

|

1

|

As thé integral of the right han? side of (16) over

(= oo, ©,) converges, the integral of the left hand side
of (16) is also converges, that is I, must also

converge,

(15)

S s -€/2
2 S Hu=%) el Tde (16)
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Thus I; converges if u > lim Supé;--____al *w,E?(C).-
This proves.(i) of the lemma 2i1:3 :
Case (iii): ,

) may be:+ « or may be finite, * If 5§i§ 4+ o« the
proof is exactly similar to that given abeve,.

Next suppose that 8 is finite. As: 9~4=§‘ B(@)
being nonfdecreasing may either

(A) %iverge to infinity or

(B) converge to a finite limit. |

In-case (A), log B also tends to «.as '© tends to 5
and hence as 8 is finite, a@ log B = p--(’9)\must diver-
ge to » as 858, 1In case (B), by the deflnltlon of the
set () implies that

} B(6) = = for any © > §,

hence B'(0©) must tends to = as © tends to 8. As
B(6) converges to a finite limit BL() tends to
= as © tends to B, . p(e)
Thus in bofh cases (A) and (B) as © tends to &,
§~£-) tends to « and hence

‘(o)
B(Q) < 0 ) l‘ ' (17)
gr(e)
Lot T _
K]J = lim i.an i 5 12(9) (‘]..8)
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and let y be any number.< Ki; Put

. u=K -E€ >0 (19)
(18) implies that we can find o, < 8, such that for all o,
6,<0<8

2, .\ '_g' 2
I7(e) 2 Ky 5 (20)
Hence by (1), o
d o)
- {B()-]‘2u+é,9 £ 0<8 (21)
do B'(8) 2 °

Integrating both sides of (21), with respect to Q, from
. , - "
an arbitrary point © (< @) to the point Oy

we have, (é) 3
B
_ STy tur®) [
o de '(e) 2 0
p(e) - ® ' :
' -— 1 2 (u+E) (B-09)
* B'(e) 6 T2 ' ,
F{"' v 88 3 0 as 638 j
P — a % O,
rom (17) e =S ; |
Therefore, .
B(0) . ;
— > +<)(6-08), 86.¢<0<K8°
oy 2 (urEr@-e, ok
it implies that 5 :
B' & ! -1. , ,
— <fu+32)(8=0 , 6 <6< o 2
- 2).( )] 5 $0%¢ 3 (22)

4 ' .

Integrating both sides of (22) with' respect to ©; from
6, to a point 8 <8 , We have '
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e (e) -1
J E---d@<f h +5) (8~0)] do .
e, B(8) & 2

| o -l 61
o [1og B(G) ]g ¢ (u+%) [ —— do
0

2 6, 8-6.
g(e) §-o

-1 'x
ool S & 9T e

where =8 - ©

(w97l [1og v ]
= = - ) u
‘ 2 og ﬁ"'go
-0 .
== (u+&)"t 109 (—— )
% 2~ - o‘h
hence :
g(e) . o-~0
, ,.-.(u+-)llog(-_=7~n-,—)
5(90) 2 . . 8 -9,
5. “UFE
= log ( = ) 2
-8,
Therefore 1
8) B~-0 " TC¢
B¢ ¢ (2 ) ut g
B(QO) 8 ~-0, -

- T L e <
t.e, B(®)  LB(8,) (B -0) ut§ (B -po) 73

. - R
it implies that - W '

¢ R
B (o) & Bte,)(8 - o) IR R R

.....‘.-‘...

1

(23)

Imxegratmng on both sides of (23) w1th _respect to @

'from.ga to @,
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U

® u u e “w+E/2 (7 u+u€: /2
Qf gu(e) de < B (8,) Qf (8-0) (6-80) do
. [0} ' o}

-l o) e '
=, Bu (90) (55'96) u+e /2 f (é—g) Lf'+e-72 dae
0
L e o _ wu
= g9 (0,)(8-6,) TFE/2 [ widTE/e  au
: - BB,
where g'=-§'4 e

v

u
- 8-e
_..__Bu(go):“(jg'_:gb) "}=€‘/2 j‘ ° Y u+€:/2 au’

U u,l*"u +€ /2 5%
= 8%(0,) (B-0;) TFE€/2 — <o
L trarge

As the infegral of right hand side of (23) converges
so that the integral of left hand side is also converges,
that is I, converges. Thus I, converges ifu< lim inf IZ2(@).

2 2 | L5 !
This proves (iii) of the lemma (2.1.3).
Case ‘(iv) is exactly simildr, S ST

On combining lemma ,2.1.2 and 2.1.3, the

range of values of U/ fér which' Karlin's conjectures rem-

¥

ain open is narrowed down; ‘'which can be seen from the

following d;agrgm. A
: B
‘.sa‘ . 7/
C‘
7. & Yy - €
L, N < K K2 La
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Values .6f u ihdicatiho the rande$ for whieh Kaflin's

gonjecture %6 be 8olved.

range of u for which yhy 4is ihadmissible
a¢cording to lemma 2.1,1 .

A

od

B : ¥angé of w fof whith »..I% is inadmissible
atcérding to lemma (2, l 2) .

€ : rahge of u Fo# Which I+u |16 -admissible
actording to lemma 2»153

Note that C may be empty ive. kl < Kays
A Ffurther discussion ‘on Karlln S confebture Temain
open is ‘di'sicuss in Joshi (1969)3.
Example (2,141):
Let the measure be such that
du( %) = 6, x, < O

=ax_ -bx v
=-‘b-' 1 ax, x.0,0< aX b,

By '‘definition we have,

'Bie) =.f 5% du(x)
‘0
-ax -bx

. gy~ - '
-z"l' e X( e :‘ée - S ‘) tdx;.

e b-a{f o~x(a-8) . J o—x(2-0) dx}

~3%(a=Q). = T *x(bdG) u

“"E"b-a([ TWJ T?-‘t’:‘o‘")* o )

(24)
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, a+b-20
. t (Q) = . - > 0
P [ (a-0){b-0)]2

Therefore,
2(a+b —29) - 2(a-8)(b-e)

prr(e)

] [<a-e>(b-o>]3
hence o :
5 d B(e) g8(v) B"(G) - (B (e))
IFE) = = — —— = :
@8 §'(e) [B'(G)]
oo 28)Ee) : (25)
ST (a+b-20)2 ‘

From {24) it is clear that our distribution falls
under case (I). '

We shall ‘claim that by using Karlin's congecture the
estimate I¢E is tnadm1551ble by shOW1ng either Il is 'fin-
ite or I, is finite ( or both ) for every value of u .

