CHAPTER I1

INFLUENCE FUNCTION

2.0 INTRODUCTION

In this chapter we define the influence function of an
estimator (statistical}ﬁuncti;nél) and explain the use of it
for the study of robustness.

Some properties of influence function (IF) are also
given. The IF is essentially the first derivative of an

estimator (viewed as functional) at some distribution (for

details see definition 2.1.4). A number of examples of robust
and non-~robust estimatcrs\are given. IF of rth raw and
central moments at distribution F are obtained. The relation

S

between the IF of 8:D. and that of variance is obtained. The

influence functions for the sth quantile and the g-quantile
range have been obtained. The I# of MLE is also obtained.
Also influence functions for coefficient of skewness and
confficient of kurtosis are calculated. Some tﬁé;réﬁ?and
lemmas, related to IF, are given,

2.1 INFLUENCE FUNCTION AND RELATED MEASURES OF ROBUSTNESS

Hample (1968) introduced the idea of the IF. The IF was
originally called the "influence curve", however, the more
general name "influence function", in view of the

generalization to higher dimensions. The IF describes the
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effect of an additional observation x, on a statistic
(functional T(.)), given a (large) sample with distribution F
and it is denoted by the notation IF(x;T,F).

4 Before going to definition of IF, let us introduce the
definition of derivative thaﬁ has been used to investigate the

properties of estimators. Thig derivative is known as

Gateaux derivative.
Gateaux derivative [Differentiation of functionals T(.)]

Given two points F and H in the space ¥ of all distribution

functions, the "line segment" in ¥ joining F and H consists

of the set of distribution functions { (1-t)F+tH, Ost¢l }

[also written as{F+t(H - F), osts1} }. Consider a functional

T defined on F+t(H — F) for all sufficiently small £t. 1If
the limit

d,T(F; H—-F ) = }in O (2.1.1)

exists, it is called the Gateaux differential of T at F in the
direction of H.

Note that d,T(F; B —~ F) is simply the ordinary

right-hand derivative, at t = o, of the function

Q(t) = T[F + t(H — F) | of the real variable t. That is

& .
d,MF; H-F) = ——T[F+e@-©] | __, (2.1.2)
provided the limit exists.
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Let us illustrate one example of Gateaux derivative. The

th

r central moment of a distribution F may be expressed as a

functional
T(F) = », = f (x — »p)T dF(x)
where up = [ x dF(x)

If distribution G is such that G = (1—-t)F+tH = F+t(H-F),
oftél, then

PG = J x dG(x) = JlF + t (PH - }lF)
Therefore,

T(G) = i (x—1g)T AG(x)

Y

= [ (xng)T dF(x)

+t [ o)™ d[ae0-F(0] (2.1.3)
In order to obtain Gateaux derivative 4 T(F;H-F), it is enough

. .
to find — T(F +t(H-F)) | . Hence, by

differentiating (2.1.3) w.r.t. t, we get
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§%~ T(@) = — r ( #g — »f ) J ( x — pg )T ! dF(x)
+ I ( x = »g )T dA(x) - F(x)]
— tr( »yg — »f) f ( x — 1g )T d[H(x) - F(x)]
= ”r(”H”””F\)I(x"”G )T dG(x)
+ j ( x— nrg ¥ d[H(x) - F(x)].
Therefore,
~1Tm)! zf[(x~pﬁ~r» x]d [H(x) = F(x)]
et t=0 1

Thus, QGateaux derivative is given by

d,(F, H—F) = (x~)F — rpp x = Ep[(x-»)T= ru._,x].

Now in the following, we define the IF. Let R be the
real line, let T be a real-valued functional deéined on some
subset of the set of all probability measures on R, and let F
denote a probability measure on R for which T is defined.

Denote S the probability measure determined by the point
mass one in any given point x € R. Mixture of F and some
o, are written as (1-t)F + to,, for o<t<l. Then the influence

function of T at F is defined as

TC(1-t) F + ta, ] — T(F)
t

IF(x;T,F) = Eim | ], —ecxce.  (2.1.5)

e
if the limit defigg for every point x € R,
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It may also be written asm

e
&t
provided the limit exists.

IF(x;T,F) = T[(1-t)F + ta ] | ~ oCx<m, (2.1.6)

t=0,
Note that the right member of (2.1.5) is the directional

derivative of T at F, in the direction of S

From the above definition of IF, we observe that the IF
describes the influence of an additional observation x on
the estimate T {This statistic T depends on a larde number

of i.i.d. observations drawn from F and is consistent for

functional T(F)}. The IF(x;T,F) is the first derivative of
functional T at an underlying distribution F. The IF is a
collection of directional derivatives in the directions of

the point masses &y, and is usually evaluated at the model

distribution F. It is a very useful tool to define some
important robustness measures such as the gross-error
sensitivity, local-shift sensitivity and rejection point
which will be defined in subsequent section. The influence
function measures the effects of infinitesimal perturbations
and its purpose is to measure the differential effect of a

point mass at x that has on the functional of interest.
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Example (2.1.1). For exponential distribution with parameter
g >0 having p.d. f.

f(x) = 07X _ x2 0

= , Otherwise
Let T(F) = mean of the exponential distribution
= 1 .
e
Therefors,

T[(1-£)F + to,]| = Mean of [(1-t)F + ta.]
= (1-t) —é— + tx,
where Ay is the distribution function having point mass of

one at x (x?0).

