
CHAPTER.I

DIFFERENT ASPECTS OF ROBUSTNESS
1.0 INTRODUCTION : In this chapter the different aspects of
robustness are discussed. The concept of robustness is 
explained in the Section 1.1. ' In the section 1.2. the 
aohivements expected from a robust procedure is considered. 
The definition of robust sequence and some general discussion 
is given in the section 1.3. Some examples concerning robust 
estimator and robust test are given in the last section of 
this chapter. ■
1.1 CONCEPT OF ROBUSTNESS : In any statistical analysis
problem, one applyies various statistical methods to arrive 
at a conclusion. One always tryies to set up a theoratical 
model for experiment so that standard techniques become 
applicable. While fitting appropriate or the best possible 
model, various ’errors* can be committed so that final 
results could be inconsistent. These inconsistency could be 
due to imposing unnecessary conditions or excluding necessary 
conditions or ignoring more appropriate model etc. 1

For example, (i) if a linear regression model is fitted 
to a data which is known to have quadratic regression, the 
results may not be consistent and (ii) in fitting of a 
distribution to a given data (which perhaps contain 
erronnious observations that can be identified easily based
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on the nature of observations) if the necessary conditions 
are not imposed then again the result could be inconsistent.

Generally, statistical inferences are based upon sample 
observations as well as prior assumptions or beliefs about 
underlying situation. The prior assumptions may be about 
form of distribution (distributions of variable of interest) 
or independence of sample observations etc. These 
assumptions are mathematically convenient for further 
developement of the theory. The validity of such assumptions 
in a particular problem has a great value.

To quote from Huber(1981)Page 1; a mathematical model 
can be justified by stability principle. This principle 
states that a minor error in choosing the mathematical model

v
should cause only a small error in the final conclusions.

Here, small has relative meaning. The actual decision 
about smallness depends upon the importance of quantity of 
interest in particular situation.

One can observed that most common statistical procedures 
(especially those which are 'optimal' for underlying model)
are sensitive to minor deviations from prior assumptions.

<xWhen a model is fixed, there are vrious methods to proceed
A.

and reach at conclusion. The high degree of sensitivity of a 
test procedure may not be always desirable (By sensitivity of 
a test we mean the performance (power) of the test gets 
drastically changed when the model is slightly changed). When
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assumptions required for validity of a test procedure are not 
satisfied, one cannot go for applying that test procedure. In 
such case, one has to look for those procedures which would 
be insensitive to small aberration (departure) from 
postulated assumptions. This leads to concept of robustness. 

In the following we discuss the various aspects of
srobustness:

i) A statistical procedure is described as robust if it is 
not very sensitive to departure from the assumptions on 
which it depends (Kendall and Stuart, Vol.II,
(1960),P.483)

ii) Any test or estimate that performs well under
modifications of underlying assumptions is usually

V

referred to as robust (Rohatgi (1976),P.580)
iii) Robustness is a sign of (or reflects) the insensitivity

of test procedures or estimators to small deviations from 
underlying assumptions (Ray (1981), P.1).

iv) Robustness signifies insensitivity to small deviations 
from the assumptions (Huber (1981), P.l).

v) Robust statistics is a body of knowledge, partly
formalized into "theories of robustness", relating to 
deviations from idealized assumptions in statistics 
(Hample (1986), P.6).
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vi) Robust statistics, as a collection of related theories, 
is the statistics of approximate parametric models 
(Hample (1986),P.7).
Main feature of the robust methods is their reduced 

sensitivity to a departure from the assumptions. Robustness 
theory helps us to understand the behaviour of statistical 
procedures in real-life situations.

For example, if we consider normal distributions with

location parameter 8 and variance 1, then it is known that the

mean x is minimal sufficient statistic. But however, if the 
model is slightly enlarged to the class of all normal

distributions with location parameter 8 and variance c* such

that l-e1<o-*<l+s4 where e^and e* are arbitrary very small, 
then x will no more be sufficient. That is the sufficiency of

x is lost when the model is slightly changed and ii) in the 
aspect of robustness, discussed above, the word departure is 
used. This departure may be of the following types :

i) departure from normality,
ii) departure from independence,

iii) departure from true value of mean,
iv) departure from correctness in recording the 

In the following we shall explain the above 
departures in the context of t-test.

observations, 
four kind of
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The distribution of the t-statistio defined by 

t - or t* - . (1.1.1)

where x and S are computed from n observations x1,x1,...,xn
on a random variable x, is obtained on the following 
assumptions :
a) The distribution of the random variable x is normal.
b) The observations drawn are mutually independent.
c) The mean in the population is exactly j»0.
d) There are no errors in recording the observations. 