To show thlS first consider I, ,

Iy -—: f EU((Q)dQ i
-,'f[ (a-Q ‘(b-Q)] ~d®
e T a2u

<J' (a~0) = ud

="' —2u

==-F W du} where u'=a -0
L0 DU
= [ wu' du'
a-0"
i -« ., o
g 2u .

I=2'u 7 ot

{w if
]
) finite ifF u

Therefore T, is Finfte ifu Si,

]

o
[~
Nl N

A\



"Now consider I,.

a
I, =0 pa(e) @
er ..
o U

: Q.'fa [(a~8) 5(.b~e)]“ 'dQ

. a ~2u
J (a-8) de
gl‘
o] -2U
- f u'
a=-e!
a=-g' =2U
= f ! du
o
[ l_‘z}.---Qu a-Q '
- 1=2 U o

) if >
finite if U ¢

Hence I, is finit. for u> -ﬁ- and I, is finite forlg é,

L
e
—
N
I

in

dof, where d =a - 9@

I

e
NN

Hence =ccording to Karlin's conjecture, the estimate
X .. s - \
THE 18 inadmissible for every U > 0.
Now we have to find L’l and L2., where
Ly = lim inf 12(9) and | as © traverses the
L, = lim sup I2‘(g) , in.terva'-l‘ (=»,a),

+
!

For finding Ll and' L2, it is sufficient to show that

¥

-2 s 3 .
1°(e) is increases in 6, then

L, = Iim inf | 1%(6)= 1lim 1%(e)
L, = lim sup 12(0)= Iim 12(e) -
Q‘-—-&,a‘ Q“‘:‘}a

We have: to show 1’-_2(\9') ’l,\ .
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From (25), we have to show

1-1%(0) _ (2-8) (b-8)

S T - o s s s Q

that is o 2 (a+b-20)2
X_LX':E:E.).2 T Y, y=a-96
(2y + b-a)
that is . b .
1 ~-a
CLl _§; . (R
[2 + (353 )]°
that is
1.t.z2 ¥ Z, where Z = b-3
that is (242)° Y
S Y ¢ Z
247 (242)2
that is

'+ u = u® is increasing in u for 0 < u < é
which is obvious..

Hence 12(9) is increasing in ©. Therefore

L, = lim 12(0)
© 3 =
= lim 1- 2(3'9)(?721
[ e | (a+b-29)
= % ' '
and \2
L, = lim 12(a)
e—» a i
- lim 1 _! 2(a“g)£h§)
0—>» a 1 {a+b=20)2 |

1

=1 ‘
So from lemma 2,1.1 , the inadmissibility of the
estimate 1§u cannot be derived. it can be shown that
K1¥K2;1 and kl=k2F1/2., Hence by lémma 2.1.2 the estimate
X is inadmissible for u < K

1+u 1
hence inadmissible for every u . . SN |

= lior u> ky = 1/2 and
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2,2 Truncaticn and Admissibility. s
Let X have thep.d.f. of the form
P(x, 0) = p(o) %%, (1)
e 1
where S ¥ au(x) = { »,
g HE)

From the form of the density function, it is clear that

X is uniformly minimum variance unbiased estimate (UMVUE)

0 log B(e)
of E(x) = ~ = g(®) (say).
e
Further . 0
var{%x) =“—@-a—;é-g'g—§' >0 for every @ € @,

g(©) is strictly increasing function of ©@. The equation

SLJ%%%li- = x = g(8) =0 has exactly one root

e(x) g'l(x) , which certainly exists in virtue of

strictly increasing nature of g(®). Further
32 log P 32 log B
392 g2
N
every © € @ s+ Hence at ©(x) there is a unique maximum.

< O for every x, and

Karlin (1958) has considered the admissibility of
the estimates of the type a (x) =YX, Y > O for estima~
ting E(x) with the squared error less. That is

R(a;8) =E [a(x) - g(e) J (2)
It has been shown that if the exponenitial family is
truncated to a fixed set A, then the truncated family

conginues to be an exponential.
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For let A be. such-that
0 <[ P(x,0) & (x) =b(0) (say) T(3)
A ‘ .
Then the truncated family has density function, with

respect to o~ finite measure v,

g(e) - :
Py(x,0) =— ¢, x €A (4)
b(e)
and
d,(x) = ¢,(x) du(x)
¢A(x) being the indicator function of the set A,
From this it immediately follows that x contimee to be

UMVUE of E(x /xE A) = = 38&:{;09 %%g%} = gA(G)(say)

and UMVUE may not exist for g(®).
Similarly the likelihood equation becomes

2
X = gA(Q) = 0 and var(x/x€A) = - %g-«é- [lqg gb-{-gg-] >0 .

We expect that the admissibility 6fyx may remain invariant

under truncation if instead of eséimating g(®) we

estimate gA(Q) and the risk function is correspondingly

altered to, ) ’ 2

Ry(2,0) =E{[a(x) ~ g,(0)] / xeA} (5
Letéﬂr be the natural range of the parameter, when

the distribution is truncated and note that®.1.;3.. @ .

As ?he admissibility of an estimate is closely connected

with the structure of the natural range of the parameter.

The admiss{bility of an estimators may be destroyed by

truncation.,
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(A) Admissibility is <estroyed by %runcation:

In this subsection we aive tWo examples, whexre the
admissibility is destroyed by truncation. These two
examples have been disscussed by Kale (1964),

Example (2,2,1) 3

Let P(x,8) = & (1 = 6) ™, @ =(-1,1) ,dp(x)= e~ lax

and A be the set (0, ). Thus we .have

H
H

b(e) = J‘P(x, @) du(x)

- J‘ 1-6% o oIl o
5 (L =07 J‘ e""(l'?) ax
1l +60

. (1-8) X 9 . X
Thus PA(x,G) = .
, o 'y X < O
" and dv(x) = ¢A(x) e"lxl dx
here@ = (=0, 1) hence (B :3 @
Karlin (1958) has shown that all estlmates ¥YX, 0<y < %

v
O

are admissible in the non—truncateq case. Now-we shall
show that no estimate of the type fx is admissible in

\
the truncated case, [

From (5) we have, |
here g,(0) = =2 - [ log ﬁi@l 1L 2] 105 (10)] ;%;

That is, ' ‘
1 2 l
R,(y, ©) =E (Yx----)/xe.