Ry definition (2.1.5), we have

TL(1-£)F + t4,] — T(F) ]

IF(x;T,F) = Lo [ c

(1-t)

iy |

1
+ tx P

and
V(T,F) = f IF(x;T,F)2 dF(x)
o l?. a
= I [x~ 6] 8e "X dx
0
= 1
@z’

Wwhere V(T,F) is an asymptotic varianee
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Remark (2.1.1) : From the remark (iv) on page 222 of Serfling
(1980), note that there exists a function T,[{F;x], x € R,

such that

4, T(F;acF) = T,0F;x) = [ T,0Fix] dF(x)
In the followind we prove some mathematical propérties of IF.
The proof of Lemma (2.1.1) Qasically depends on remark (2.1.1),
“which states that the expected value of IF is always zero.
Lemma (2.1.2) is concerned with the asymptotic variance of
statistical functional T(F). We note that, if T(F) = K
(constant) for all F then IF(x;T,F) = o.
Lemma (2.1.1) : If F is a distribution function and T(F) is
a statistical functional at F, then

J IF(x;T,F) dF(x) = o
proof : consider
LLLH.S = IF(x;T,F) dF(x)

= | d,T(F;5,F) dF(x) By using (2.1.2) and (2.1.6)

= [ [1,tF:x1 = | 7,0Fix] dF(x)]dF(x) by remark (2.1.1)

= | T,[{F;x] dF(x) — I T,(F;x] dF(x)

=0
= R.H.S.

That is the expected value of IF is always zero. N
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Let x,,x,,...,x, be i.i.d. from F and F, be the
emperical distribution function. Let T(F) be the functional of
interest and define the statistic T, = T(x.,x,...x,) = T(F,).

By asymptotic variance of T(F) we mean the asymptotic
variance of /. [T(F,) — T(F)].

Lemma (2.1.2)

A

V(T,F) = J IF(x;T,F)2 dF(x)

Proof : Let the observations xi(i=1,2,...) be i.i.d. with

common distribution F and T(F) be the statistical functional
at F. If some distribution H is near F, then the leading
terms of first-order Von Mises expansion of T at F which is
derived from a Taylor expansion [Hample(1986),P.85],
evaluated in H is given b;

T(H) = T(F) + | IF(x;T,F) d(B-F)(x) + remainder,
that is

T(H) — T(F) = I IF(x;T,F) dH(x) + remainder (2.1.7)

since, by lemma (2.1.1), f IF(x:T,F) dF(x) = 0O

If the observations xj are i.i.d. with common continuous

distribution F, then by the Glivenko—Cantelli theorem

(Rohatgi, (1978),P.300), the emperical distribution Fn will

tend to F. In order to obtain the required relation, we

substitute the emperical distribution Fn for H in the above

eXpression (2.1.7), we obtain
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~H [T(F,) - T(N)] = ~7 f IF(x;T,F) dF,(x) + remainder

S, - TR ] = » IF(x;;T,F) + remainder (2.1.8)

~ D i=1
= ~—£:=— g: Z; + remainder
~ 0 i=1
A ]
= ~n Z

Here, the remainder is asymptotically negligible. Since the
observations x; are independent with common distribution F,

then by CLT, we have

~a T~ N[xJ’n E(Z3), V(Zi)]
where

E(Z;) = J IF(x;T,F) dF(x) = O

and
vy = [ st Rt R
Hence, the leading term on the right—hand side of (2.1.8) is
asymptotically normal with mean zero and variance
J IF(x;T,F)  dF(x)

Thus,

8 1, = TR ] ~ N0, v(T, )]
where, the asymptotic variance equals

VLE) = [ IFeGT, B daF(x)

pt

Hence the required. 1

Following are some important measures based on IF, which

measure the robustness properties.

1) Gross—Error Sensitivity [GES]1 : The gross-error

gsensitivity of T at F is the supremum of the absolute value of
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the IF. That is
Gross-Error Sensitivity = rX = sup lIF(x;T,F)l, (2.1.9)

where IF(x;T,F) exists for some T and F, and the supremum

being taken over all x. QGross-error sensitivity rX may also

be denoted as r*(T,F).

Gross—error gsensitivity is the central local robustness
measure, measuring the maximum ﬁias caused by infinitesimal
contamination. It measures the worst possible influence
which a small amount of contamination of fixed size can have
on the value of the estimator. Therefore, it may be regarded

as an upper bound on the asymptotic bias of the estimator.
From the value of r*(T,F) we can conclude the following.

i) Since r®(T,F) is the supremum of the absolute value of

IF, so the influence of any outlier cannot exceed
oX(T,F).

ii) If r*(T,F) is finite, then we can say that T is B-robust
at F. Here B is used tn mean the boundedness of

gross—-error.

1ii) If r*(T,F) is positive minimum for Fisher-consistent
estimators, then T is the most B-robust at F. That is
an estimator minimizing GES is known as the most
B-robust.
iv) If the gross-error sensitivity of T at F is infinite,

then we can say that T is not robust.
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11) Local—-Shift Sensitivity : The second summary value of

the IF, which is also important for robustness considerations,
is the local-shift sensitivity. When some values of
observations are changed slightly (as happens in rounding and
grouping and due to some local inaccuracies), this has a
certain measurable effect on estimate. Intuitively, the
effect of shifting an obser;ation slightly from the point x to
some neighboring point y can be measured by means of

IF(y;T,F) — IF(x;T,F), because an observation is added at.y
and another one is removed at x. Therefore, the effect of
"Wiggling” around x is approximatly described by a normalized
defference or simply the slope of IF in that point. A measure
for the worst effect of "Wiggling” the observations is

N

therefore provided by the local-shift sensitivity, which is

*

drnoted as 27 and is defined as

¥ = SUP |IF(y;T,F) - IF(GT,F)| . ly—=xI™* (2.1.10)
For the proper interpretation of %*, however, one has to

keep in mind that it refers only to local changes of the value

of the estimator, so that even an infinite value of 2% may
refer only to a very limited actual changes.