Suppose we wish to use the t-distribution to test the
hypothesis that H0:ji=^0 against H4 :.«*>*0 on the basis of n
observations. If the valuevof t is large, that is, 
significant at level cc(small). Then one or more of the 
assumptions (a) to (d)’ may be wrong.

We know that for large n, the statistic t has an 
asymptotic normal distribution irrespective of the population 
being sampled (explained in example(1.4.2), that is, for 
large n, the distribution of t is independent of the form of 
the population. In other words, the t-distribution is 
insensitive to moderate departures from normality. Thus a 
significant value of t may not be interpreted as indicating 
departure from normality of the observations.

Now, let us consider the effect of departure from 
independence on the t-distribution. Suppose that the
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observations Xj.x^, ....Xjj have multivariate normal

distribution with Efx^-P,and P is the common

correlation coefficent between any x^ and xj, i?*j .

Therefore, the expected values of the numerator and 

denominator of t1 of (1.1.1) are

nE(x - Pn)4 
E(S4)

[l+(n-l)p] _ ^
<rz(l-P) 1-P

JUEL

where V(x) = E(x - pQ)4 - [l+(n-l)p] and E(SZ)

Thus, the ratio =1, if P-0E(S )
> 1, if P>0
—> co, if P-»l

o-^(l-P)

It follows that a large value of t is expected to occur when 
P is positively large (p-^+1), evenwhen pQ is the true value

of the mean. Thus a significant value of t may be due to 
departure from independence.

When the assumptions (a),(b) and (d) are true and the
true value of the mean is p^Pp. The ratio of the expected 
values of the numerator and denominator of t4 of (1.1.1) is

n<y - + i* T X »Crx

and is equal to 1 when p = pQ.

Thus the large value of It I do occur when assumption (c) is 
wrong that is mean of the population is departure from its



true value.
There is departure from the correctness in recording the 

observations but there is no way to study the effect of 
recording errors on the distribution of t. With some care in 
recording the value of observations departure from assumption 
(d) can be avoided. ■
UL AGHLVEMENTS—EXEECIED_£BQti.A.ROBUST..PROCEDURE : To start

with we have a model which hopefully is a godd approximation 
to the true set up, but we cannot and do not assume that it 
is exactly correct. Any statistical procedure should satisfy 
the following desirable features:

i) It should have a reasonably good (or optimal) efficiency 
at the assumed model.

N

ii) It should justify stability principle, that is, it should 
be robust in the sense that small deviations from the 
model assumptions should impair the performance only 
slightly.

iii) It should safeguard against gross error or outliers 
(Huber(1981), P.5).
There is another term which is frequently used in 

literature concerning robustness study namely "outlier". The 
outliers affect the estimates of unknown parameters and may 
make them insignificant.

When a sample contains outliers or more generally to get 
a sample which is free from outliers, a two-step procedure
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can be applied.
i) To apply some methods which will prevent inclusion of 

outliers in the sample, that is, clean the data by 
applying some rule for outlier rejection, 

ii) To apply usual statistical methods on cleaned or outlier 
free data.
Such procedures are called outlier resistant procedures 

and results obtained from such procedures are called outlier 
resistant conclusions.

The above procedure apparently seems to be a reasonable 
one but it may not be applicable in practice due to some 
reasons. It is not possible always to carryout two-steps 
procedure sequentially. For example, in multiparameter 
regression problems outliers are difficult to recognize 
unless we have reliable, robust estimates for the parameters. 
Even though the original batch of data along with home 
outliers has normal behaviour, the cleaned data may not have 
normal behaviour (there will be statstical errors of both 
kinds, false rejections and false retentions).

Due to these reasons, it is difficult to justify the 
performance of such outlier resistant procedure. Hence, if 
needed, one should prefer robust procedures over outlier 
preventing procedures. ■
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1_2 SOMEVIEWS OF ROBUSTNESS : In this section we shall

discuss some views of robustness.
i) Robustness due to change in the_shape of„the

distribution : When there is aberration (departure from the

right path) from postulated assumptions, the shape of original 
distribution of variable is a'ffected. Generally, the changes 
in the tails of the distribution are vital or dominating. The 
tails are either shortened or lengthened. Usually, the 
lengthening the tails of the underlying distribution increase 
the variance or error in using concerned test statistic

increases significantly. On the other hand, shortening the 

tails of the underlying distribution produces quite negligible
v

effects on the distributions of the estimates 
(Huber<1981),P.4).

A test procedure which is insensitive to such small 
changes in the shapes of distributions is a robust one. 
ii) Robustness due to contamination of distributions : Many

times, it is not easy to justify the exact distributional 
form of underlying variable. In such cases, one' can mix a 
distribution whose exact form is known with actual 
distribution. Such mixing is called the oontaminalion of the 
distributions. The proportion in which exactly known 
distribution is mixed is called the degree of contamination. 