_ 85 ‘
= j'(Yx - 1%5)2 (1 -0) e e“x‘ dx

5 f [yx(1-0)-11 (1-0) &™*(1-8) oy
(1-0) :

etk S w12 & L, where v = x(1-0)
16 2 7Y e’ 19 where ¥

1 > 22 . S
=~ { S 7%y eydv+fe"ydv.-2vaeydv}.
h <] (o]

=1, [vzﬁ +1 - 2vr5]

(1-0) 2
R ( o) 2y = 2y+1 (6)
Y =
AT (1-0)2
and ‘9 RA(Y,O) ~2(2y - 1)
oy (1-0)2
l - R (Y!G)
'Fpr Y > 5 and for every © €®T, > 0 and .

RA(y,Q) is stiictly increasing functlon ‘of y for every.

. e 6®T' -Hence for y > %

that R,(v',8) < Ry(v,0), for a11 6 €@ ..

there exists y' (y' < y) such

Thus for y > é , YX is inadmissible. For y < é and for
every © €®T' -5%-(1-'—)< 0 and RA(y,Q) is strictly deoxyp
easing function of y for every © G—@ . Hence forp v ‘
there exists y'' such that

‘ Ry (y'', @) < RA( Y, ©) forQaJlQE@T o
Thus for y < 1, Yx'is inadmissible, Thus

For vy 94 5 0 X is inadmissible, ) (7)

Consider ti‘me~case Y = %. .Let © be known to be in the

interval (-‘-l,,l). We are estimating - gA(O) = "'""lig and
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- 28 © ranges in (=1,1), g,(8) ranges in (%, ),

If x < 1, which occurs with positive probability we
would " be estimating Téﬁ by a quantity less than % o

Hence the “estimate % x can be improved by estimate a(x)

defines as

REE P if x 3 1
a(x) = ). -
» -%,. 5 if x <1
consider ' .
Ry(a,0)- A('l',O)"%-' S e

—f[a(X)—gA(G)]2 B, (%,8)dy (x)- f[—x-gA(o)JZPA<x.9)d«(x)
f[am— 12512 P, (x,0)dy(x)- J"°[§ -9, (0) 1P, (x,0) & (%)
-¢.r (2 - t85))° pA(x,e)dv(mIJ (3~ 135) %P, (x,0) v (x) =

i o
-7 (-2-3 - —%_-{5.)2 PAlx,0)dy(x) = J (% - 15 ) PA(x,0) dv(x)

=OE.-[ (i— - 1—}_—5 )2 P, (x,0)dy(x) -OJ%‘% - 1-%:-'5)2PA(x,9) d\,'(‘X)
-_-;fi[(% - 292 £ - -1-_1.—5}2] -pA:(x,e). av (x)
=310 G+ 5 - ) By(x.0) (%)
Now as x € (0,1) then (1-x) > O
; ﬁ%wg)(%+§)=l

min 2 =1
e € (~1,1) - %

Hence for x é (O 1) and O € (-1,1)

5 (1) (3+%-7%) <o
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Ry(2, 8) - aA(%,'o) < 0, for every © €
that s

RA(a, o) < RA(-, ©), for every © é@
1? x is inadmissible.

5
Thus all estimates of the type yx, 0 < v & -12- are inadmiSs-

Which proves’  that =

ible in thel%rqncated case; when the parameter is known to
belong to (-1, 1). ‘

It is ver{}’ interestihg that if the truncated distxi-
butz.on is treated on its own merit with @Ts (=es, 1) thw
' ax is the only admlssible estlmate of 119'

Lemma (2.2.1) :
h In the truhcated case éx is the only admissible cethe

mator of its expected value, © € (==, 1).

Proof .
P(x, ©) = (1 - @) e"~°. x20,0€ (w P

Here §(0) =1-9 , B'(0) = ~L
ﬁ'(o) 1

{x) s-
S %0 B(O®) 10

Accordlng to theorem 2.,1.1 , the e§timate Tﬁﬁ §s
‘admissible 1f )

f (3(0)"“ 2 co
and. e ) )
Iys s ~(~B‘(o)")"“df’ =

%}

are satisfied., .

» L3
- £y
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In this case we have u= 1,
Now, I, = L (1«8)™ @ = [« log (1-8)] ==
-CO . -03
Similarly, 1 , 1
= ST ® = [-log (1-0)] ==
gl
Thus 11 and 1, are diverges if u =1, and hence ¢35 :u .i,x
is an admissible estimator of (1-9) l, and from (7) it

d

follows that *!'2-:: is the only admissible estimator.

The following is an example to illustrate that,
an admissible estimate may become in!admissible after trune
g¢ation evemthough @f:@. This example have been discussed
by Kale (1964).

Eggmp_le (2,2.2) :
Let dp.(x) = dx,

P(x, ©) =
0 s, xXx<O
- - - 1
Here g(®) = - © and Eg(x) =-5
Accordlng to theorem 2711 , if
f (s(o))"“ @ 3 o ' and

J" (8(e))"Y o =

then the estmate 1: is admissible, Ify= 1, then
|

= L (0w =[-oga] ==

-8

[ (ot 1°
and . I, = o (9)™" do = [-log Og‘
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Thus foru = 1, Il and 12 diverges, Therefore,

-i-_’-f:-‘-l = éx is an admissible estimate of =~ é .

