
CHAPTER 2
ADMISSIBILITY OF ESTIMATORS FOR EXPONENTIAL FAMILIES WITH 
_______________ ____.QUADRATIC LOSS _ ___________________

2.0 Introduction;
In dealing with estimation of a single unknown para- 

meter the criteria employed in evaluating the worth of 
given estimates is to make comparisons of the expected 
square deviation (say) of the estimates from the true 
valuei Suppose on the basis of an observation x (or 
series of observations) on a distribution P(x,9) depend­
ing on an' unknown parameter 0, it is desired to estimate 
some function g(0)* The quahtity p(x,©) may be regarded 
as the density of P(x,9) with respect to nleasure p.
This measure p dominates Pg for 0 £ (fi) . A non-randomi- 
zed estimate of g(9) is described by a(x), a function of 
the observations, and when the error of an estimate is 
evaluated in terms of quadratic loss, the risk for the 
estimate a(x) when the true parameter value is 0 is 
calculated by means of the formulay

R(e, a) = /[a(x) - g(9) ]2 p(x, 9) dp (x) (l)

The object is to select estimate 1 a* which minimizes 
(l) in some sense.

The quadratic loss as a measure of the discrepancy 
of an estimate is derived from the following two chara­
cteristics.
i) in the case where a(x) represents an unbiased esti-
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%raate of g(9), and the equation (i) is represented 
Os the1 warianfce of a(x)j and 

ii) from a technical and mathematical Viewpoint square 
error leads itself most easily to manipulation and 
computation.
Different optimizations criteria dfe t the minimax 

criteria, Bayes procedure^, uniformly minimum variance 
unbiased estimates etc. Another,desirable property of a 
statistical procedure is the ’achnissibility* • An estimate 
•a1 is said to be admissible if there exists no other 
estimate a* such that

R(9» a*) < R (9, a)
with strict inequality for some 9'. In other words estima­
ting procedure is admissible if it cannot be uniformly im­
proved interms of risk by any other procedure.

, * * , Certainly an estimator should not be preferred if
there exists an estimator cr^ which is better than o^, for 
every value of 0 €

The general question of resolving admissibility of 
all estimates measured with respect to the quadratic loss

* * . i

function is difficult* it seems worth while to concentrate 
on the investigation of whether some of the most commonly 
employed classical estimates are admissible*

In this cbapeter we study the problem of admissibility 
of certain estimators for exponential family with density of 
the form

PC*, 0) * p;(0)
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2.1 On a, the.Q£gjfl of Karlin %

In this section the random variable X is assumed to 

have the density,
P(x,9) = [pC©)]^ e0x

w.r. to a a - finite measure \i (The above density is of the 

form of the density given in (1^4.l). Here for convenience-
-« i , |

P(9) is taken as the deuisbr instead of the multiplier as 

taken in (1.4.1)) defined on the real line, and 9 the un­

known state of nature, belongs to the set
00

«^9 / S eGx dti(x) <o=2

which iis an interval of the real line. Let 9 and 9 be the 

upper ajnd lower end points of (H) respectively, § and 9 

may or |may not belong to (§), 9 land § may be equal to -*> 

and = respectively.

Th& problem for consideration is the estimation of the 

quantity g(9) = Eq(x) = based on a random sample

Xi»X2»i.»Xn of size n. There i|s no less of generality in 
restricating on attention to th!b case of a single obser­

vation for, as is well known, a| sufficient statistic for
i

n observations from an exponential distribution is the
l .sum of the observations whose distribution is also a

i '

member of the exponential family.
■

From theorem 1.4.1 the estimate a X (by taking b=0) 

is inadmissible if a < 0' or a > 1.- Hence the admissibility 

of aX for'g(9) is to be disscussed only for 0 < a < 1.
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For convenience a = -j—5 and the admissibility of
is to be discussed only for u 2l 0»

Karlin has considered the admissibility of linear 
Xestimates where u > 0, for Eg(X) and has proved the 

following results»
Theorem 2.1.1 :

If 9' being any arbitrary inferior point of^, and 
u ^ 0

a)

b)
9
/ pu(e) <» and

S PU (9) d© = 00
9'

then the estimate is admissible for estimating Eg(X).
The proof of this directly follows from theorem .1.4,2 

with y a* 0,
„ Karlin has conjectured that the conditions in theorem 

2,1.1 are not merely sufficient, but are necessary also 
for the admissibility of -jj— It can be shown that 
is inadmissible for g(9) for certain values of u . In 
this respect we have the following result.

I1 j, .Lemma (2.1.if* - *
The estimate is inadmissible for g(9) =

if u < or u> L2, where and L2 are the infimum and 
supremum respectively as 9 varies over ® , of

P(e) . p(e)p''(e) - (p'e))2
[ '-7-7] =i2(e) d

de fs'(e) (P•(©))
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Where as the criteria for admissibility in theorem 2*1.1 

depend on the behaviour of p(©), only near the end points 

of©, S and 5* The criteria for inadmissibility in 

lemma 2.1.2 depend on the variation of p(©) over the 

whole intervalIt is therefore of interest to obtain 

criteria for inadmissibility for the estimate f 

which depend on the behaviour of p(©) only at the end points

of© •

For all 0 6 ® t
OO'

p(©). & / e^x dp (x) > 0
—OO 

CO

p’(©) » / x. e®x dp (x),
—OO

' oo
p**(©) « / x2. e®x dp (,x) > 0 which implies p(0) is

r m*CO

a convex function over the domain (g) • Therefore we 

have three possible cases s- 

(I)' p •(,©) is always positive.

In this case p(©) is always increasing in (g) , it 

then, follows from the definition of © that ©=-<», 

and further p (x < O')1 = 0 as otherwise p(©‘) will—* «> 

as © ——^ — oo f

('ir)p1 (©I is alway® negative.

In this case p(0-) is always decreasing so that by the 

definition of (g) t- 5- * +*> and further p(x: >0) =0.
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(lll)p *(©) is negative initially but increases to a positive 

•value.
In this case p(9) is a decreasing function at first 
until it reaches a minimum value and increases there­
after, 5' and 9 may be finite or infinite and p(x<0)>0 and 
also p(x>0)>0, Otherwise let p(x<0)=0 then we have 

for every 9 £ (g) ,
/ e0x dp£x) « p(9) 

o
i.e,.

CO

p»(9) sa / xeSx dp(x) > O for every 9 
o

which ,is a contradiction.
We g-iVe, tfre only statement of the improved criteria 

for inadmissibility of the estimate , in the form of

lemma* For the proof we refer to Joshi (1969),
Lemma (2,1,2) :

The estimate x/l+u is inadmissible for
g(0) = Ee(X) = ,
(I) When pf(9) is positive for all 9 £ (g) , if,

i) u > lim SupQ *wOO
i2(e) or

ii) u < lim infg
~~n 5 x2(e)

(II) When p *(9) is negative for all © € ©
i) u > lim SuPq —+oo i2(e) or

ii) u < lim infe —* 9 i2(e) -

> if
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(iii) When j3'(0) assumes both positive and negative valyes

i) u < lim infg ^ g I (0) or 
ii) u < -lift infg__^ g I?(&) n

NefeeSsary fc'ondiiions for the convergence or divergence 

of the integrals ift Karlin’s theorem (2.1.1) are easily 

obtained* Nbw using the improved criteria in lemma 2.1.2 

the range of values of u for which Karlin’s conjectures 
remain open, -is narrowed down, !

Karlin’s integrals
'Let Ij,denote the integral ij! condition (a) and I2 the 

integral in condition (b) of theorem 2.1.1 that is,
- o\,

I, = / f (0)| d© and
x 0“ 5Ui9 = / P 4e) dQ

We have seen that there are Jthree .possible 'cases, As 

the same method is applicable to all the«cases, we shall 

consider only the case (I) that is p'(0) always positive 

and prove the following :
Lemma (2-.1.3) :

If .p ' (0) > 0 for all © £ ©;, then the integral I.,
! “* r

i) converges if u -> iim supQ

i-i') diverges ifu < 
the integral

'lim

i-i-i) ooriveTr.ges i-fu < llim infQ 1 -g 

iV>) ■div'e’rg'es if lu > lim 'sup0 ^ g

1^(0) and

2-1 (0). Similarly

'n1(0) .and
i2(e)



68
Proof :

2 - d f P(©)I2(o) = --- [ ■] (1)
d@ p*(e)

Let .k^ = lim infQ ^ ^ I2'©) (2)

Suppose k.j>0, and let u be-any number less than k.^. 