111) Rejection point : It is an old robustness idea to reject

extreme outliers entirely. It is aften of interest to know

~whether an estimator rejects outliers and, if so, at what
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distance?. In the language of the IF, this means that the IF
vanishes outside a certain area. Indeed, there may be a
region outside of which the influence function is identically
zero. The contamination in those points does not have any
influence at all. The distance from the centre of symmetry
of a distribution to the point at which the influence
function becomes identically ‘zero, is called the "rejection

point”. It is denoted by the notation p* and is defined as

p¥ = inf{r>0; IF(x;T,F) = 0 when Ixi>r}. (2.1.11)

All observations farther away than the rejection point

are rejected completely. Therefore, it is a desirable

feature, if p¥* is finite. Note that, if there exists no such

r, then F¥ = © by definition of the infimum.

IF t GBS

N

|

'
' '

~
b

|
!

Reéjectiun point

s Figure(2.1.l)

The sketch of various pruperties of an influence function
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Let us work-out an example to illustrate the above.

Example(2.1.2) : Let us compute the IF of mean for poisson

distribution where the sample space ¥ equals the set of

nonnegative integers {0,1,2,...}. Let x,,x%x,,...,x, are i.i.d.

n

with respect to poisson distribution Fg(x), where the unknown

parameter @ belonds to the parameter space @ = (0,®). The

AN

density function of Fg is

-8
%u)=J;£L,x=OJJ““

.

Let the estimator T, = ~%— f: xj; » and the corresponding
i=1

©
functional is T(F) = Z: xf({x) with existing first moment
x=0
about origin (mean) for any distribution F on ¥ = {0,1,2,...}.

This functional is clearly Fisher consistent, because

& . & -8 ex o N 6)("’1
T(Fg) = }_ xfa(x) = ), x 2—8° =90e® )} & =g,
x=0 x=0 X w=1 (x—1)!

for all 8 in © = (0, ).

Now,
T[(1-t)Fg + ta,] = Mean of [(1-t)Fg + toy]
= (1-t)8 + tx
Therefore, by definition (2.1.5), we have

IF(x;T,F) =_%i8 [ TL(1-t)Fg +ttax] ~ T(Fg) ]

= %ig [ (1-t)6 ; tx — @ ]

=x—-e
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Here the contaminating point masées may only occur in points
X = ¥, so the IF(x;T,F) can only be calculated at integer
values of x. Thus, the IF of T at poission distribution is a
discrete set of points.

The pictorial representation of IF of the mean at
poisson distribution F with a specific value of 8 = 3.5 is
shown in the Fidgure(2.1.2). The IF is only defined for

integer arguments.
AN ]

///
3 /
y, /
2
yd
I}‘ ] /
. 1 2 3,x/g -

Filgure(2.1.2)
Influence function of the mean at the poisson

distribution with 8 = 3.5

The gross—error sensitivity is given by
r*(T,F) = SYP |1F(x;T,F) |
- %@ el

=
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since IF is unbounded so that the mean of the poisson
distribution is not robust.

Remark(2.1.4) : WeAcan generalise the above result for any

distribution F. If T(F) = f xdF(x) with existing mean @ at
F, then IF of the mean at F is given by
IF(x;T,F) = x-8, — o<x<o (2.1.12)

«

and GES is

r*(T,F) = @ , when xo (2.1.13)
Comment. : The IF of the mean for any distribution is equal to

x—8, — wo{x<r, where the mean of the distribution exists and

is equal to 8 and the IF of variance at any distribution is

(x-8)% ~ c¢?, — w<x<®, (proved in particular case of

Lemma (2.2.2)), whenever the second moment about mean exists.
In casevof poisson distribution although the mean and the
variance are equal, their influence functions are not equal.

In the following sections we compute the IF of various

*

functionals like,
1 .
1) T8 = [ xfarea = [ [Fae)]” de = ut
0

ii) T.(F) = J (x-1)TdF(x) = rtP central moment of

distribution F=#r, where # is the mean of distribution F

sth quantile of distribution F

i

iii) Qg(F)

iv) Sq(F) = gq-quentile range of distribution F
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v) Tg(F) = skewness of distribution F
vi) Tcs(F) = gcoefficient of skewness of distribution F
vii) Tck(F) = coefficient of Kurtosis of distribution F.

The existence of all these functionals is assumed.
In further discussion; the distribution G is used to

denote the mixture of distrjbutionsF and &, such that

G = (1-t)F + ta,, O¢tsl.

2.2 IF OF THE rth MOMENT :
Lemma(2.2.1) : If the rtP moment TT(F) = I xFdF(x) at F with
existing rth moment 2T about the origin, then

IF(x;TF,F) = xF — uf, x € R.

Proof : We are given the rt® moment TT(F) = J xTdF(x) at F

with existing rth moment p»¥ about the origin.

Therefore,

Tr(@) = rth moment about origin of distribution @

= | ¥ dam

= [ ymalt-oF + o] ()
= (1-t)n¥ + x¥
Thus, by definition (2.1.5), we have
r — ar
IF(x;TT,F) = %15} { T (Q) ¥ T (F) }

= {1;3/8 { (1=t)ul % txf — ut }

=xr-—-}1r x =R (2.2.1)

Hence the proof.
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In parteular, if r=1, we get the IF of the mean which is
IF(x; T, F) = x — p.