Now we shall do the truncation and check for
admissibility. h
Let the set A be (c m), c > o then
b(8) = fp(x, Q) dx 5 |

"‘\ H
i

= f Qegx x:
b(e) =ecg as © € (= wj‘, 0)

Therefore, < . B(x =)}
Qe y X _>‘ c

PA(JX’ 9) = i
0 y, x< ¢

Here ®T = (==, 0), Thus@ﬂz@ = (==, Q)
Ry(1, ©) = E [[vk - 94(0)] ¥, x €A )

. _ I
where g A(O) =8 =l |

e .
Now, we shall show 'that no est:f.maté of the type yx
is admissible for ¢®@ = 1/ @ . ;
Ry(v,8)=E L[vx (—-O-L-)Jz/ xeAl
= "g E [[ve - (ce-l)ﬁ x €A)
1-5 f [yox - (c041)1% PA(x,0) dx
_;.L .f [yzezx +(¢ 9= 1)2l2(09-l)79x] P,(x8) dx

=g J v292x2 (0) §8(*-¢)ay _l_(g_g%_)z Jo S(x%) gy
"-—-—ﬁi- J yox(—o) &8x-¢)
®2 ¢ |

\dx
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-~

N 2%12+ -Q-Jé + L_,z_lcg"l & 2xé°9— 1)?
= 2 [Ll"gg_zf_*i:_ 2y gl-cez +.g15cez2

Thus
OR,(v,0) 2y

|
N

2
[ 1+ (1-¢8)2] - v (1 =c©)?

e
2 :
= -55 [(1- CQ)Q(y-l) +\a = HY (say)

? oy ‘
is strictly decreasing function of y for every © €@D .
i t
2
RA(y",G) < RA(y,Q) _for every i3
Hence yk‘is'iﬁaémiés{ble‘fgr'em< y'<\% . (8)

(v,0)
For y < % and for every 6 € (H) 2 Bplv:2 < 0 andR,(v,6)

Hence for y < there exisuts f" such (that

Con51der Y xg, T €. [l l]

construct a (x) whpre

o -

Yo X sy X 2 =

Y
,'-Siao(){)z ° c
SR R RN S -
e o]

Now, L

1

Ry(2, ) = Ry( {é,"e)‘.:
= f [a (x) (cg" ) 21 PA(‘( e)dx - f[y x~( °9"l)2]1= (x,0)dx

c /
J " ole- (°""l) ]P <x S)dx + [ [y x=(%8=1)2p
c ‘ , A PR

“n

i

A(x,@) dx

—
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c/Y T 0
- °[vox-(ﬁ-3:-¥)2] Pp(x,0)dx = J [y x~(521)2] p, (x,0)ax
¢/y /v,

= le- (8121 [y x-(2&2)12 b, (x,0) dx

c/
s (c-yx) [e+ v x-2(8371)] p;(x,0) dx

ol

c
x€(ec, =) == ¢ - Y,x>0
Yo .
max”c (¢ + yox) =¢ + & =2¢
xé(c,-) '

min (&8=1y - min (c - 1 ).=
Thus as x ¢ (¢ , 7 ) and © € (-w. 0) then
(¢ = yox) [ ¢ + yox = 2( g‘l YJ¢o
Therefore
RA(ao,Q) - RA( Yor ) <o
That is .
RA(ao,Q) < RA(‘(O,G) for every QC@ -

Hence Yox is inadmissible,for .1- <y, <1 (9)

¥ -

-

From (8) and (9 ), yx is inadmissible for every y in
(O, 1)‘-?' D»

(B) Admissibility or 1nadmlssibility is preserved in
Truncation: i

s
In this’' subsection it will be shown that, an inadmi-

ssible procedure continue to be inadmissible even after

truncation for the exponential model discussed above,
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Further an example is given to show that an admissible
estimator continue to be admissible one even after trun-
cation.
Lemma (2.2.2):
For any mode of truncatioq é;l the‘thimated X, v>1
continue to remain inadmissible.

Proof: - : |
P(x, ©) = B(8) & ;D= (- =, =) -
we have seen that E(X) = -B'(O)/E(Q)zg(e) (say), Therefore,

pOY S x &% au(x) = - Ect&
2812(0) - B(P) B*(8)
8%(e) |

We éh?ll consider only the estimates dJf the form aY(x)=Yx

Similarly,
L B(O) S x* % du(x) =

whefe Y is positive constant, The va%ug v=1 provides the
‘unique unbiased estimate of E(x) withinithis family aY(i).
Let yx be the estimator of g(©) then its risk funce
tion is given by : ‘
R(vx,0) = E[yx-g(6)]? |
= J [yx=g() 1% P(x,0) di(x)
= J [v°%%+g%(0)- 2vxg(6)]] P(x,0) cp (x)
= ¥/ ¥*P(x,0)an(x) + g%(0) J P(x,0)dn(x)~ 2vg(e)Jx P(x,0)cu(x)

=y 2 Jx% (o) Fau(x) + g2(0) [ B(ie) e%¥du(x) - 2y g(e).
) ° y'x g(o) e®X du(x).
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_Y2 J x2 (6} ¢ dp.(x) +[-§—-9) ] /'ﬁ(G) e"}x du(x) -

MW« e = '.. ‘-- e
=2y (= L) x 210) eo“ dg (x).
e _ 2 2 5'2(9) () §'1(0) 1 ﬁ'%) B'%(0)

= Y

82(e) - >'\ ﬁ(e), e Xe)
N .,

/
'
™~ / TN -
. \r\ / ] . v,
L s RIS, T LR SR - - - . -
. - .
.

A ot XY ._5' L
For given 0 € ® one can obtain y, (@) tﬁe oo:mt of minima

\

r+r-— (

>N

at which R(yx,8) is minimum, By egut t:mg ‘the de;.lvatlve of

1
.

. (10) to zero we have
- l “ -
Yo (8) = === woymmims « (11)
: 3! (9) B(Olﬁ"\@z

; 5 %(e)

1 ‘
— e ] (12)
1+ 8(e)

B12(e)

* I3 -2 "l
[1+ var(x)| go log 3(e) ] ], for all 96@

e (13)
Thus for y > 1, R(yx, ©) > R(x, 9) ard hence for
Y > 1, yx is inadmissible .
Let

© €
B = sup Yo () = v,(8)

e e@®

A = inf o Y, (8) = v (@)
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llence the possible admissible estimates lie in the interval

mapped by

Yo =[1+ var(x)[ gg log B(O)]-2 ]
_séy [A, B] (see figure) .
Let the distribution is truncated to the set A, then
' b(e) ?qf B(o) e?? dﬁ(k); Then the
truncated p.d.f. is P, (x,0) =,%é%3fegx. In this case

.2
Ry(vx, ©) = E [[yx.~'g,(6)] /x € A]
~“roceeding on the similar lines as given above, we get

| -2 -1
Yo(®) =[1 + var(x /x E_A)[%g log %%%%] 1 < 1

so  (14)

The possithle admissible estimates lie In the interval
mapped by (14) say [Ay, BTﬁyu

Thus for y> 1

R (yx, ©) > R(x, 8)  for all &

hence yx is inadmissible.