Let u = k “* € »

(2) implies ;that we can obtain ©
€ > 0 
such that

'2!*(©) > &i - | for
, i \

Hence by (1)>1
i *''

(3)

all Q i ©0

€
“ 53' i iTO) ] “I

Integrating,both sides of (5) wi

+ - for 2 9 < Q.

(4)

(5)

th respect to 9 from an
arbitrary point © up to the point 9Q, we have

/0 as [ f$f&) 3

" Ef^s) ]Q°

§1®2 . life) 
'P'(e) p'(0o)

putting C = > o,

d© > f° ( u+ § ) d© 
Q ^

> (u+| ) [ef0
2 9

> (u + £ ) (© - 9)

P' (%)

P»(e)
and hence,

< .[ c + (u + - ) (e. p(e) 0 2 '

O

theref ore

§> CQ + (u + ~ ) (©0 - ©), for all ©<0(

- ©) T1 for all ©<©0 (6)

Again integrating both sides of((6) with respect to 9,
from an arbitrary point 9 < ©Q ftpto ©Q,



/ (it 9
< / 0 Efc0 + ( u + f) (®Q - ©)] xd9

P(e) © ,0 20
i-i.

6
[ log f5(9)je° < ?/^° -------—6T7“--T d0

6 0 CQ ^(«+ |)(0o-0)
[ log p(6)]®o < f° * - du

9 u1
where C + ( u + %) (9 -;©') - u*

•« - ( u + tf1 /o’ i, du’
2 * yf ; u

" - - ( u ♦fer1 E i6g|ii,]C°

«* -(« +|)

U'
' « - ( u +-|r1 E iogj Gq - log u* ]

=, - ( u log (!*^t )

* - ( u + ^)i_1 log ( t—t—r§~~—~r—)2 C0+ (u +*)(90r9)
- 1 : G„ + (u +6/2)(0-9)= ( u + €-)_1 log ( --------
2 c°

« C u +I')"1 log [l. +(u +|) c"1 (e0-e) ]

log p(e0)-iogp(e) < (u +|)_1iog[i+(u +|)c“1(0o-e)'3

log < ( U. + j)'”1 log^ l|+ (H Cq”1 (©o-9)

putting p(©o).= P0» Therefore 
log |2 < (M. + ^r1 logE 1 + (u + |) c;1 (0Q - 9) ]
it implies that , j ^
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and hence
pu > Pq Ci ^ + c^1 (©£*©)] u + C/2

far ail 6fiS0 (7) . '
Integrating both sides of (7) with respect to © from '' l

- * to ©Q, we get
9.

U
(9>d8 2 f'° U +(u +1) ;C“1(eo*e)]

■Moa
Now consider R.H*S. of (8)

d© (8)

f G [1 + ( u+ c-1 C©6«6)]
i <£

u
u*€ /2 d©

= ‘p“ .£ -u.““e/2 JS' ,
£ u+ |) C-J1

where 1 + + a) (Q^-9) ~ u*
= C„ [ U + ij*1 / U! ‘ 5+"| «1(

0 0 o t 2

* Co *o * U+ 2
VLereaf 41 1HI-SXZ2:

I u
U 4-

60

aat 00’

Thus as the integral of right hand of (8) over (-«>v ©0) 
diverges, the integral of the left hand side that is' I, 
must alse diverge. Thus I- diverges if U < lim inf I2(©). 
This proves (ii) of the lemma1 2*1*3' * , *
Let k2 =*■ lint ^ ^ A) 49)

1r 1 ' ' %Suppose ^2 > 0>, and- let u fee any number greater than *2-*

c 
i.

"f
* (̂

H
ff
e 
}•

s. N>r <D
>o©C- +' w O O 
Ii>

o
CCLl 

CO.



71

Let k*2 + £ , € > 0 (10)
(9) implies that we can obtain ©- such that

i?(©) < fc2 + | for 311 e < ©(

Hence by (1),

_ i. [ £i§l ] < u - | for e < © .a© |3'(e) . 2 °
Integrating both sides of (12) with respect to © from an 
arbitrary point © upto the point ©Q.
We have

(11)

(12)

/° _.d_ [ ] cte < /°(u - %)©. d©© d© p * (©)

- . • p»(©) ©

©

1 ;(u “ |;)(©0~©)

< (u - ^)(©o-©)£121 _ li§°) 
p'(e) P'(e0)

putting C . = £l2ol- > o f therefore 
' °‘ SS'(Oo)

£121,... , < C„ .+ (u ,-6-) (©,-©), for all ©< © ’
p > (©) 0 1 2 ° - - ° ‘

it implies that,

£li|l + (u -*> ( © -©) V1
. • P(«) 0 2 0 - ■ „, , ■ . for a11 ©o <13>

Again integrating both sides of (13) with respect to ©,
from an arbitrary poin{t.- © < ©Q upto ©Q,
therefore' *

.©. . ©_ . -1
.° d© [ C +. tu r, |.)(©6,- a)J© p(©) - . ;,©. ,- ° 2 V 0 d©

(-■
'.'3 5 !
I <’
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©o „©o. . [log p(©)] > / [CA +(u - 1r)(@n * 9)} d©
consider, © © 2 o (14)

J»o. -1
/ [ C0 + (u - |) (e0 -9) ] cB9

_ rto 1 du*u- u’'^u"“|)’ ;
where CQ + (u - %)' (©Q - ©) =!U* 

- - (u - ^)_1 / 0 it du !
2 u' u i

= - (u - I)”1-. [ ibg u],
Z u*

= - (u - |)_1 log ( -2_j l
- Xu - |)_1 log ( n-~)

2
- C_ + (u - i) (0-©)€\-l r o 2 ° '

u1 n-1,

- (U - |)_i log [ -
O ]

- (-U - Ir1 log [ i + (u' -1) e;1 (e0-e)]-1

- - i) 109 E 1 + (u - V CoX (90-®) J-1 
2 1

= log [ i + ( U -1) c;1 (e0-a) ] “”'2

Thus (14) gives us
log[ ] > log [ 1 + (u - %) C"1 (e„-0) ]“

P (9)
therefore,

Siiai - > [ 1 + (u -1
PCs) - 2

2 0

> [ I + (u - %.) C"1 (©0-e) ]U " 2



it implies that
P(e) < [ 1 + (U - g) c"1 (e - 8)] u~ 2
P(0o)

putting p(80) = P0, therefore
pH(e) < [ i+ (u -|) c“x(80 - e)]u-4/2 for all e<e0 (is)

Integrating both feides of (15) with respect to 9

u

from - oo to 0.Q, we have
Jl.0 ©n ' —'e/2

/ 0 fp(e)de<p“ / [1 +(u -%) c^Oo-e)] as (wj
— oo 7—00 ^

Consider the integral fight hand side of (16),
u/°[ 1+ (U -|) c;1 (0o-9) 3 U* 6/2 d@

du
"o

1 u/ U* " u~6 /2 —-t“ -C/fo - &/2) .
where

u i + (u - \) C"1 (e„ - e)
= Co U

/ tN f uru““| du’ (u - |) 1 2
o

( u - %)
1 uu1 ~ TT=T/2

u 6/2 _

OO*

I
As thd integral of the right hanci side of (16) over 
(“ 00 * ©0) converges, the integral of the left hand side 
of (16) is also converges, that is 1^ must also 
converge.

l,/
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• 3 2 -Thus 1^ converges if u > lim Sup^- y ^ li- (©), •

This proves, (i) of the lemma 2;i;3 
Case (iii)s

9 may be + °° or may be finite. * If §ris + °® the 
proof is exactly similar to that given above,*.'

Next suppose that § is finite. As< 9—p(9) 

being non-decreasing may either
(A) diverge to infinity or
(B) converge to a finite limit.