Lemma(2.2.2): If for a given distribution F,

Te(F) =VJ (x-1)T dF(x) with existing the rth order central

moment L then IF(x;Tr,F) exists and is given by

LY

IF(x; Ty, F) = (x0)F = o, (xw) — 2, x &R

where » is the mean of distribution F which is known.

Proof: Here, we have

T.(F) = [ (x~#)T dF(x) at F with existing the rth

order central moment o
Therefore, .

Tr(G) = rth order central momenﬁ of distribution G.

- J [ v - {C(1-t)n + tx}]" da(y)

where (1-t)r + tx is the mean of distribution G.

That is

T.(G) = J [y = tx)]T d[(1-0)F + ta,](y)

= [ [m7 = ebty=) T Gom) + LY 62 (yp) T2 om) 2

— L HEDTET () T] d[(1-8)F + ta ] (y)
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= (1-t) [»r~rt(xwﬂ)pr~,+ri§?ll ¥ (xn) i,

— L HEDTET () ]+ £(1-6) () T

Hence

. T {(1— -
IF(X;Tr,F) _— %‘}8 ,; r{( t)F ; tax} Tr(F) }

o (x__}l)r — r(r}l)}lr—i — _;,lr (2.2.2)

“

Hence the required.

In partecular, if r = 2, we get the IF of variance at F

which is

IF(x;T,,F) = (xn)? — ¢

where T,(F) = { (x-1)* dF(x) with existing the variance c?.

kL

«

Lemma(2.2.3): If the standard deviation (S.D)

T (F) = Avf,f (x—n)? dF(x) at F with existing S.D.o" and
known mean » of F. Then

» z z
IF(x;T ,F) = /=0 xeR, >0

Proof: We are given the S.D. T (F) = Av/{f (x—»)* dF(x)

which is defined for all probability measures with existing

S.D. .
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Therefore,

T (@) = S.D. of distribution G.

_ | rra-simetx]® day)

A [mny = teem]? d[(1-t)Frba,] ()

LY

/| [(y—)2 + £2(x0)2] a[(1-t)F+ta ] (y)

= /\',-‘

1=ty o + 82 () 2]+ s(1483) (xn) 2

I
>
AN

= B (say)

Hence

FGGT L F) = BB T (mb‘— T _(F) }

= %tg {A/T = A/T} since T (F) = gt = SR

= 1 B—- A
%3&8 { t(~ B + &) ’

v i l . o
Hp { st=tllbeelzetaiisd o )
- ix:§§3293 (2.2.3)

Hence the proof.
Now we obtain the relation between the IF of S.D..and that of

variance. From Lemma(2.2.2), the IF of variasnce is given by

IF(x;T,,F) = (xn)* —c* (2.2.4)

1BRARY
BALASAREB KHARDEKA!Lk”‘

eMivAJl UNIVERSITY. KOL
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and from Lemma(2.2.3), the IF of 8.D. is given by

1IF (T ,F) = ‘x'“;; —c? (2.2.5)

from (2.2.4) and (2.2.5), we have
IF(x;T,,F) = 20 IF(x;T ,F) | (2.2.8)

which is requiredyrelation between IF of S.D. and that of

b

variance.

2.3 THE INFLUENCE FUNCTIONS OF s®P ~"ANTILE, o-QUANTILE RANGE
AND MLE :

For the distribution H, let Qg(H) be the sth quantile of
H. That is, Qg(H) is such that H(Qg(H)) = H(H '(s)) = s, O<s<l.
lE.iQxﬂthg_st“gunnhilg_: Let Q4(F) and Qg(G) respectively be

the sth quantileéof F and G. Where G = (1—-t)F + to,. Here

existence of quantile is assumed. We know that frdm (2.1.56)

IF(x;Qq, F) = £18 { Qs(G);QS(F) } = 5%— [QS(G)]|;=O (2.3.1)

In the following we shall find the R.H.S of (2.3.1). We

need to consider the following three cases.

Case I : If x> Qg(F) = F~'(s)

If x> Qg(F), then

i

Glag(@)] = (1-t) F(Qq(G)) + 0.t
s = (1-t) F(Qg(G))

—_—8
1—-t

]

Flag(@)]



Differentiating this w.r.t. t, we get

2 [ag(@] = —= 1
ot D= 5T Fa e

&
————— j -3
s @]l = 57y
Therefore, from (2.3.1), we have

IF(x;Qq,F) = x>F ! (s)

—_
£(F ' (s)) ¥

Case II : If x< Qgu(F) = F !(s)

If x< Qg(F), then

Glag(@)] = (1-t) F(ag(@)) + ¢
8 = (1-t) F(Qg(®)) + t

Flagia)] = 5=+t

Differentiating this w.r.t. t, we get

s =1 1
(1-t)*  £(Qg(6))

5 .

oo [9s(®] =
4

_ 5 — 1

&t DQg(G)]'tzo £(F~(s))

Therefora,

IF(x;Q4,F) = x<F~!(s)

—s =1
f(F '(s))
Thus, the IF for sth quantile of F is

. = . -
IF(x;Qq, F) ETFZT?ETT , if x>F ' (s)

=_8s—-1 _ j ctpay
F(F-(s)) ’ if x<F7 7 (s)

= 0 , if x=F Y(s)

-BH~

(2.3.2)

(2.3.3)
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and GES is
*
’F =._~._:,.._5....___
R T
= finite

This implies that the sth quantile (if it is exists) is

B—robust at any distribution.
Graphical representation of the influence function for the

sth quantile at F is shown in the following figure (2.3.1).