Thus for any mode. of truncatiop all the estimates
YX;, Y > 1 continue ‘to remain inadmissible, [I
Example (2.2.3):

Let  P(x,p) =n_, P* (1 -P)"%, x =0,1,..n, 0<P<1

Taking dominating measure is ncx, then

P(x, P) can be written as,

P(x, p) = p* (1-p)™~¥
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= ( TES )* (1-p)"
e

( 1-p )n ex log I

i}

( 1+ eg)-n.exG *  where © = log TEB

= p(x, ©) (say) , =»< 0K =
Now we shall show that adﬁissibility is preserved in

truncation, ' o
e

Here B(é) = (I +e°)“" then E(x)'= o
b1l + e

According to theorem 2,1.1 » if u =0, then

T o o
I = JBO) =) do == and

oo -u o0
L=y BE)T®= [ ®== g
the estimate 2. = is admissible for =—— , 'Hence
l+u e9+ 1

X is admissible for p.
Let distribution be truncated at the point x = 0, then
its pdf is " Nex
. n., P (1-p)
P(X, p) = n ‘s X = l,o.-,ﬁ O<P<l -
l land (l“'p) '
After reparamatrization, f

(1+ %)™

p )
P(x, @) = L-(L+ eO)-nie ’®T= (mooy2)=@ .
Hexe ) (14 %) l
P Ty - ( 1+ eG)-n '

According to theorem 2.1.1 , if u|= O then
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I, = f dO and

dQ

'\%

Thus X is admissible for B(X). Hence the admissibility

is preserved in truncation, E

Remark .:'
Whatever be the form of truncation, x continues to be
admissik‘lee. This follows since: I'izand 12 are diverges for
u = 0 even after truncation.

(C) Karlin's Conjecture:

In this subsection assume tha;t@z R and therefore
we ?ssum;—:- thatl® = ®T . I

Karlin's sufficinet conditionis for admissibility of
Tty °? u 2 0 are discussed in tiheo:‘r:em 2.1

W

Karlin has conjectured that 'Y these conditions are

also necessary ''.
We have shown (Lemma 2.2.2)that all estimates yx, Y21

continue to remain inadmissible afi;:er truncation, hence
we will concentrate on y, 0 < y £ 1. Lety= (l+u)"l, u20.
Considering the negation .of the statement of the
theorem 2.1,1 , we have the follov!ling result.
If -J-_-_f_-ﬁ is inadmissible then atleast one of the
conditions (a) and (b) is not satlgfled. That is

if 'i{—u is inadmissible then one of the integrals must be



97
convergent. If Karlin's conjecture be true then the
convergence of at least one of the integrals implies the
inadmissibility of == 1+u .
Lemma (2.2.3)
If Karlin's conjecture be true then an inadmissible
estimate T;ﬁ yU2 O continues to'remain inadmissible

after truncation,

Proof:
As 7%= is inadwissible, at least one of the integre
als in condétion (a) and ccadition (b) is convergent,
~u
say, Q.[ (B(8)) do < e

Now for the truncated distribution B(®) is to be
replaced by B(Q)/b(@) and we consider

P e

N .
N R TN N O RCIC i

1
[8(8)T"Y , for allu 0 and .as 0<b(©)<1
for all @ e@

The:efore,

_ ...u .
Q'J[LH do<fs(e)

it implies that i

f(f‘—H-)“dc<ee'f (15)

(15) shows that if Karlin's conjecture is true and 5=

I~

1+u
is inadmissible then it continues-tq remain inadmissible

even after truncation. ’ ]
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{2.3) Admissibility of $calep'arameter, :

Brown (1966) and Farrell (1964) have given suffiqient
conditions for the admissibility of the estimators of the
location parameter. By making log transformation one can
obtain tﬂe corresponding results fpr'the scale parametex,
Zidek (1969) has shown tpat when the estimation probiem ié
invariant under a group*of transformations G and the indue
ced group G acts transitively on the éarameter space, the
best invariant estimator is formal'Bayes. Portnoy (1971)
has given sufficient conditions foé the admissibility of
a formal Bayes estimator, when the'loss is quadratic. We
apély‘porﬁnoy (1971) result for estimating a power of the
scale parameter by the best scale invariant estimator, So
to begin with we give Portnoy (1971) result which is usge
" ful later for determining the sufficient condition fox
admissibility. -

’Lét ¥ ,® and A is the real line R. Consider the
loss function L : .®x A X X [0, =) of the form,

L(8, a, x) = V(8) (a- o(e))?

where  v: @ x X —» (0, =) and

g: @—R,
are measurable functions.

Let p(x, ©) be the density function with respect

to a o~ finite measure p ; assume. that
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P(x, ©) > 0, for all xe¥ , © € @) (1)
The non-randomized decision rules, which are measurable
functions @ : Y} — /A, and define the risk of ¢ to be
R(@, ) =S L (6, #(x)) P(x, 0) du(x)
The formal Bayes rule ¢n is given by,
J g(e) v(g,x), P(x, 6) = (6) & (2)

¢“('X) :__.Tv.i-’g-:-x) P(x, ©) =.(8). dG

where m(©) is the prior dlstri)?ution of O,
e €E(g, 8) = @ , (8, 8) is an interval in the real line,
Define, for 8 € (G 8) and x €& ¥
h (6, x) = f [ ¢.(x) - g(e")] P(x,8') v(e',x)n(e") dot

(3)
hy(9,x) = P(x, 8) v(6x) =(6) (4)
™ N@) =E o @é—?——"% ] 5(0) v(0,x) (5)

note that hy(9,x) > 0, for all GC (e,8) and x e)(—
We give below only the statement of the t..eorem (Portnoy
1971 pp 1382) in which the formal Bayes estimator ¢1t is
admissible under certain conditions.:
Theozem (2,3.1) :

Consider the stétistical decision theory problem
described above. Suppose NO) is a continuous function
of © on (@, 8), and suppose further ‘timat for every compact

( closed finite) sub-interval [ao,bc;] . (8,8)
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b
7 ° R(&,, ©) n(Q) O < = (6)
Supp:se also that for every C € (8,8) conditions (A) and
(B) hold.
[~
(A) f R(¢.,,,9) w(0) B == = f Loy == (7)
() c’f R(#,,0) ©(8) & == =agf =&y = = | (8)

then ¢ is admissible.
(X) A Suffic:.ent Condition for Admlss:.bllity

-n-n-;m

In th:.s and‘ the next sub sect:.ons we discuss the results
of Divakar Sharma (1973).