, \In1-case (A), log p also tends to °°.as © tends to §
and hence as § is finite. log p= ^-^S^must diver­

ts P(9) ’
ge to ~ as 9—In case (3), by the definition of the 
set <g> implies that

I , p(9) = co for any 9 > §»
hence p'(9) must tends to « as 9 tends to 5. As
P(9) converges to a finite limit tends toP(e)co as 9 tends to 9. .
Thus in both cases (A) and (B) as 9 tends to 

tends to ~ and hence
-p(e)

P(0)
P*(0)

x
/

0 (17)

Ki * lin infq —^ © i2C9) (IS)
Lot;
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and let u be any number,< Put
•f u = > 0 (19) '

(18) implies that we can find ©Q < S, such that for all '0, 
©o < 9 < §

I2(0) > Kx - | (20)
Hence by (l),

d . P(©j
. ] > u + - , ©n < © < ©

d© p•(©) 2
i

Integrating -both sides of (2l),with respect to 0, from 
an arbitrary point © (< §) to the ipoint Q», 
we have,

(21)

©
H •p(©) r §

/ - - [ --- ]<©>(* u+ -) / d©
d© p'(©)

PC©) - o v[----3. > (u + % (S - 9)
P »(©)-' © 2

©

/■< P(^)
P (Q) 0 as ©’—^ 6,From (17)

Therefore, ;‘ i
P(©5 , c * ,, ;■—71 > ( u + -■ 5' (5 - ©), eo < © < 5p’(e) 2 o :

iit implies that < : <

Pf ■* ' . i -1.— ,<[«’+- )i (S - ©)]
P : , 2 , ©0 < ©x © (22)

Integrating both .sides of (22) with* respect to ©;' from 
©Q to a point © < § , we have
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0 p 1 (©) 9 c -1
/ — d<*4f [{ u+|) (5-0)J. * .

0Q P(9) ‘

« - 
• •

9 ,-191
[log p(9) ] < ( u + %) J ZT~

9o 2 0O 9 -

< -( U +
2 040o u

d0
9

r P(9) 1 
log[ ——. ] du

P(9o) 

where u1 = 9 - 9
5-0

= - ( u + -)”1 [log u* J
2 5-0o

= _ ( u+fe)-1 log ( j
9-9

hence 

log [
fi(9) .

P(©0>

o-

] 1-.C-U+ S)-1 log ( -e-^ ) 

* . • 9 - % 
1

§ - 9 " U + §
« log ( ----- r ) ■ ■ -

'5 - 9_
Therefore

P(e)

P(e0)

.&—■©' , €■
< ( Z------- > U+2

- © - 9'

1 *e*

it implies, that

<%*U0. (S - 9), u +„| - pal

_1_ 

ir +

@5 6

u
» +■ m - 9,

IT
U' + €

0'/v' * ,T* 2 .7- ■ ’O'*

Integrating on. both s.ide_& of {23} with respect to 0

123)

froia ©0) toj

w
ir

^
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/ pu(e) dQ < pf*(e0) / (S-e)'"1”^2 (5-e0) '3Tr/2
dQ

Q« . ©o
■». pu (©0) (§r0b) U + C /2 /9 (0-©) ^ dQ

0r*

u
= -pu(e0)(S-e„) / uT u+~/2 du'

• ' e-eD
where u* =• 0' - Q u

pu(eD> (5^c) v+^/2 /
0 * - ° 0

5-©o
u

-JJ— /o
Pu(e0)(9^o) u + €/2

ur u+T/2 du<
u -1 0-Q.

U'/ •1 u + G /2

u

o

< oo

0
As the integral of right hand side of (23) converges 

so that the integral of left hand side is also converges,
o-

that is I0 converges. Thus I0 converges ifu < lim inf I (©)
z , 7 . Q~5© • • ■

This proves (iii) of the lemma (2.1.3).

Case '(iv) is exactly similar. ' Q-'

Oh combining lemma ,2.1.2’ and 2.1.3 the

range of values of u . fcr'which'Karlin*s conjectures rem-
i ‘ * * *

ain open is narrowed down; 'which can be seen from the 

following diagram* A ‘ ‘ '

(r
c

~)

\

u X, XL k, -k.

/



Values .of u indicating the ranges $<y£ .which .Karlin.1 S 

coriiectbre to be solved*

'A i ran^e Of a -for which is inadmissible
according to lemma '2,1,1 i

'B % rhhge of u f'of which i/s -inadmissible
according bo ieimha '{-2,1-,2),

C t ra'hge of u fair which i-S 'admissible
'a'ccordihg to lemma 2*1% 3; %

f
ftate that C may be empty i/e.

'A farther discds si oh on Carlin's conjecture remain 

open is 'cfi'sCdss in Joshi (l969)w 

Example (2,lvl);

'Let the measure be such that 

dja'Cx.) =0, x, < 0

;.-ax -bx
b-a

By 'definition we have,

' , {3((©) := uf e®x dii(x) 
o

1 dx, x > :0, 0 < a < b,

r°° gX/ e“ax e-bx •/ »“( -S b_-ae ) dx.

&£i °~x
-x(a-6) '66

dx - >f e ■x(h^) dx

. _-jl fit ®‘!e)-i00 rr ^x(*b^©') *> ^
' b-a V '-o _a“ *- i^Cbh©1)' ***o J

■fcM) ,-('a'-©,l(b-©)
•'1 ► ■

/. •> .(9 =
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a+b-2©

* P*(9) =* --- ---------2L(a-eMb-©)r
> 0

Therefore,

p*'(©) *
2(a+b -2©)^ - 2(a-©)(b-©)

[(a-9) (b-Q) ]'
hence

P(6)

d© §«(©)
£(©) ^'(e) - (P *<©))'

It'
„ i

(a-©)(b-©)= i - 2 t ----- -r ] (25)
'(a+b—20)

From (24) it is clear that our- distribution falls 
under case (IK

We shall claim that -by using Karlin1 s conjecture’’the
V <estimate is inadmissible by showing either 1^ i’s fin

ite br I2 is finite ( or .both )for every value of u *
To show this first 'consider I.

= J^Wd©
;e~ ©'* -u
-SI (a-© !('b-0 ) 3 d©
“*° ©'» ‘ “ -,2 u

. '< /. (a-Q) ' dd

•1 *

mtiOO

a-©1 —2u
= - S lu' du* where u'W a - ©

CO
. <*> -LQU ■

= / -u1 du*
-a-©'1

. .’il—2u 00« r-at,__  I.1-2 u
/"'OO

a-©1
(
V final

if « < i
“ 2

,u > •£.finite if '7 2Therefore T,^ -is finite if-u >>~f
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No.w consider

_aI9 =./ py-(9) dO 
O'

I2 = / [(a~0) (b-0)] d©
©*
• a -2U 

< f (a«9) d© 
“ ©»

-2u , P f durro= - / u
a-©-*a-©* -2u

= / uf du? 
o '

»i—2 u a-**© *
L i-2u Jo 
r” if

where u = a ~ ©

if

' s iU > 5
tr < h.

2^finite
Hence Ij, is finite for u> and' Ig is finite' for^< 
Hence according to Karlin’s conjecture, the estimate

1-Kl is inadmissible for every U‘ > 0.
Now we have to' find Lj, and Lwhere

L^ = lim- inf Iz(©) and
L2 = lim. sup I2(©)

• as © traverses the( ., interval (-«>,a).

For finding and’ L2, it is sufficient to show that
2 ]I (©•)’ is increases in' ©, them

L, = lim inf
Q —^

I C©)= lim
©■

i2C©>

L« = lim. sup^
© ~~~y' a 

.2/

! (©):« lim
0 —-y a

l2(;©)

We have* to- show Ir{f3) ^ ©'„

r-i! CM
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From (25), we have to show

that is

1-I2(e) - (a^Ql_lb-§l ^ 0
2 (aVb-29)2.''v

that is

x_ii±5=2i 2 t y. y = a - o
(2y + b-a)

that is

■.1+5=2
---- X------- t y
[2 + (5=2- )J2

that is
i-±-2 j Z, where Z « ---
(2+Z)2 7

that is

—-— - — i—2 J- Z
2+Z (2+Z)

u 2 • 1 u is increasing in u for 0 < u < g
which is obvious.,

r\Hence I {©) is increasing in ©. Therefore

and

L, = lim
A Q ftp —OO

= limQ m i»

= i 
2

L2 = lim
= lim0—-3> a

= 1

I2(0)

1 -, (a+b-26)2

I2( a)

1 - z&Sl&gl(a+b-2©)2 .

So from lemma 2.1.1 , the inadmissibility of the 
estimate cannot be derived. It can be shown that

* t *

Kjf&grl and kj-sk^l/2, Hence by lemma 2.1.2 the estimate
-— is inadmissible for u < K. = lior u > k2 *= i/2 and 1+u 1 „
hence inadmissible for every u . LI
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2.2 Truncation and Admissibility-' i

Let X have thep.d.f, of the form
P(x, ©) = (3(0) e@x (1)

where / ex0 dp(x)
W) < «

From the form of the density function, it is clear that 
x is uniformly minimum variance unbiased estimate (IMVUE)

of E(x) = -
d log p(0)

ae g(©> (say).