One obvious question arises, when one can ignore the

IMR. BALASAHHB KHARDEKAR UBR*H
WIVAJI UNIVERSITY KOLHARM.
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effect of contamination on behaviour of test?. When 
contamination effects are significant, one must look for 
procedures which will be insensitive to small degrees of 
contamination. Such procedures are also called robust 
procedures.
iii) Let us consider an estimator Tn (for a fixed sample

size n) and a distribution F. Tn has a certain distribution 
(Tn)F n under F (that is, if all observations are distributed 

independently according to F). Robustness of Tn required
that the distribution of Tn changes slightly whenever the

distribution F is change slightly. This slight change in 
distribution F may correspond to 
i) The diffusion of a small probability mass over an 

arbitrary range*
ii) The diffusion of the whole mass into a small

neighborhood(Refe.Hample(1968),P.6). ■
In the following we shall define a robust sequence.
Definition(1. 3.1): Robust Sequence: A sequence of estimators

{Tn} is robust (qualitatively robust) at a probability

measure F iff for every £>0 there exists S>0 such that for 
all Q in class of distributions \ and for every n:

n(F,G)<£4(F(Tn>,G(Tn>) <«, (1.3.1)

where n is a suitable distance measure.



We illustrate this definition as follows. 
Let distance measure be

I 0.-0, In(F,e1.fe1> - I V 1 I
Let x'vN{0,<rt) s Fq 

y~N{0,ff2) s F0

and

Tn = x - sample mean. 

Therefore,

'0,Tn b F,ln N<0,-2-)

and

F0,Tn
'V* M(0,

n(Fo,F0) « -Lfl <g

and

n(F0,x » F0,x> .Lfti,
<r/v^n

This implies,

I© I < g
a/T5 0-

Therefore,
£cr S

observe that for S< ~== , the conditionA/n
satisfied. Thus, x is robust at F0 .

(1.3 . 1) is
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Definition ( 1.3.2): A sequence {Tn} is robust in a 

neighborhood of F iff there exists n>o such that
n(F,G)<^{Tn} is robust at G. ■

JL.4 ILLUSTRATIVE EXAMPLES : In this section we shall discuss

three examples of these the first one is to show that the 
median is robust as compare to the mean and the second one is 
to Bhow the t-test is robust. In the third example different 
robust estimators are computed for Cushny and Peebles data.

Examolef1.4.1): Let xt,xz,...,xn be a sample with mean x
ywe&v*.

drawn from Here estimate for the population^ is the
sample mean and it has the property of unbiasedness for all 
normal populations with finite mean. We know that for normal 
distribution mean and median are same. Therefore, = mean ** 
median. Also we know that the sample mean is affected by 
extreme observations. A single observation that is either to

large or to small may make x worthless as an estimate of J*. 
Since the sample x,,xz, ...,xn is from normal population.

Occasionally something happens to the system and a wild 
observation is obtained, that is, suppose x^(i=l,2,...,n)

coming from NC-Mjcr*) with probability t and from NfisKcr*) with 
probability (l~t), where K>1 and OStSl. In other words all 
observations have the same mean, but the errors of some are

increased by a factor of a/TC.
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Equivalently, we could say that the X£( 1®=1,2, .. .,n) are

i.i.d.(independent, identically distributed) with the common 
underlying density function

f(x) - tf1(x) + (l-t)f2.(x), (1.4.1)
where ft(x) is the p.d.f. of N(j»,ffz) and fjjx), the p.d.f. of

N<*i,K<rz).
Of course, here also x = -4- X4 is again unbiased for j*.

i=l
That is

E(x) - tE(x,) + (l~t)E(xi) - «>i+(l~xc)ji - y 
Here both ^ and cr* are unknown and one wishes to estimate

Now, V(x) = J (x->0* d[tF1+(l-t)F1](x)
= tj (xr-j*) *dF*(x) + (1-t) 

= to-H(l-t)Kcr2

(x~y)zdFz{x)

“ o-*[t+(l~t)K]

Therefore,
V^x) - -4- V(xt)

= [t+(l~t)K]

Thus,

V^(x)—as K—(1.4.2)
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That is, if K(l-t) is large, then V6(x) is large and we see 
that even an occasional wild observation makes x subject to a
sizable error.

We know that the sample median is a much better estimate 
that the mean in the presence of extreme values. In the 
contamination model (1.4.1), if we use M the sample median of 
the xj, (i=*l, 2, . . ., n), as an estimate of n (which is the

population median), then for large n we have 
V(M) - EUt-*)1

* 4n[f00]*

(Refe.Rohatgi(1978),P.310, Theorem 7.3.7) 
But f(j*) - tf1(ji) + (l-t)fJk(j»)

*= ___ t..... + __lrfc
cr a/ 2tt o- a/ 2nK

a^2F
Therefore,

V(M) % __Jl_____ _
[t+(l-t)/ «sk]z

V(M) * ——, as K.—(1.4.3) 2nt
This implies, the estimate M will not be greatly affected by 
how large K is, that is, sample median will not be greatly 
affected in presence of a wild observation.