Let X have the probability density e. P(Ox) I(O “)(x)
with respect to Lebesque measure, where © is positive on
(0,») and IA(x) is 1 if x € A, O otherwise, Let the loss
.in estimating @™ by d, where m is 'a"realig number, be

(ao™?2 o™ | |

The prior density of ® wer,to L',ebesgue measure is

o i.e. n(0) = - y O<@<w, Using (2), the formal Bayes

rule is,

¢ (x) = J Mg~ _..f_(_iLO) %
J 7™ p(x,0) l
J”"’“"l ® P{ox) do f” ©™™ p(ex) 4@
= J“ 6 2™ p(ox) de - 'Q'Te'.zm p(ex) d@
e B p(t)at/x

™ 20 ) atyx

where t = Bx
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- o./' t™" p(t) dt

Jot720 o(t)at
[¢]

S f“x"m p(x)dx / f” x"2M p(x) dx ]

g(x)= b x , where b =[ j”x p(x) dx/ J'x -2m p(x) dx]
Thus the best scale invarxant estimator of 6™ is the

formal Bayes estimator bm xm,

Theorem §2.3.2[:

The estimator b X™™ of @™ is admissible for quadratic

loss 1f

2(mr1) 2
o -(—-r;-- { f(bm ~t™) 72 p(t)dt] dx < =,

Bxroof:
By using quations (3), (4) we shall find hl(G x) s
h,(8,x) = f[ ¢ (x)-g(6")] P(x,01)v(e') =n(a') o'
where Qu(x) is the formal Bayes estimator of & is
bm X with respect to the prior distribution,
n(G') g:’ 0 < ' € e, Therefore,
hy (6,x) = f [ bm x™ - 0'™] o' P(e'x) 0'~2M(o*) Lap!

=gf [om -(8'x)™] @'~2® x™® p(grx) do!
= fw(bm - Ty =2 ,2M Mo () gt/x, where t=9'x
X

h (6,x) = x“"‘lgf (bm - t™) 2" p(¢) at
X

and
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h2(g,x) = P(X,Q) V(Q,X) 1:5(9)
= o p(ox) 0™ 1 = p(ox) o™
Then .
(e,x) *_h,(0,x) .
Eg[-J*@—z-)-] f['—('g——le © P(8x) dx

w 2(m=-1 my .=2m,
_f _,E,i(.bm vt P(t)dﬂ © . 0 P(ex). dx

0 (6™2M2 [p(ox)]"

hy(6;X) 2 y2(m=1) . ,
Eol —-(——-)-c = .f "'4m‘“lp(gx)[g£ (Ibm %) £ 2p(t)at] wdx

Further from (5)

N(e) = Eg[ —"("Q"—XT‘ 1" % () v(e)

- Q—ZE:%(-}%) ] " (bm-tP) £~2m pgt) at 1 5070, ax
:oj” _an(mr(ri;)l:: [g{o(bm-tm) t"2mp(it) dt]2dx
S —(J_C/ﬁ)_—-'- [ fm(bm-tm) £™20 p(t) dt12. Z;l' dy, where y=8x
=0 fm 12—{—‘-“-;—[3,.[ (bm -t™) t Pi(t) dt ]2dy
That is,

2
N@©) =0 f —-(--f f J\bm—t ) t ™ p(t)dt] . dx ..(9)

=0.D s Where

(m-)

-2
D =OJ‘ __P_ZT(T]-— [ jl (bm—tm) t m |(t) dt] dx
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It is given that D is finite, under this condition we
shall prove that all the conditions of Portnoy (1971)
theorem 2.,3,1 are satisfied. '

(1) W(8) is continuous function of © on (0,=), it follows
from (9) since D is finite,
Consider, I

R(G,,0) = f (bm x™= 6™)2 672" g p(ox) dx

f [ bm— (gx)““]2 -2m o plox) dx

OJ‘ (bm ~t™)% +™2™ o P(t), § dt, where t = Ox
= [ (bm - )2 72 p(t)] ot
However, we assume R(¢n,9) { =, That is

> 2 -2
of tbm = M= 77 p(%) af < = (10)
In the following we shall show that; conditions (A) and (B)

are satisfied. j

For the L.H.S.. of the conditio';n (A}, consider
J RS MO do==

z
f [ f (bm-t®)? =20 P(t)dt]l}dg

since O < f (bm ~-t® ) g2m P(t) dt %

l

&, therefore,
it is enought to prove §
C./‘wé 40 = e, and which*..i'is obvious.,
Hence undey (10} L.H.S. of (A) hold;so

Now R.H.S. of the condition (A) is 2
) 1

1
1
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B - oo
o _ )
cf)szgs - Cf 9. ﬁ\
e Z 8 _ .. s
Further as D .is finite, to prove [ £(&) = = it is
. 2 40 C

enough to prove ' J <&~ =, and which is obvious,
Hence the R.H.S. of (A) holds under D is finite,
Similarly, for the L.H.S. of the condition (B)

consider,

c
gf R($,, ©) = (0) do =
= f[ f(bm- m)2 "2“‘P(t) at] 4 do

since O < f (bm tm)2 -2m P(t) dt { =, therefore

it is enough to prove
C, .
S é,dg = o, which is obvious. Now the
)
R.H.S. of the condition (B) is
C

sy = f
g” MO 5—5
Further D is finite to prove J'FK—T = o it is enough to
prove f g d6 = «, which is obv1ous. Therefore R.H.S.
of (B) holds under D is finite. Thus the conditions
(A) and (B) are satisfied when D is finite.
Hence, ‘

If R(@ ,0) < = and D is finitei then the formal Bayes

estimator bm X ™ is admissible for ™. 0

Example (2.3.1): !

Let Z have the Probability density ©. e"'gz

y Z>0 with
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respect to Lebseque measure, and .Z]_,.Zz,..,Zn be independent

n
and identically distributed as Z. Then I Z; = X have a
i=]
p.d.f., P(x,0) =r% (ne)P e~PeX gi=1 570,
n
This density can be written in the form.
"P(xy ) = © .p(Ox)
s . lnngntl gmmex ne=l g
m
it implies '
nnxn"l-nx .
P(x) = == e ', x>0
n .