Further
var(V) >° every © € ^ ,

g(©) is strictly increasing function of ©. The equation
g(©)d log P _- x

= g
0 has exactly one root 

^(x) , which certainly exists in virtue of

strictly increasing nature of g(9). Further

< 0< for every x, and
d2 log P a2 log P

d©2 d6t2
every © € (§) «. Hence at 0(x) there is a unique maximum.

Karlin (: 195.8), has considered the admissibility of 
the estimates of the type a Cx) = y > O' for estima­
ting E(x)- with the squared error loss. That is2

R('a ,;©)/ = E [a(x); - g(.©), ] (2>

It has been shown that if the exponential family is 
truncated to, a fixed set A, then the truncated family 
continues' to be an exponential.,
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For let A be- such-that

0 < / P(x, 9) dp, (x) » b(0) (say) J (3)
A

Then the truncated family has density function, with
respect to a- finite measure v,

P(9) • vGPA(x,e)=^- ex0, x£A (4)
A b(e)

dnd
dy(x) - 0A(x) dp(x)

0A(x) being the indicator function of the set A.
From this it immediately follows that x continue to be
UMVUE of E(x /x£ A) « - ^g-'-^log =* gA(&)(say)
and UMVUE may not exist for g(0).
Similarly the likelihood equation becomes
x - gA(9) - 0 and var(x/x£A) = - [ log ] > 0 .A , 692 b(9)

. We expect that the actaixssibility qfyx may remain invariant
under truncation if instead of estimating g(9) we
estimate gA(©) and the risk function is correspondingly
altered to, 2

RA(a,9) = E^[a(x) - gA(©)] / X£aJ (5)
Let®p be the natural range of the parameter, when

the distribution is truncated and note that® j -2. OD *
As the admissibility of an estimate is closely connected
with the structure of the natural range of the parameter.

i

The admissibility of an estimators may be destroyed by 
truncation.

V
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(A) Admissibility is destroyed by truncations

In this subsection we oive two examples, where the 

admissibility is destroyed by truncation. These two 

examples have been disscussed by Kale (1964).

Example (2,2,1) ;
Let P(x,9) = | (1 - ©2) e^tgM-l,l),d|*(x)= e"l'xldx 

and A be the set (0, <»). Thus we ,have

b(9) = / P-(x, 9) dn(x)

.x©

Thus

= / j (1 - O ) e‘~ e,

= i u - e2) /VxU-e) *
* o

1 _±Q
2 f (1-0) ex@

xi dx

ax

Pa(x,9) - 1
and dv(x) = 0^(x) -|x|

l#

x > 0 

x < 0

dx
here©- = (-«>, i) hence© — —^ © .

Karlin (1958) has shown that all estimates yx, 0<y < 2
I

are admissible in the non-truncated case. Now-we shall
1

show that no estimate of the type ifx is admissible in
1

the truncated case, 1

From (5) we have, l
here 0.(0) = =2- C log-tiSi ] 1= =2-[ log (i-e)]= -L

ae b(e) ae 1-©
That is,

Ra(y# 9) = E f(yx - -i- )2/ x k Al
A 1-9
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= /*(yx - jig)2 (l - e) e*® e-|x(

ir-,/[Tx(l-0)-lf (l-») e"x(1"®) dx 
(l-») o

= S (yy-i)2 e~Y -fer » where v * *(*-&)x-o

(l—© j‘ jf/ y2y2 e“Ydy + / e“Ydy, - 2y / y e~Y dy \ So o o 3
(VP +1 -2Yf?3

(1-0)

and

Ra (y, 0) =

6 RA(y,Q) 
dy

2y- 2y+l
(l-e)

2(2y - 1)

(6)

(X-©)
•For y > | and for every , /TJ, «Ra( Y ,e)e fc©T, ty . > 0 and
Ra(y,0) is strictly increasing function of y for every,

■: e fe®T. Hence for y > i there exists y* (y* < y) such 
that Ra(y*,©) < RA(y,0), for all 0 €“®y.

Thus for y > j # Yx is inadmissible. For y < | and for 
every © €®T, ^iX»Q)< 0 and RA(y,©) is strictly dee% 
easing function of y for every 0 Hence foj y < ^

there exists y'* such that
(y* S ©) < Ra( Y, © ) for all© £ ©T.

Thus for y < ~, yx is inadmissible. Thus
For y i , yx is inadmissible.

Consider the case y « i. Let © be known to be in the2interval (-1,1). We are estimating •. gA(0) ■ and

(7)

■1z
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© ranges in (-1.1). g^(9) ranges in (i, «»).
If x < 1, which occurs with positive probability we

•would' be • estimating by a quantity less than - 0
' 1 'Hence the 'estimate ~ x can be improved by estimate a(x)
defines as

a{x) .
I

if x > 1 

if x < 1
consider 1
ra(**)■*$,9y* - ■ '; ^

[a(x)-gA.(e)]2 PA(.x^©)dy(x)- / [|x-gA(©)ft^XjQjdyCx) 

= /: [a(x)~ i^q]2 PA(x>©)dvr(x)-/“[I ~gA(©)]^PA(x,©)dy(x) 

-/(| - ib§))2 ^(x^d^x^/ (|- -—J^Cx^JdvCx) - 
rS C|' ~ XIq)2 pA(x,©)dy(x) (| - )2 PA(X,?) dv(x)f

* 1J_ 4-2= 'f (5 “ 1^0 ) PA(x,3)dy(x) - /(| - -jig) PA(x,e) dy-(x)
“■/ [(| “ lie)2- ,<f " pa(x.s) <V(x)

=jf |d-x) (| + 5 - -jig) PA(x,e) <%(x)

Now as x £ (0,1) then (l-x) > 0
max ( i + 2) as 1
xC(O.l) 2 2

Hll

CM

I—* H* (D

G
lt 

•H U/
s
CD

© 1 M H1
A oN> &1

XI
 CM 

+
TScro 

rHfcM

•H•»
oVL;XMO<HQ)Ocffla:

x1H

10
11
-
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RaU* £) - Ra(|, ©) < Of for every © € 

that is * ' .
RA(a, ©) < Ra(-» ©), for every © (£'@ •

Which proves,' that x is inadmissible.
Thus all estimates of the type yx» 0 < Y S | are inadmiss* 

Ible in the 'truncated case; when the parameter is known to 
belong to (,-i, 1).

It is very' interesting that if the truncated distxJU*
bution is treated on its own merit with ©T* (-*» l) then
i iis the only ’admissible estimate of

(2.2.1) s
In the truncated case =x is the only admissible eftfc*

i 2
pator of its expected value, © £(<-«>, l). 
proof i

P(x, e) = (l - 9) e*0, X I 6, 6 € (w, J)
Here p(9) = 1-9 , p<(0) » -1

, , ?'(») 1

According to theorem 2.1.1 , the estimate ^ 1« 
admissible if, .

:h
and.

f (P(9)-Ud9 = ~

i2- » / (P(o) )~ « * • "
are satisfied. „

©•'
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In this case we have us h

Qt Qt
Now, I, » / (1-9)*"1 d© * [- log (1-9)]

Similarly, 

Io *
1 , ,1 

J (1-0) dO * [- log (1-0)] = ~
O' ®*

Thus 1^ and I2 are diverges if u “If and hence sb £* 
is an admissible estimator of (l-©)*1, and from (7) it

follows that is the only admissible estimator.
□

The following is an example to illustrate that,
i

an admissible estimate may become inadmissible after trun~ 
cation eventhough ©T. ©. This example have been discussed 

by Kale (1964)* !

Example (2.2.2) :

Let dp(x) » dx,

P(x, ©) « 4
-© e©x

0
1

x > 0, ® w (-», o) 

x < 0
Here £(©) * - © and EQ(x) » - |

According to theorem 2.1.1 , if
©*

I, = f. (p(©))"u d© 9 «*; and
— o»

U- f <f5(0))'Ud0 =«j

then the estimate
©•

1+u is admissible If u » 1, then

I-i = / (-0) ^ d© ** [-log ©;]

and
o .

l0 ~ f (-9) d© * [-log 9
©<

V
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Thus for u 1, and I2 diverges, Therefore,
y 1 1* *x is an admissible estimate of - g .