Figure(2.3.1)
Influence fugction of the sth quantile

Particular cases :

i) If s = %, then Q, ,(F) and Q, /,(G) become the medians of

distributions F and G respectively.

Therefore,

IF [x;Q, /,,F] =

1 1 —1q
ZE(F-T(172)) ° if x>F 7 (1/2)
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= -‘1 -1
ST Ty M x<ETH(L/2)

=90 , if x = F7'(1/2).
This can also be written as

-1

]F(X;QI/Z’F) = Zf(F”‘(l/Z))

(sign 0 = Q)

sign(F(x)=1/2)
28(F ' (1/2))

]

and

1

GES 2Ff(F~ Y (1/2))

i

= finite.

ii) If s = % and F = # (the standard normal distribution),
then Q!/z(§) =

Therefore,

Fi(s)= &' (1/2) = 0
and

t[Fis)] = ¢ (0) = —Les

Thus, the IF of the median at the standard normal

distribution (5.N.D) is

IF [x;Q, /. %] = _§$%6Y , if x>0

- 1 .
2%(0) if x<0

= Q , ifx=20
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It can also be written as

IF[X;Qx/z'E] = —Sigalx - sign(x) [(”%~)1/2]’

2%(0)
where sign(x) = 1,0,—1 as x>0, x = 0 or x<O.
and
GES = 2¢%0) = (-4-)!/% = 1,253, which is minimal

value, so the median is most B-robust. "

For distribution F, let Sq(F) be the gq—quantile range of F,

defined by Sy(F) = F7'(1—q) — F '(q), = O<q<l/2.
JIF _for the g—quantile range :Let Sq(F) and Sq(G) respectively
be the aq-quantile ranges of F and G. Where distribution G

is, as usual, the mixture of distributions F and Oy Here the
existence of q-quantile range corresponding to distributions

F and G is assumed. We know that
IF(x;8q, F) = —— [Sq(@]],_. . (2.3.4)
T 2t q t=0
So that, in order to bbtain the IF for the g-quantile rande
at F, it is enougﬁ to find g [S (G)]l . We need to
&t 9 t=0

. econsider the following three cases.

Case I : If x<F~'(q)

<
1
_ - - —-=G
1 - /" ¥
< 1
- |
g !
2 :
rs
q ]
Ve
4 '
-~z ! l
x F™'(aq) FY(1—a)
67" (a) G™*(1—q)

Figure(2.3.2)



The gq-quantile range of G is

5q(6) = @' (1-a) - G"'(a)

= F“l[

where
alat(a)]

q

Therefore,

G (q)
and

a[67*(1-a)]
Therefore,

G ' (q)

i

1
i

fi

l-g-t 1_ p-t[ a=t_
el L I sl B

(1-t) F(G7'(q))+t

(1~-t) F(G™'(q))+t
-1 gt

P =]

(1-t) F(G7'(1—q))+t

P st

Differentiating (2.3.5) w.r.t. t, we get

i

2

&
5E—[SQ(G)]

(2.3.5)

Fx:h

i ——[Aza=t]-
f[F—x(|~g-t)] 2t v 1-t f[F-i(g:_t;)] at 1t
-t 1—-t
—q___ - u-~lE
-t(l-a-t (1-t) i—1ea—tyy (1-)
f{F -t )] f(F (1~t)]
—_ g-1
f(F™'(q))

_ﬁﬁ i = -q
et [SQ(G)J‘t=0 C f(F '(1-q))

Therefore, from(2.3.4), Qe have

IF(x;84,F) =

1
Lt !

S
f(F~*(q))

1

— C(F), if x<F~'(a),

i
f(F ' (1-q))

(2.3.6)



whern
C(F) = _ 1 + _ 1
=9 Ly * s
QESE II . If E—i(g)gxgE-’l(l_g)
e
Al ] |
, ---7==C
1_q \//r I"
- |
r i
]
A |
// | |
// ! l
q /{ . |
1
// | : l
A s ' )
- ol L A : > X
Frigg) X P~ (1-a)
G~ *(a) G~ (1~q)
‘Figure(2,3,3)

Here the g-quantile range of G is

54(6)

where
ala ' (a)]
Therefore,

G !(q)

and

Gla™!(a)]

=

i

G™'(1-q) - G"!(q)
-1 T1l-a—-t] . p-t[__q
F 1-t ] F 1-t

(1-t) F(G™(q))
-4 _Q_
F e

(1-t) F7Y(G ' (1—q))+t

1.
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(2.3.7)



Therefore,

67 (1) = F* [Lrast]

1-t

Differentiating (2.3.7) w.r.t. t, we get

-1~

— S (G)] = 1 ' —q — 1 o q..._ ‘
¢ [ q . f[F-l(“l'i:}?)l [(1“’t)2] f[F~"(—1*E-F)] [ (1.._.t)z_ ]
mfm[s @] = e q
at t’aq t=0 f(F~!'(1—q)) f(F '(q))
Therefore,
. - — 1 1
IF(xi8q, F) a F(F-(1-a)) © F(F-'(a)) ]
= = C(F), if F '(q)<x<F {(1—q) (2.3.8)

Case III : If x>F"'(1—q)