Therefore, the formal Bayes estimator is,

bm= S ™ p(x) ax'f S 2 p(x) dx
(o} "o -

.03 n
. oo n : ~-2m _n n=1_~nx
L[ xm gF G-l =nx (BJ' X - x e dx
0 n !
o !I o3 2 l;l
= [ xPO=l genx g poon=Zmello-nx
o = o] '
"Tn-m y fn-2m
A= nn-—Z’&
i.eb nom -
.e = L ] n
m {n - 2m
That is
h=m
bm x 0 = (nx)™™ [
n =2m

" 18 the formal Bayes estimator of Oln?;with respect to the
LI

prior distributioné sy 0<8<Kee, From theorem 2,3,2 for

bm x ° to be admissible, it is enough to ‘show that

o0 2(m=1 co
X (m ) [XJ' (bm-tm) t-—2m p(t) dt 32 dx € e .o(ll)

J

) p(x)
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Now L.H.S. of (1l), that is

2
2(m-1) e - ©
=/ X (I £ p(tat - J £ p(t) at)  ox
e P X X -
1 11
Part-1

bm Jf g=2m p(t) dt
X

n [~ ]
ﬁ’ X '
n ol 21 ]
= bm fg J ¥ (%) n=2m ﬁ %¥, where y = nt
nx
2m oo |
n -y n=2m-l |
= bm —— e cd
n n{ 4 ! Y
2m n—2m 1 r _~-nx
= bm '?r~ (n-2m-l)' (nﬁ)r ? ’
r~o ~xi r
(since J'e “t K =k § Sl )
r=0 Ts

- EEfm o 2 Th-2m e~ XN n22m-l (nx)*
{n-2m Te
m

n =0
N=2m~1 T
= B Emp ey (mx2
M =0 Tt
similarly
m Nem=1 r
Part-Il = == e”™ fA-m % Lﬁﬁ%—
(n r=0 °

Hence, L.H.S, of (1l1) =

jP x2(m-1) R . nr2g—l gnxlr

p[x] in ' r=o0 *
m _~nx Nn~=m=1 r 2
_ nt e hem % (nx) ; }
Tﬁ T=0 Te
2m 2 o 2(m=1)
N~~m X o~ 2nx K2 dx

= S ;
(T )2 nn xn-l e-nx !
' in
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n-2m-1 r n-m-l
where K = I Lllé,‘.)... - '(‘p")‘(l"‘

r=0 T r—O T
2m-n 2 oo
= B %fﬁ;m) S x2men=l -n¥ 2 gy
. n 0 |
Case (i) :
if m =0, D < o,
Case (ii): !

if m > O then
2M-ng = V2 o, - . Demel r o
D=0l ( [n=m) J-x2mnlen§x[lz _(_r%ic_L] dx

[n 0 i r=n-2m

Since "8+ g 172G

i
r=n-2m r-2(n-2m)!

suitable coefficients 30— 4m""’a2(n-m-l)

-From (12),
2m-n 2(n~m—l) o
D= r—_m N a, xt-rzm-n-l X < o
m r~2(n-2m) o '
1provided n > 2m.
Case (iii): : : |
if m <.0o then’
e pnen ne2m-1 s 2
B ‘e i {r-m)2 of x2m‘“n"l e‘—m( [’: PN gxf‘-' ] . gx.
. In- S=n-m :
. ]
Arguing as above we will have ‘:
2m-n 2(n~2m-1) :
D = 2 ﬁx-—m f 2m-n-|-l+s -nx. .
fn -2(n—m) o
. { » provided n > Znm. '
Thus DL fox alln > 2m
Hence r?]:‘;m(nx)"m is admissible fox 8" if n > 2m,

Mo
%
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(1I) An Admissible e.stimator in an exponential family 3

In this subsection the following theorem gives us an
admissible est.mator of an integral'power of the natural
parameter in an, exponential family, when the loss is quadratic.

l It may be noted that if the range of the variable is
(0,=) then the natural parameter is the reciprocal of the
seale parameter,

Theorem (2.3,3):

Let the random variable 2z havexthe probability density
g(e) o9z r(z) with respect to Lebe%que measure, where r(z)
is a probability density on (O,b) with b possibly infinite.
Let the parameter space under consideration be (0,»), Also
let | ?b C om
o rn(x) X dx € o (13)
where r  is the n-fold convolution of r, and with 6<ngn,
m* = max (O,m). Let

oC . :
él_r_n5 oh-j-1 of exp(=x) xJ"zm*rn(x) dx < o
= .. (14)

for 0 4< 2(2m*-m-1).
Then for n > 2m,,15=m (nZ)™ is an admissible estimator
ne ) .
of @™ with an integral m and quadratic loss .

Proof: n
The probability density of X =i§l Zi can be seen

to .be Bn(é) e"gxrn(x).
Let the loss In estimating 6™ by d be (d-8™) g~2B
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and the prior density for © be Qn-l/ﬁn(G). Then the formal
Bayes estimator of @" is In-m XM that is

“Tieon
= ln - m
@,.(x) = xm

The risk of this estimator is ;
R (8,(x),0) =E[ 67" (ad-0eM2]

= f Q_Zm ( L__n“f; x B - gm)ZP(X’ 8) dx
N=2Zm '

= [ 87(0) exp(-0x) £ (x) 0728( o - [oom ,omy2 4
o 0 C [n=2m

Now rn(x)'is a probability density and (13) holds, there-
~fore the risk function is continuous in 8, © € (0,=).
Now we use thecorem 2.3.1

h,(8,x) = P(x,8) V(6,x) =’ (6)

; - n-1
= g"(8) exp(-0x)rn(x). © 2m %ﬁfg)
= exp(~9x) rn(x) QT~2m-l (15)

and .

h,(0,%) = J‘ [¢_(x)~g(e") IP(x e.,)v(e',x)n(e ) do!
= [ (=n m o _am -97x% s2m @'l
gf (I‘ﬁr2 Mg (e!)e™ Ty, (x). 67 o) de
JoEm e etx () iRl g
6 [n-2m .

[~
-f o 'x r,(x) orn-m=1 g1
e

! AR L\ﬂmm
st AARDERAR LIS
gﬁ&dﬁyhmwggmw
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(- -]
= .E‘}-m ¥~ rn(x) f e-@'x g!n"'zm"l!- ae'! -
(o) |

fn—-2m

- n(x) Of e—G'x Q'n-m-l dQ'.

hy(6,%) =B M 1 (x) 1, - méx) I, (say) (16)

n-2m
Where

©o

-t
(since [ e~
X

similarly,

= JPe"g'x orP =1 4o

1
2 g

_ (p-m-1)1t n-m-1 é'gxsexzi
T . n-m & 3!