Now we shall do the truncation and check for 
admissibility.

Let! the set A be (c,*»), c > to then
OO

b(0) = / P(x, 0) dx
V-®

dx

c©b,(0) « ecw as © £ (- ~l, 0)
Therefore,

PA(,X » 0)
© e

©(x -*c)

where

Here ®T - (—, 0). Thus® T
, Ra(y» ©) = E [[yx - gA{©)] / x£A^) 

gA(e) * ce -A©

x > c

x < c
®2* (-“» 0)

Now, we shall show that no estimate of the type*yxI
is admissible for c© + 1/ © , !RA(Y,e)« E \_[yx- £2gl-)]2/ x Ja}

E [[ye - (se-1)]2/ X € a]
= lo2 [yOx - (e04l)]‘! PA(x,e) dx
= !i. / [yWt(«»-l)2'
©2 C

S Y^2X2 (-©) ?°^x"c^dx
<?'

- *i<£kiL /y©x<-©)
©2j «T

2(c©-l)y©x] PA(x^) dx
iSS^i)2 /g e0(*-O dx
w C

dx

i
i
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= o-V- ^ 

,T2[(1'-^1-2y%^ + %Sl

Thus
,6Ra(y,©) 2y 2 2 2—^—  = -g- [ 1+ (l-<c©) .1 - “5 (1 -c»)z

dy ^. 0' 0'

1
2 A'

is strictly decreasing function of y for every © C@ . 
Hence for y < - there exists y'1 suchjthat

RaCy'S©) < ra(y,©) for every © 6© .A' ' -*7 ' 'iHence yx. is*inadmissible'for 0 <-y,<x-2
Consider y x-( , -y £.[“* J-3i ’4 » 2 ^ - ' * _»
construct a (x)-where

0 , ejY0x , x > * 
.v-a0(x)=^ ° c

lo

(8)

c.
Now,

y\» ©) =
1 OO ,

C- . tao(x)-(ie
C /

Vaor' " fo
1 1OO Cg/ [a„(x)-(£§=!-)2] P.(x,e)dx - /[y„x-(£S=1)2]pa<

-c,
= / ' '°[c-(Sfi=i)2]PA(x,e)dx +/ [v-(-c|=i)2]PA(x,e) dx

,@)dx

)



91C/Y,
- S '[Y0x-(£§=i)2] PA(x,e)dx - s [Yox-(£|=i)^] PA(x,e)dxC9-lx2«

c/Y,
c/y,

>- (S|=i)2]-[Y0x-(S|=l)]2,PA(x,e) dxc9-l% i2
c
c/y0« / ' ,w (c-Y0x) [«+ Y0x-2(&|=i)] P^(x,9) dx 

P«
X € ( c , c- ) 

Yo
4 e - y x > 0

max c (c + yox) ss c + c = 2c 
x € (c »^0)
min /C.Q-1
9 €

/W-iSv 9 ' min <c - i )' = a
e e<3>

Thus as x £ (c , - ) and 9 £ (4-°°# 0) thenyo i
(e - vox) [ c + yox - 2( ?|=1 )] < 0

Therefore 1
RA(ao>e) - Ra( y0. 0) < 0

That is
Vao"e) < VYo>e) for every 9€©

Hence YqX is inadmissible,for i < Y0 < 1 (9 \

From (8) and (9), yx is inadmissible for every y in 
(0, l)v 0

(B) Admissibility or inadmissibility is preserved in 
truncation:__________________,■______

i
In this' subsection it will be shown that, an inadmi-1 9

ssible procedure continue to be inadmissible even after 
truncation for the exponential model discussed above.
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Further an example is given to show that an admissible 

estimator continue to be admissible one even after trun­

cation.

Lemma (2,2.2)s

For any mode of truncation all the estimated yx, Y>1 

continue to remain inadmissible.
i

Proof;
P(x, ©) = p(9) e9x - (- », °°)

i

we have seen that E(X) « ~P'(©)/P(9)^g(9) (say), Therefore, 
P(8) / x e0x dti(x) =

Similarly, 0
■, s , 2 ex , , 2P' (e> - P(p) P"(e); P(e) / x .e0 dn(x)  ------------r-w—------ —

P (©)
We shall consider only the estimates df the form av(x)-yx 

! " • » 
where y is positive constant, The value y=l provides the

i t

unique unbiased estimate of E(x) within’ this family a^x’)* 

Let yx be the estimator of g(6) then its risk func­

tion is given by
R(yx,e) = E[yx-g(©)]2

* / [yx-g(e)]2 P(x,©) dyi(x)

= / [y2x2+g2(©)- 2yxg(©)|] P(x,©) dp (x)

« S’2/ x2P(x,e)dp,(x) + g2(©) / P(x,^)d^(x)- 2yg(©)/x P(x,e)d*i(x)

*Y2 /x2 p(©) eGxd|Ux) + g2(©) / p(|©) e0xdji(x) - 2y g(©).
i

c j/ x p(©) e9x d|x(x)#
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= Y2 / x2 p(©> G0xd}i(x) +[ ] / *3(©) e0x dp(x) -Y
iiall.M »>~ - 2y ( ) 7 x ?(0) e°K 4* (x>

V -2 r 2 P,2(6) --> P(0) P’-'(0) , = y. L ---------- J
P,2(©) p,2(©)

o- - <

(10)

ft i3._
For given © € © one can obtain Y0(®) .tfie point of minima

* , t i .
at which R(yx,©) is minimum. By e.qut ting- the derivative of 
(10) to zero we have

1 •’ ;
y0 (e) = —.727■ UD

1+ 3 ■ (e)--PCojp* »(©i
0 ~(e)H
1

< i (12)
1 + P (e)

P‘2(0)— var vX/

-2= [1+ var(.x)[ |Q log 3(C')j for all ©€©

Thus for y > 1> R(Yxf ©) > R(x* Q) and hence for
" 1Y > I, Yx is inadmissible ,

Let
A = inf Yn (©) = YP(g)

0 €®> 0 0
B = sup Y0 (©) = Yq(S)

© e® 0 0

(13)
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licence the possible admissible estimates lie in the interval
mapped by _2 -iY© = [ 1 + var(x)[ |g log p(©) J ]

say [A, B] (see figure) 4
Let the distribution is truncated to the set A, then

■ b(6) =A/ P(9) e9x djx(x); Then the
truncated p.d.f, is PA (x,9) = e?x. In this case

, 2RA(yx, ©) = E [[yx.-gA(©)] /x e A ] 
Proceeding on the similar lines, as given above, we get

-2 “1
Y0(©) = [ 1 + var( x /x £ A)[|q log 3 < 1

(14)
"The possible admissible estimates lie In the interval

mapped by (14) say [A*p»
Thus for y > 1

R (yx, 0) > R(x, ©) for all 9 
hence yx is inadmissible.

Thus for any mode, of truncation all the estimates 
yx, y > 1 continue to remain inadmissible, q

Example (2,2m.3)s
Let P(x,p) = ncx Px (1 - P)n”x, x = 0,1,..n, 0<P<1
Taking dominating measure is n , thencxP(x, b) can be written as,

P(x, p) = px (l-p)n-x
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- ( i5p )x u-p)n 
= ( l-p )n ex l09 l?p

= ( 1 + e®)“n e*® *, where 9 = log

sb p(x, 9) (say) , - »,< 9 < “
Now we shall show that admissibility is preserved in 

truncation. .9
Here 0(9) = (1 +e®)“n then E(x)! =---- Q

i x + e
According to theorem 2.1.1 , if u = 0, then

9» 9*
I, = / (p(9)“Ud9 bb / d9 sb oo and

I« *■ / (p(9))“Ud9 = / d9 = ~00

9 9' .9
the estimate -j— = x is admissible' for Hence

e + 1
x is admissible for p.

Let distribution be truncated at the point x = 0, then 
its pdf is

p~(l-p)“ "
x = 1,... ,n; 0<P<1 •

/ x ncx PX^“P) 
P(x, p) = 1 - (1-P)n ’

After reparamatrization,( 1 + e*rnP(x, 9) =
Here

-- ',----- 9.-n|eX9»® T* (“co>co)=© •
1 - (1 + ew) ■ 1

9 %-n
0(9) = ( 1 + )

l - ( 1+ e9)“n

According to theorem 2.1.1 , if u = 0 then
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00

I2 =
and

Thus X is admissible forB(X). Hence the admissibility 
is preserved in truncation, £j~,

Remark
Whatever be the form of truncation, x continues to be

i 1
admissible. This follows since- I^and I2 are diverges for 
u * 0 even after truncation.