1
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Now,

Hil « -2_ft+( 1—t)k] [t+ --Iffc-I1 V(M) n L v ' J L */TTJ

Thus, —>co, as K—»<» (1.4.4)

Note that this ratio is independent of j* and or2. From (1.4.4) 
and using (1.4.2) and (1.4.3), vwe conclude that the sample 
median M becomes a better estimate of .n than the sampe mean. 
That is M is robust.
Example?1.4.2): The tests on population means (that is,

student's t-tests for the mean of a normal population and for 
the difference between the means of two normal populations 
with the same variance) are rather insensitive to departures

' stfrom normality. The tests on variances (that is, the X -test 
for the variance of a normal population, the F-test for the 
ratio of two normal population variances) are very sensitive 
to departures from normality.

Let Xj.x^,...,Xh be a sample from a population with 
mean m and finite variance cr2. Let x denote the sample mean

and S2, the sample variance.

where

The t-statistic for testing the mean of a normal 
population with unknown variance is given by

(1.4.5)



-31-

Here the numerator and denominator are independent. We will 
observe here that, if the observations are coming from normal 
parent population and as n—>co, then the distribution of t 
itself approaches normality.

Moreover, if we are sampling from non-normal 
populations, the central limit theorem assures us that sample 
mean and that of variance will be asymptotically normally 
distributed and this can be shown as fallows.
We know that

P = correlation coefficient between x and S*

= __ covtx.s1)..
vV(x) V(S*)

Now,
V(x) =

and
V(S*) = --ft.— - (for large n>

and ,

Cov(x, S*) = —,

where pz, j*3 and j*4 are central moments.

Therefore,

Asymptotic correlation coefficient between x and S* is 
p*P « ..... * - ..—

a/

If the non-normal population is symmetrical, then (odd

order central moments are zero).
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Therefore,
P = 0

and hence x and S2 are exactly uncorrelated and asymptotically 
independent. So that normal theory will be hold for n large 
enough.
If ^^0 and when is large, then P will be smaller but will

remain non-zero and students t-distribution itself approaches 
normality as n—»oo.

Thus, whatever the parent distribution the statistic 
(1.4.5) tends to normality, that is, for sufficiently large n, 
the statistic t has an asymptotic normal distribution 
irrespective of the population being sampled and it has finite 
variance. In other wordp we can say that, for large n, the 
distribution of t is independent of the form of the population

and hence t-test is robust.
aIt can show that the X -test is not robust (Refe,Rohatgi 

(1976)).
lxample(1.4. 3); With the various aspects of robust statistics,

we start with a simple example. Let us see the data, given in 
Hample(1986),P.79, by Cushny and Peebles (1905) on the 
prolongation of sleep by means of two drugs. For ten subjects, 
two different values were recorded (one for each drug). The 
ten pairwise differences (that is, the set of differences
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between drug effects per subject) are as follows:
0.0, 0.8, 1.0, 1.2, 1.3, 1.3, 1.4, 1.8, 2.4, 4.6.

At the begining, this example considered as a normally 
distributed sample, but if we look at these observations, it 
reveals that the normality assumption is questionable, due to 
the occurrence of 4.6 which appears to be an outlier.

The ordinary arithmetic mean for above data equals 1.58. 
If we observe all these values in the data and the 
corresponding mean of these values, we come to the conclusion 
that, this mean is not a good representative of the data and 
hence not a robust. The other estimates which are given below 
are robust, although not all to the same extent. The 
10%-trimmed mean(defined in third chapter) is 1.4 and the

v
20%-trimmed mean corresponds to the average of the middle six 
numbers, yields 1.33. The 10% and 20%-Winsorized 
means(defined in third chapter)are 1.44 and 1.36 respectively. 
The median (50%) equals 1.30. The Hodges-Lehman(1963) 
estimator H/L, which is defined as the median of all pairwise 
averages (x^+xj)/2 for i,3=1,2,...»10 amounts to 1.32.

Now, by just looking at the data and making a subjective 
decision that an observation 4.8 is 'far away’ from the other 
nine observations. So it is an ’outlier'. The average of the 
remaining nine observations is 1.24. The estimate obtained by 
such procedure can be considered a robust estimator.
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Summarizing these results, we note that all the robust 
estimates range from 1.24 to 1.44, leaving a clear gap up to 
the arithmetic mean 1.58. In general all these robust 
estimators give quite different answers, because some of the 
estimators are more robust than others (Here the median is 
much more robust than the others). ■