3 ——
/)—’/-‘”-‘"‘ F
1=-g ,/1/’1 -
P | |
///. i ‘
i b
7
v 1 |
7/

q 21 i l
ke : | |

‘:_’_/:f - { 4: l S
F™'(q) F~'(1—q) x
G ' (q) G™!'(1q)

Figure(2.3.4)
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In this case the gq-quantile range of G is

Sq(®) = G7'(1-q) —~ G”'(a)

= F“!P%ff’]~ F-iffﬁﬁfl’ (2.3.9)
where
gla™ ()] = (1-6) F(G*(a))
Therefore, .
67 (a) = F7! [%]
and

ey et q=
67 (1-q) = F~ [-1=7]

Differentiating (2.3.9) w.r.t. t and putting t = 0, we get
&

—1G G -— 1—q - g

et [ q( )]ltmo f(F~'(1-q)) f(F™'(q))

-~

Therefore,

i

IF(x;Sq, F) 1 - a [ sty et ]

£(F™'(1—q)) f(F '(q)) £(F '(1—q))

— C(F), if x>F !'(1—-q) (2.3.10)

1
£(F ' (1—-q))
Thus, from(2.3.6), (2.3.8) and (2.3.10), the IF for the

g-quantile range will bhe

. = —_ -1
IF(x,Sq,F? ??F:T%STY C(F), for x<F~ " (q)

- C(F), for F7Y(q)<x<F™!(1—q)

— C(F), for x>F '(1-q), (2.3.11)

y
£(F~'(1—q))
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wvhere

o 1 1 :
CF) = a | Ty fRE (e |

and GES is given by

r*(Sq,F) = ~ C(F)

1
£(F7 ' (1-q))
= Finite

This implies that the g-quantile range is robust at any

distribution.
In particular, (i) if q = i then S, ,, (F) becomes
interquartile range of F which is

8, /4(F) = F7'(3/4) - F™'(1/4) ' (2.3.12)

and its corresponding IF of interquartile range at F is

IF(x;Sy /0 F) = cpmtooyy © CF), Af x<F7H(1/a)

- C(F), if F7'(1/4)<x<F7*(3/4)

1 - -1, '
FF-t(3/a)) C(F), if ¥wF ' (=/4), (2.3.13)

where

_1 1 1
¢F) =2 [ty ¥ st

ii) if q = i and if Sf/a(F) denotes the Quartile Deviation
of F, then

st/a(F) = 1 [F'(3/4) - Ft (/)]
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and its corresponding IF(x;ST/d,F) will be

.qX = 1 - : -1
IF(x,S,/a,F) 2E(F-1(174)) C(F), if x<F '(1/a)
= — C(F), if F"&(1/4)<x<F_‘(3/4)
= 1 - i —!:3 < I
ZE(F-1(2/4)) C(F), if x>F " (=z/4), (2.3.14)
where

A

_1 1 1
¢ =3 gyt RETeTe)

and (iii) if F is symmetric about zero, then these formulae

(2.3.11), (2.3.13) and (2.3.14) respectively reduce to

IF(x;Sy,F) = f(Fm}zi?) ,  if x<F7*(q) or x>F'(1-q)
- ~2a : -1 Y I
Q) if F7(q)<x<F™ ' (1—q),
IF(x;8, sq,F) = 1 , if x<F7'(1/4) or x>F !(z/a)

2f(F™'(1/4))

= i | -1 ~1(4
SE(F-1(174)) if F7R(1/a)<x<F" " (2/a)
and

IF(x;8% )., F)

1 : -1 -1,
AEF- (1 /a)) if x<F"'(1/a) or x>F *(=/a)

— 1 : -1 -1/,
AE(F-1(i74)) ° if F7R(1/4)<x<F " (2/4a).

IF_of maximum likelihood estimator : Under regularity
conditions (given in section 4.4.2, P.152 of Serfling, (1980))
on the family of distributions {F(x;e),SEO} under

consideration, the maximum likelihood estimate of € is the
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solution of
.3
J §5~ Inf(x;e) an(x) = 0
That is, the maximum likelihood estimate is G(Fn), where €¢(F)

is the functional defined as the solution of
&
f —— Inf(x;®) dF(x) = 0

let 8(G) = 8(F+t(o,~F)) denote the functional of maximum
likelihood estimate defined ‘as the soclution of

&
J o Ing(x;0) dG(x) = O
That is solution of H(®(G), t) = O

In order to obtain IF(x;8(F),F), it is enough to find

a a
——a = —— _
&t (G)‘tzo &t (F+t(éx 1) +=0

by implicit differentiation through the equation
H(e(G),t) = O,

where

b
G = F+t(a,~F) and H(E,t) = { — Ing(x;€) dG(x).

J &6
we have
&t e
an |8=9(F) et 't=0 8t £=0 0
that is
Poe o ~1
@ =y [ 1 (2.3.15)
Here
5H

e
5t li=0 = 35~ Inf(x;€) (2.3.16)
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and
&H Pt
2= - [ ~7 Inf(x;8) dF(x)
= - [ [=- 1nf(x;0)]" dF(x) (2.3.17)
J loe ’
using (2.3.16) and (2.3.17) in (2.3.15), we det
S e(F+b(a )| 8 lnf(x:0)
[R—— 2 x—— [ S x: . o 3
8t t=0 9@ J g5 mtxse)]” dF(x)
thus,

52— Inf(x;8)
1F(x;8(F),F) = o 3 R (2.3.18)
f [55— 1nf(x;8)] dF(x)

which is IF of the MLE

2.4 INFLUENCE FUNCTIONS FOR THE COEFFICIENT OF SKEWNESS AND

COEFFICIENT OF KURTOSIS :
lE_IQL_Lhﬂuﬂgsfficiﬁnk_dfgﬁkﬁﬂnaas : Let the functionals

TCS(F) and Tr(F) be the coefficient of skewness and the rth

central moment of distribution F respectively and let,

corresponding to distribution G, these functionals be T  (G)

and T,(G) respectively.