(C) Karlin's Conjecture;
, In this subsection assume thafcdJ)* R and therefore 

we assume that @=®T.

Karlin's sufficinet condition^ for admissibility of 
, u > 0 are discussed in theorem 2*1*1 .
Karlin has conjectured that *,* these conditions are 

also necessary * '«
We have shown (Lemma 2.2.2)that all estimates yx, Y>1 

continue to remain inadmissible after truncation, hence
i

we will concentrate on if, O < y < !• Lety=s (l+u)~*‘» u£Q.

Considering the negation .of the statement of the
Itheorem ‘2.1,1 , we have the following result.

If is inadmissible then 4tleas't one of the
conditions (a) and (b) is not satisfied. That is 
if is inadmissible then one of the integrals must be
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convergent. If Karlin's conjecture be true then the 
convergence of at least one of the integrals implies the

vinadmissibility of •
Lemma (2.2*3)

If Karlin's conjecture be true then an inadmissible 
estimate , u ;> o continues to remain inadmissible
after truncation.
Proof:

As 1+u is inadmissible, at least one of the integr­
als in condition (a) and condition (b) is convergent,

S ~u
say, / (p(9))’ d9 < «»

q.
Now for the truncated distribution {3(9) is to be 

replaced by |3,(9)/b(9) and we consider
S

Now i#

{. IH8- !-■«

Therefore,
P

e/ [ m
it implies that

9/ (9*

ru = bu (9) (p(9))ru
< [p(9)]“u , fop allu>0 and as 0<b(9)<l

for all 9 € (g> .
S]“Ud0 < / p(0)"Ud9 

9*
Ulill )“UdQbtoy } ay 00 (15)

(15) shows that if Karlin's,conjecture is true and
Iis inadmissible then it continues-to remain inadmissible
1

even after truncation.
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(2,3) Admissibility of &cale parameter s

Brown (1966) and Farrell (1964) haye given sufficient 
conditions for the admissibility of the estimators of the 
location parameter. By making log transformation one can 
obtain the corresponding results for the scale parameter. 
Zidek (1969) has shown that when the estimation problem is 
invariant under a group' of transformations G and the indu­
ced group S acts transitively on the parameter space, the 
best invariant estimator is formal Bayes, Portnoy (1971) 
has given sufficient conditions for the admissibility of 
a formal Bayes, estimator, when the loss is quadratic. We

_ i ’

apply Portnoy (1971) result for estimating a power of the 
scale parameter by the best scale invariant estimator. So 
to begin with we give Portnoy (1971) result which is use­
ful later for determining the sufficient condition for 
admissibility.

Let ,© and A is the real line R. Consider the 
loss function L : ©X A X [0, «°) of the form,

L(9, a, x) - V(0) (a- g(«))2 

where v . ® x ^ (0, «) and
g : (H)—^ R ,

' are measurable functions,
Let p(x, ©) be the density function with respect 

to a a- finite measure p ; assume.that
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P(x, 0) > 0, for all x€)C > © € © (1)

The non-randomized decision rules, which are measurable 
functions 0 ; A, and define the risk of 0 to* be

R(0, 0) = / L (0, 0( x)) P(x, 0) dp,(x)
The formal Bayes rule <$% is given by,

/ g(0) v(©,x), P(x, 0) % (0) d0 
% ' ' •/ v(0, x) P(x, 0) it;(0),d0

(2>
where jn(,0) is the prior distribution of 0,

0 £ (®> ©) = » (©» S) is an interval in the real line.
Define, for 0 €, (0, 5) and x £ 36

■ ,0 ’

h.f©,' x) = / [ 0 (x) - g(0')] P(!x,0') v(0',x)s(0') d0l
1 q TZ

and
h2(©»x) = P(x, 0) v(@x) it(0)

i

X(9) * EJ hl(Q’*? ].*(©) v(0,x) 
0 ho(0,x)

(3)
(4)

(5)

note that h2(0,x) .> 0, for all 0£ (g,3) and x cBe .
We give below only the statement of the theorem (Portnoy 
1971 pp 1382) in which the formal Sayes estimator 0_ is

It
admissible under certain conditions;
Theorem (2.3,1) :

Consider the statistical decision theory problem 
described above. Suppose ’K(O) is a continuous .function 
of © on (0, 3), and suppose further'that for every compart 
(. closed finite) sub-interval [a0,bQ] d. (0,5)
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/ 0 r(sL, e) #(«) de < - (6)

a 71O
Suppose also that for eveiry G € (0,5) cdnditions (A) and 
(B) hold.
(a) / R(0tt,o) 'n(o) d© « « 'yfe")- * 00 £7)

c c
(b) / R(0„,e)S(e) <» « - =* / -7^7 ““ ($)■

0 Q
then 0% is admissible.
(I) A Sufficient Condition for Admissibility :

i * I

In this and the next Sub sectipns we discuss the results 
of Divakar Sharma (1973).

Let X have the probability density 0. P(©x) 
with respect to Lebesque measure, where © is positive on 
(0f«) and I^(x) is 1 if x € A, 0 otherwise, Let the loss 
,in estimating ©m by d, where m is a real! number, be 
(d-©m)2 ©~2m .

The prior density of © w.r.to Lebesque measure is1 I
O*1 i.e. %(Q} 9 i f Q<0<«*. Using (2), the formal Bayes 
rule is,
0 („) = S eV2” p(x,o) s dew T"©*2*5 P(x,e) | d©

jg-m-,1 g p^9xj jg f Q-m p(0x) ^
-o ___ 1- . ___  A.

f* or2m p(©x) d©
TV® X81 P(t)dt/x
Ttfas

75=2m p(©x) d©

x ‘2m p(t)'dt/tf where t = ©x
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-m </ P<*> dt* '7va"p(t)dt 

o

• - x-m [ /V1" p(x)dx / f x-2”1 P(x) dx ]
0 o

gL(x)= b x-m, where b »[ /°x”rap(x) dx/ / x~2mp(x) dx]
** *U 1 ® Q , O
Thus the best scale invariant estimator of Q01 is the 

formal Bayes estimator bm x-m .
Theorem (2.3.2)?

The estimator bm X"m of ©m is admissible for quadratic
i

lots if,
I I“ 2(mrl) “ _ 2

J ^TxT— W* * t**2 p(t)dt] dx < °°*
Proof?

By using equations (3), (4) we Sjhall find h,(©,x).
5

h,(©,x) «/[ 0 (x)-g(O*)] PCx^’.M©*) ic(9‘) d©*
jshere^(x) is the formal Bayes estimator of «P is

bm X~m with respect to the prior distribution.
it(9') « 0 < 0* < », Therefore,

h.Ce^x) = /' [ bm x“m - 0,m] 9* P(9*x) ©»“2m(9f)”1d9‘
©
■ / [bm -(©'x)m] o*“2m x"m P(©'x) d©*
9
= / (bm - tm) t~2m x2m x“®P(t)dt/xf where t=9*x 
©x

h,(©,x) = x"1-*1 / (bm - tm) t”2m P(t) dt 
©x

and
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h2(e,x) = p(x,e) v(©,x) %(9)

= 6 P(0x) 0“2m g a P(9x) ©”2m

Then
h,(©,x) 2 ~ h.(©,x) 2JT<Fn ] = / r 1 ’
2 Xy9X/ Q

°° 2 - x2(m"1^x/(bm-tm)t“2raP(t)dt]
E©[ h^(0,x7 1 ~ J ^ K^(©','x) J * Q P(0X) dx

. © P(©x)^ dx(©-2pi)2 [p(Qx)]
h. (0jX) 2 oo x2(m-l) eo ; 2

E©[ KTQ X) ^ ~ J ■""ZETi-- - S (bm-tm) t" mP(t)dt] .dxw 0 e-^Hn-Xp(Qx) Qx .
Further from (5)

= V ^ - (e) v(^) ■

oo 2(m-l) oo m « I 2 , 0m
= S -xL'i ■; ■■ ' [ / (bm-tm) t_2m Pft) dt j i e-2 . dxo 0 ™ ■LP(0x) 0x w

00 „2(m-l) oo _ 0rn 2= / “%r-~—-■ [ / (bm-tm) t~2mP(}t) dt] dx
o © mP(0x) ;■ 9x !