X j=0
Therefore,

n~-2m

'-2 -l &g A
h,(0,x) = In-m P (x) (n=2m-1) n zm e X(gx):
vy r’ n xn--2m

X j=0

. s !

- n-2m-1 _=Ox j
= r,(x) [n-m x™P Z 5———1351— -
j=0

Js

. _p =M=l -0x J

j=0

!
-z (%) (nem=1)¢ nzmpl &% (gx)d
n Nem T

!
H

.
]

j0 ¥

ji
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m-n n-2m-l @x) _n"mfl(»i-}x)j

_ =ex "
h,(0,%) = e "rp(x) [n-m x T ]
It m > O then
’ - n-m-l J
hy(8,%) = = £, (x) [R-m X &% 23]
-—n-2m 3
If m < O.then
' s - n-2m-l J
hl(O,x) = rn(x) Mmem x™ P e X -(%-3-‘)-
. J=n-m °
Let m = max (O,m) then o .
o - By R=2m=1-m vJ
hy(8,x) = «{Sgn m) :cn(x) X [H-m &% 3 L_:_c_)_
. - j=n-m-m¥ J*
where (Sgn m) denotes the sign of m.
Hence
2
. . e,X)
l 3
8) =
N(e) Eg [';:1—5(-5:5()-] n(8) v(e) )
n-2m~1+m#* .
~Sgn (m) r(x) x™? Jn-m % g (ex)d/3¢
= E e toen et e o e e —e®
- e
\\ e—Ox r,(x) gn-—Zm—-|
n-l1
X ~=-—-—-——g o~2m
2 P (©) np . 21 —~m* 2
. n=2m-l-m
T A o I O G
®) i j=n-m-m¥*
nb
2 (m=n-+m*)
N — Om¥ o
=([n= m)2 gh+i-2m J (ex) X 2m‘ o8 rn(x)
o !
N=~2m1+m¥* '
[ 5 (QX)J/J ] dx

F=ne-m-m¥
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Therefore,

) = @n+1-2m*(m_m)2o fnbe-gx ra(x) w2 |
a polynomial in ©x of degree 2(2m¥-m-1l) ; dx
| o ..(17)
Because of (13), except for a constant
o?bexp(ng) T (x) x320% gy, Oijgz(ém*nm—l) .. (18)
isame (for a ngnmnegative e), hencé)\(@) is a continuous
function of © oA (Oy»). Thus for admissibility we have

only to check Portnoy conditions A and B, Since,

lim nb < o
6550 [ & () 372 gy =
0

nb |
=of rn(x) xj"zm dx < =, 043¢2(2m*~m-1)

By taking a typical term with 30 |O¢3¢2(2m*-m=1)] powex of
x from the pelynomial . A typical term of Q:égl will be

D -« nb S,
oh=2m ([‘F{...m)2 4 ., (%) %3 2m dx,
Hence ©

lim éégl = 0 provided n > 2m.
-0

Thus for sufficiently-small & say 0<64C/,

N(e) < @ . Therefore,
c! Ct
1 1 — s
of 7":(""9) dae > of 5 do =
Hence for n > 2m, then R.H.S. of (B) is satisfied. Hence

the condition (B) is satisfied,
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For condition (A) we write (18) as

Cc R nb N —
df e~ox Tn(x) N f e=O% rn(x) xJ 2m dx,

0<C<nb
Then

nb .
1im of oo (%) xI=2m¥
0= C

. nb . ~
< lim ok -6C J rn(x) gI=am* g
03

= 0, for every real % and 0£j<2(2m¥*-m-1)
Thus c
?\(O) = 0h-i-.'l.'--'2l'fl"“ (rﬁ"m)2of e-Qx rn( x) xj—2m*

, Whepre tabx

o!d_

- o (g2 T et 2§ @I 4
= o"™J (]n—m)2 Jpce-x T (5) x372m dx
Theréfore, © | .
1im 2:L—l 1im " I"1([5m)? ijce“xrn(é) x3=20% gy |
e o=y '
<o, from (14) «.{19)
From (19) the nature of the two integrals

S L doand J X o is the same.
¢’ Ne) c § |

Hence as
Cf é- do = ® we have. Cfxrg) de = =

Thus under the condition (14), the R(H.S. of the condition
(A) holds.

Thus under the conditions n > 2m énd condition (14),
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the Portnoy conditions (A) and (B) are satisfied,

_ Hence In-n (nZ)™ is an admissible estimator of @7
n-2m
with an integral m and quadratic loss for n > 2m,

Example (2.3.22:

Let x(z) = = A1 %, 2>0,k>0

fe

ot

]

o,  otherwise,

then S
m(x) =1 x%-1 %

fnk

! n
The probability density of X = iE Zf is
- =l 1
P(x,0) = g"(e) e'gxr%; k=1, e™*, x> 0,
. . X m My2 ~=2m
Let the loss in estimating © by .d be (d-6")" © an

, X >0

d
the prior density for @ be @""1/8™(0). Then the formal

Bayes estimator of @% is Ipom (nZ)™ .
n~2m "

In order to show that the formal Bayes estimator is
admissible for estimating ©™, we ishall verify conditions
(13) and (14) 'given in theorem 2.3,3 . Therefore,
. ) .
o (-] oy
S oz (x) X2 gy = f A x“¥‘1 X x~2M gy
o] ° rnk by
® e

= pues |‘vu'| X
el
Y
13

fnk
< e provided ng > 2m,



115

and
. eC .
i oird=l e (It o (%) ax
oo o
. ' . eCc 1 .
. -ge -x(1 ~2m¥*=nK— -

=la'im gn,Jlojex(+§) x32111 nKlglnkdx

, t

.

L 1in @Ik fgce'x(l‘%) J=2m¥nti-1
rr& @"3"” 0o

dx

) n-j-nk —2m*+nK .
= === lim . © . - 0£j£2(2m*=m=-1) .,
rnk 0> (l%):]- m*+mk ’

{ », only if nk > n.-
Thus conditions (13) and (14) holds if nk >n > 2m .

Hence -[,_-?_._-_':’-z-n- (nZ)™ is an admissible estimator of O™
n-2m

0