Therefore,
2
1 (k) = LTsO ]
[T,(F)]
and

z
roocq) = L@

[r.@]°
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where \
T,(G) = second central moment at G
2
=,I [t (1-tynstx1]” da(y)
= (1~t)n,+t(1-t)(x—n)? (2.4.1)
and

.

T5(G)

third central moment at G

]

(1-t) [ ,—t% (x=0) =3t (x—p )0, | +£(1=5) T (sn)

Here, the existence of all these functionals at F and G is
assumed.

Therefore,

-~

im [ Tog(@)~Tog(F
IF(x;Tog, F) = L1 [*”ng-gi—l“ ]

_lim i [ [T.(»]* ['rg(»F)]2 }

[r@]”  [r.m]”

= {ig ¢ {{(1~t)[Pz“tz(X~ﬂ)3~3t(xfr)”z]*t(1"t)3(x“”)3}2 -2z
ha [(1-t)m, +£(1-t) () 2] ” ny

N fdjd 1
Lo, ot



'{p§<1~t)2[»z—tz(x~»)3~3t(x~p)»2]2+y§[t(1~t)3(x~»)]2 “
20 S H(1-6) * () ® [p 6% (x0) P36 (), |
- g el it e ] )

“ trZ[(1-t)p, +601-8) () 2]

{22 2Z2-8 12 p (x1)+2(1-t)* »I p (xn)?

—3(1-t)*n? pi(xn)*+ terms containing t with powers
: more than one

= %i@ ! }

p2[(1-t)e, +6(1-t) (2) 2]

z z x-n)*
3 B _ 2 " tey
- }lu[}l.z Ha 6}12(}( ») 3-“._(’: M) 2}2.< ») ]’ n, # 0 (2.4.2)

»,

Remark(2.4.1): For symmetric distribution, the IF of the

coefficient of skewness is zero.

RgmakaZ&A&ZL: The resut (2.4.2) can also be abtained by

defferentiating { %Ziigl%g ] partially w.r.t. t at t = 0.
| T,(G)

IF for the coefficient of kurtosis: Let the functionals
Tox(F) and Tgy(G) be the coefficients of Kurtosis of

distribution F and G respectively and let the functionals

Tr(F) and Tr(G) be the rth central moments of F and G

respectively.
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Therefore,
T (F
TP = 1o
[T.(F)]
and
T4 (G
Tck(G) = 4(G)
[r.¢a)]
where
T,(G) = (1-t)n,+t(1-t) (x—n)* from (2.4.3)
and

To(G) = (1-t) [ni—4bu, (x-0) +6t20, (x—n) 2
+£4 (x00) *]+E(1-8) () 2.
Here we assume the existence of mean, second and fourth
central moments at F and G.

Therefore,

IF(x; Top F) = }ig [—ok2) ; “ek (0]

ST RR -

| [T <G>] [r.m)]*

- lin %{(1~t)[# —dbp () #6570, () 246% Geow) *45(1-6) * () ¢
[(1-t)m,+t(1-t) (=) 2] "
Fa
ni

[ M2 (1-t) e e ) 2+ (1-6) () Y2 p  (x-n) ?
,“mtgnms_conbalnlnE,Lwﬂlhh_pguarswhan_gng__m__~
] p2[(-tym,+6(1-t) (e

S e TN E e R o' o Tl TN ) S RPN
L , 4.
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2.5 SOME RESULTS RELATED_TQ INFLUENCE FUNCTION:

In the following we are giving some theorems which are

related to IF.
Theorem (2.5.1): Let T,,T,,...,Ty be functionals and

T(F) = {j a;T; (F). Then

i=1
IF(x;T,F) = i: a; IF(x;T;,F)
i=1
provided the influence functions of Ti(i=1,2,...,k) exist.

Proof: By definition (2.1.5), we have
R (T, F) = LiB { T[(1~t)F+tax}—T(F)}

t
f iélaiTi[(1~t)F+tax]— 1§1aiTi(F)
- 8 ) :

I
LT

ai{ Lig T, [(1-t)F+ta |-T. (F) }

t

aiIF(x;Ti,F)

!
KAl

Hence the proof.
symilarly, we can prdve the following
Corollary(2.5.1): If T, and T, be the two functionals
corresponding to the distribution F and T = aT,— bT,,
then

IF(x;T,F) = alF(x;T,,F) — bIF(x;T,,F)

where a and b are the constants.
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For example, i) if we put s = i in (2.3.3), then the IF of

the first quartile at F will be

for x<F~'(1/a)

IF(x:Q p4,F) = —

1 1
4 £(F '(1/4))

1
4 f(F ' (1/a)) ~
,  for x>F '(1/a)

i

and if we put & =

o o

in (2.3.3), then the IF of the third

quartile at F will be

IF(x;Qz/a,F) = i f(Fﬂ,%z/4)) , for x<F !'(z/a)
:.-:.a : 1 -4 2
A F(FT(=/a)) , for x>F *(=z/a)

thus,

= 3. 1 — _l h 1 -
4 f(F~'(1/4)) 4 f(F (2/4)) , for x<F77(1/4a)
= - .l 1 i — 1 1 . ) -1 ‘ -1 .
4 f(F '(z/2)) 4 f£(F '(1/4)) for F7'(1/4)<x<F " (2/4)
== 3 1 — l 1 4
4 f(F '(z/4)) 4 f£(F (1/42)) , for x>F " (z/4)
That is,