00 /„/Q\2m-2 oo Q 2 ,« / *~4n ''—H C / (bm-tm) t" 111 P(t) dt] „ — dy, where y=©x
0 P(y) y ©

oo 2(m-l) oo 2- 0 / 'YP(y)' ' [/ (bB •t“) h"2” pjt dt 3 dy

That is, oo 2(m-l) oo i 2X(0) = © / [x/(bm-tm) t*fm F(t)dt] . dx 9.(9)
) 1a ©. D , where

D =/ ^TraT f ^ (bm-tm) t"2m P!(t) dt]2 dx
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It is given that D is finite, under this condition we 
shall prove that all the conditions of Portnoy (1971) 
theorem 2.3.1 are satisfied. '
(i) 'K(O) is continuous function of © on (0,°°), it follows 

• i
from (9) since D is finite,

I
Consider,

00
r XR(0W,©) - ©m)* @”2m © P(9x) dx/■ (bm x"m» ©m)2 

/ [bm-(9x)m]2 ©~2m 9 P(9x) dx
oo n n

f (bm -tm)2 t“2m 9 P(t). i dt, where t = Ox 
/ (bm - tm)2 t“2m P(t) <?t

However, we assume R(0_,9) < co. Tftat is
it

J (bm - tm)2 t“2m P(t) dt < « (10)
In the following we shall show that conditions (A) and (B) 
are satisfied. j

i

For the of the condition (A). c«*>$ider,73,.*- I '/RCeUe? <*> |C * i
/ C0/ (bm-tm)2 t“2m p(t)dt]g| d© 

since 0 < ^ (bm -tm)2 t”2m P(t) dt «>, therefore,
i

it is enought to prove !
°°1 |

J « d9 = <*>, and which^is obvious.
o . :

Hence vmd«Y (10) L.H.5. of (A) holds.
Now R.H.S. of the condition (A) is ■
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0
*' >T©7 ~ rJ

d9

. (JQFurther as D.is finite, to prove / = *> it is
enough to prove f

C
dO_
e ■ **, and which is obvious. 

Hence the R.H.S. of (A) holds under D is finite. 
Similarly, for the L.H.S. of the condition (B) 

consider,

9
/ R(0„. e) * (8) de « ~
/[ /“(bm - t“)2 t_2m P(t) dt] J

■0"
since 0 < / (bm - tm) 't“ m P(t) dt < ™, therefore

0 : 
it is enough to prove

Pi :/ i ‘d9 = w, which is obvious. How the 
o w '

R.H.S. of the condition (B) is
r° dQ P dQe / K5J ~ / 57*

W JQ.

Further D is finite to prove / = 00 it is enough to
p 1 0 iprove J i d9 = «>, which is obvious. Therefore R.H.S.

0 .
of (B) holds under D is finite. Thus the conditions 
(A) and (B) are satisfied when D is finite.
Hence,

If R(0%f9) < 00 and D is finite, then the formal Bayes 
estimator bm .X""ra is admissible for 9m. 0
Example (2.3.1);II all.

Let Z have the Probability density 9. e”0Z', Z>0 with
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respect to Lebseque measure, and Z^Zg,.. ,Zn be independent
n

and identically distributed as Z. Then £ » X have a
p.d.f., P(x,©) = i (n©)n e”nr"

fn
X , x > 0. 

This density can be written in the form.

P(x, ©) * © .p(Qx)

it implies

S , in" e"-1 e-n®x x"-1, x > 0 
fn

P(x)
nn xn*~^-nx 

fn
x > 0

Therefore, the formal Bayes estimator is, 

x'
oo eo _ i

bm = / x-m p(x) dx / / x^ipCx) dx

= / 
o

e»

-m nn

/ *

fn
n-m-1 -nx

xn-l e-nx dx /;/ -2m nn n-1. -nx
fn dx

rn ,- m
n-m /

i.e b_ «=

n
fn - m

dx / x 
0

fn - 2m

n-2m-l' -nx dx

n

-m
m (rT - 2m 

That is

bm x“m =
h m

n -2m
(nx) -m

is the formal Bayes estimator of 6®!with respect to the
! I !

prior distribution g , 0<9<®°. From theorem 2*3*2 for

bm x -m to be admissible, it is enough to show that
/ ..-1?. [ / (bm-tm) t~2m p(t) dt j2 dx < 09

o p(x) x
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Now L.H.5. of (11), that is
“ 2(m-l)

D = / -
o p 

Part-I

^— / / bm t“2in p(t)dt - / t“m p(t) dtl dx 
\x i x II J

bm / t”2m p(t) dt 
x

bm jglL
rn
nn

ft n-2®"! 5nt dt
X
oo

bm / e-Y (X) n-2m-1l where y = nt
Tn

bm n2m
nx n

CO

rn
_2m ri-2m-I /„v\r ^

- bm (n-2m-l)I 2 |
co F“0

(since / e”^ t^ dt = kl 2 
x r=o

f e-Y yn-2m-l|dy
nx

r -nx
r I 
r

rii ■)

ss n-mt n-m
n^

fn-2m
1 n-2m n

m n-2m-l
ss n,_ Vrwm e~nx 2

fn r=o
similarly m n-m-1
Part-II n

" rn
e-nx fn-m 2

r=o
Hence, L .H.S. of (11) =

"-2m-1 inxlr

(nx)
rl

inx)r

r=o
r

rT

= / 
o

“ x2(m-l)
TxT

.m _-nx nr2m-le

jm -nx n e
j«n>»
V n-m

Tn

2m ft— s2 “A _(fn~m). r
(rn )2 o

tn

n-m-1
2

r=o

, 2 
ir = o

(nx):
r I }

x2(m-l)
niriFre"nx

rn

inxi
ri

dx

e-2nx k2 dx
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n-2m-l

where K = Z 
r=0

.2m-n,

inxlf _ V1 inx). 
r=0rl

« n^m~*n( fn--m)2, r°° x2m-n-l e-nx K2 dj£
fn 0

Case (i) :
if m = 0, D < »,

Case (li): 1 i
if m > 0 then

D * -—I-lLorSaL. / x2m-n-l e-n?tj- s ^ Igx},, j2 dx 
In

rl

n-m-1 / n* 2 2(n-m-1)
Since [ 2 - iMf- ] » Z

r=n-i2m y 6 r=2(n-2m)

suitable coefficients a2n-4m* *'*»a2

From (12),

2m-n

r=n-2m

ar x for

.. (12)

n-m-1)

0 » n —~ (fn~»)2 Z / a xr+ m~n”1 « nx dx < co
|n r*2(,n-2ra) o r;

(provided n > 2m.

Case (iii):
if m <, o then *

.2m-n
TT”

n-2m-lf'= ([^m)2J~^n~1 e"nx f. dx.
s=n-m
i

Arguing as above we will have ] 
02m-n

D a

Thus

_ o 2(n-2m-l) °° 0rn u.B—— (fn-m)2 S / x2m-nrl+a e-nx dx
[T> s=2(n-m) o

< co provided n > 2m- ;

D < co fa* all n > 2m 1
Hence -Us-3 (nx)~m is admissible fo* ©m if n > 2m- 

fn-2m !
D
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(II) An Admissible estimator in an axponential familv :

In this subsection the following theorem gives us an 

admissible estimator of an integral power of the natural 
parameter in an,exponential family,!when the loss is quadratic

t

It may be noted that if the range of the variable is 
(0,~) then the natural parameter is the reciprocal of the 

scale parameter.
Theorem (2.3.3):

Let the random variable z have the probability density 
p(9) e"®z r(z) with respect to Lebesque measure, where r(z) 

is a probability density on (0,b) with b possibly infinite,.

Let the parameter space under consideration be (0,°®), Also 

let nP . .
(13)

nb
J r (x] \ n

) x"2lri dx < »

where rn is the n-fold convolution of r, and with (XCXbn, 
m* = max (0,m). Let

lim
OCen^-1 S exp(-x) xj-2mV (x) dx <n n

, V .. (14)
for 0< j < 2(2m*-m-l).

Then for n > (nZ)~m is an admissible estimator
m ft-2m

of Q with an integral m and .quadratic loss .

Proof;—------ n

The probability density of X =.£.£ Z^ can be seen
to be Pn(e) e-°xrn(x).

Let tht loss In estimating 8® by d be (d-e1*) e-2“
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and the prior density for © be 9n-1/pn(©). Then the formal

Bayes estimator of ©m is X“mj that is
frT-2m

(x) = -E1=JS x-“
it [n^2m

The risk of this estimator is
R ( 0„<x). o) = e [ e"2™ (a - em)2]

/e-2m ( fen x-m . en.)2.p{ e) dx 
o frf-2m

/>(e) exp(-Qx) rn(x) 0-2m( em - x'-ffl)2.dx
j"i>-2m

Now rn(x)-is a probability density and (13) holds, there- 
-fore the risk function is continuous in 9, 9 € (0,°°).

Now we use theorem 2.3.1
h2(9,x) = P(x,9) V(9,x) *' (©)

« pn(9) exp(-9x)rn(x). 9' *2m ©n-1
Pn(e)

exp(-Ox) rn(x) 9,n-2m-l
and

(15)

h,<e,x) =g/[0x(x)-g(e’)]p(x,e;l)v(e',x)x(e') ae1
00 i— ~ _ .n-1= /{.ffi=E x-m 'vex) ds9 rnr*2m ftn(on© r&
/ Jfi=B *-■» e-8’x rn(x) qtn-2m-l dgl_ 
0 [n-2m

P“(0')

e
/“e-0'* rn(x) e'n"m_1 d0'

‘WISEST- '
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- JSffi x-“ rn(x) / e-®’x e.n-2m-i 
fn-2m

d©'
©

00

- rn(x) / e-®,x Q’11-111-1 d©'
©

h,(©,x) « x~m rn(x) I, - rn(x]
fn“*2m L*1 

Where
i, = /Ve’x e-n-2m-1 <»:.

i2 (say) (16)’

©

- - <n-2m-l» n-Jm_1 e~9x (Ox)3 
xn-2m j=o 1JI

QO It <«X
(since / e“t t** dt - fcJ £ e 

x j=0
similarly,

x^
IT

/ e‘ O’x Q,n-m-l d©*
©

Therefore, 

h,(©,x) .

(n-m-l)i n-m_1 e-°x 
xn'm j=0 J

^Sxl 3

In-m ~m „
WMMW jr T*

(v\ (n-2m~l)1 
' y n-2m

, n-2m-l -Ox

fn-2m
_ (x) T'1

n n—m . _xn~m j=0

~rn(x) x-n -2-1 £fW
n j=0

1 mm, m M 1 _ "'6 X i
- rn(x) -PU xm“n £ 

n j=0

j=0
“0xjjexl

,(ex)i
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m > 0 then

h,(©,x) = e~exrn(x) fn-m xm"n [ Z 
1 j=0

m-n . n:2m-1 i©xH 1
j0 j=0 '

h^G.x) = - rn(x) |F-m xm“n e‘HX "T1,m~n _-6x “T-" (Qx)J
j=n-2m J

If m < 0 .then

m-n ~0x n-2m~l (0x)^
j=n-m

1^(6,x) = rn(x) F-m xm-n e
it

Let m* « max (0,m) then ' 1
1^(0,x) = “i(-Sgn m) rn(x) xra~n fn-m e“®x £

J •

n-2m-l+m* (QxQj

j=n-m-m* J*

where (Sgn m) denotes the sign of m. 

Hence
h, (0,X) 2

7\(0) E0 [ ] it(9) V(0)

,-f”0 \

n-2m-l+m*

V
-Sgri (m) rn(x) xm“n fn^m e"wx" z" ” (©x)J/j

............ ... .................. . __ J-y-m-m*

e-®x rn( x) O'1-2"1-1

x s-2m
P (©)

2 nb
- e"-1 J x2(”-n) e-®x rnj(x)['; r ■ : (SxjJ/j'Ldx

n-2m-l-m*
: I
j=n-m-m*

/r- \2 n*l-2m* T, ?(m-n+m*) ~ * „Qx
:(fn-m; ©n 1 m J (9x) x m e yx

o
rn(x)

n-2m-l+m*
[ Z (0x)j/jH T dx

j=n-m-m*
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Therefore,
M&) =en+1-2m*(nr-m)2/nbe-°x rn(x) x"2m* x

o *
a polynomial in Qx of degree 2(2m*~m~l) * dx

..(17)
Because of (13), except for a constant

Q/ exp(r-'9x) rn(x) dx, 0<^ j<2s(2m*--m-l) .,.(XB)
isamgff (for a non-negative 0), hence^v (0) is a continuous 
function of © on (0,°°). Thus for admissibility we have 
only to check Portnoy conditiop's A and B, Since,

lim 
©•-3 0

nb/ e“Qx
o rn(*) dx

= / rn(x) xJ“lm dx < oo, Q_£i42(2m*-m~l)
4* hBy taking a typical term with j LOi3<2(2m*-m~l)3 power of

(q)x from the polynomiat . A typical term of will be

Qn-2m* (fn~m)2 / rn(x) dx.
Hence # °

lim b.ip.1 = o provided n > '240,.
0^0 w

Thus for sufficiently-small © say 0<6<C/1,
^(0) < 0 , Therefore,

r *r 1 oJ H©) ® | 
o

dO = “

Hence for n > 2m, then R.H.S, of (B) is satisfied, 
the condition (B) is satisfied,

Hence
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For condition (A) we write (18) as
/ e~®x rn(x) xj“2m* dx +J e“6x rn(x) x^"2m* dx,
o c

0«Xnb
Then lim .0* /be-°x r.(x) x^2”* dx '

©->, « c n
< lim 0k e-00 /^(x) x^201* dx
- e-»~ cr "
ss 0, for , every real It and 0<j<2(2m*-m-l)

Thus
X(O) = 0n+1-2rn* (F-m)2 / e-®x rn(x) x^2m*

m ©n+l-2m*
©C(P-m)2 / e-t rn(g)(g)^-2m* ^ ,where

ec*0n^ (|n-m)2 f e-x r„(£) x^2”* dx
0 n w I

Therefore,
lim H|1 = lim e"-j-1(rr-m)2 {/C»"xrn(5) xJ"2”* dx
©-}«> y ©^>oo ^ y

< «» , from (14)
From (19) the nature of the two integrals

co oo/ i d© and / A d© is theisame. 
C >.(©) C y

Hence as

..U9)

/ i a© = 9 we have. / d9 = °°
c’ e c'

Thus under the condition (14), the FUH.S. of the condition 
(A) holds.

Thus under the conditions n > 2m and condition (14),
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the Portnoy conditions (A) and (B) are satisfied.
Hence *EzS (nZ)“m is an admissible estimator of ©® 

fn-2m
with an integral m and quadratic loss for n > 2m.

Example (2.3.2);
0

Let r(z)
£
i z^”1 e"z, z > 0, k > 0

then
rn(x)

Ink

0 ,

t1*-1: e“x.

otherwise,

x > 0

n
The probability density of X * £ Z.; is

i=l

p(x,e) = pn(e) e-©X 1-- X -1 _—x
Pfe f x > 0. 

jn%2 rt-2mLet the loss in estimating © by ,d tye (d-9 ) © and
the prior density for © be 9n“Vpn(9|)* Then the formal

Bayes estimator of ©m is (nZ)!“®,.
p-2m1 l ,

In order to show that the formal Bayes estimator is 

admissible for estimating ©ra, we jshall verify conditions 

(13) and (14) given in theorem 2.3.3,. Therefore,

/ r„(x) X-2m dx = / L.
° pat
i

x1*-1 e“x X-2” dx
I i

= p /[,*
!!.

°° nk.r2m-l 0-x dx

_ fn-lr^m- 
r- ir|n.k

< o® provided n^ > 2m <
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and
9C

lim e^J"1 / e“x xJ-2m* rn(g) dx
Q—^ oo o

lim ’ e"^-1 /V^e’ xJ-a»*-nK-l gl
3 oo, o

-nk

HSc.
dx

-L- lim e»-j-rtt /SCe-x(1+8> xj-2<«*+nK-l dx
[riSj ©-* oo o

lim _ Es^*+SS
(

^+l) j-2m*+iak 9 0< j <2 (2m*-m-l)
[hfe 0“^°°

< only if rk > n. ■

Thus conditions (13) and (14) holds if nk >, n > 2m .

Hence (nZ)”m is an admissible estimator of Q111
|n-2m p