~C(F), for x<F~'(1/a)

. —_ M = 1
IF(x;Q5 /4, F)-IF(x;Q, /4, F) £(F71(1/4))

i

~C(F) , for F7 1 (1/4)<x<F 4 (z/a)

p==3 1 e -1 -
FFt(=/a)) C(F), for x>F '(z2/a),
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which is equivalent tc IF(x;Sl/a,F),

where

=11 1 1
CF) =4 Vst 7a) T T (2/4)) }'

This implies that, if 8,,, = Q,,, — Q,/,, then

IF(x;5; /4,F) = IF(x:Q;/,,F) — IF(x;Q, /4,F).
ii) we know that, skewness = 3 (mean~median).

that is, Ty = 3(T,-T,).

Therefore, by Corollary (2.5.1), we can show that

IF(x;Tg,F) = 3IF(x;T,,F) — 3IF(x;T,,F).

In the following, we state and prove some results redarding
asymptotic information inequality for a sequence of Fisher
consistent estimators, which are related to IF.
Theorem(2.5.2): Asvymptotic Information Inequality
[Asymptotic Cramer-Rao Ineqﬁality]: If the sequence of

estimators {Tn;nll} for which the corresponding functional T

of distribution F is Fisher consiétent, then
| J(Fy)
where J(Fy) is Fisher information

Proof: Let density of Fg be fy and put Fgy = Fy, where 8, is
some fixed member of ©.

The functional T is Fisher consistent, therefore,

T(Fg) = 6, for all @ in . (2.5.1)
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By the difinition of Fisher information, we have

a2
J(Fy) = J [ P [1nfe(x)]e*]2 dF (x) (2.5.2)

where O<J(Fy)<o.

1f some distribution H is "near” F, then the first-order
Von-Mises expansion of T at F (which is derived from a Taylor
series) evaluated in H is giVven by

T(H) = T(F)+IIF(x;T,F)d(H—F)(x) + remainder

In the above expression if we put H = Fg and F = Fy, we get

T(Fg) = T(F*)+JIF(x;T,F*)d(F9~F*)(x) + remainder. (2.5.3)
We note that the remainder is asymptotically negligible, hence
the expression(2.5.3) becomes

T(Fg) = T(F*)+jIF(x;T,F*)d(Fe~F*)(x),
which reduces to )

T(Fg) = T(F*)+JIF(x;T,F*) dF g (x),
due to the fact that

r}F(x;T,F*) dFy(x) = 0. by lemma

Therefore,

2 5
25 [TF)] = oo—[ JIF(x; T, Fy)dFe].

That is

3 24
:q'g— [ J'IF(X;T: F*) dFe]e* = 55-— [T(Fe)]e*

20 e
ED Je* since from (2.5.1)

i

=1
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The L.H.S of (2.5.4) can also be written, by changing the

order of defferentiation and integration, as

JIF(x T, F*) [te(x)],,d
= JIF(x;T,F*) 52“ [1nf9(X)]e*dF*(x)'

using the cauchy-schwarz inequality, we have

[ JIF(x; T, Fy) 2dFy(x) ] [ {5§~ [1nfe(x) 1oy} dFy(x)]

Therefore,

JIF(x;T,F*)zdF*(x) > 1 (2.5.5)
J(Fy)

Hence the proof.

Remark(2.5.1): The equality holds in the asymptotic

information inequality(2.5.5) iff

~

. &
IF(x;T,Fy) is propnrtional to pevs [1nf9(x)]9* ,
that is, the estimator is asymptotically efficient iff
IF(x; T, Fy) = 371 (Fy) oo [Infa(x)]
Remark(2.5.2): based on (2.5.5) the (absolute) asymptotic

efficiency of an estimator is given by

e = [V(T,F)J(Fp]
Theorem(2.5.3): If the estimator T(Fn) for which the
corresponding functional at F is T(F) = E(x) and x has the

p.d.f fo(x) = h(x) C(6) exp[xA(8)], then to prove that the
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estimator is asymptotically efficient, provided
‘ ’ &
Q(8) # 0, 8 = 0, where Q (8) = v Q(e)

Proof: Here we have to prove the asymptotic efficiency of the
estimator T(F,). That is, from remark (2.5.1), it is enough

to show that

\9'

IF(x;T,F) = J7'(F) BT(F)

[infa(x)] (2.5.8)

If T(F) is the mean of the distribution F (= m(€) say), then
from Remark(2.1.4) the L.H.S of (2.5.6) will be
IF(x;T,F) = xm(8) (2.5.7)

Now, we have
fo(x) = h(x)C(8) exp{x.Q(e)}
Infg(x) = lnh(x)+InC(€) + x.Q(6)

Differentiating this partially w.r.t. 6, we get

) : . . )
i = _C (8) =2
o [1nf9(x;] Crer + ¥ (8), where C (8) = o= C(6)

Also, we have
m(e) = |xh(x) C(8) exp{x.Q(o) }dx
Differentiating this partially w.r.t. 6 under integral sign,

we det

i

o~ m(8) = [xa(x) [C (e)exnlx.(6)1+C()explx.a(€) 1xQ (8) ]dx

= _m{(8) 2 4
c(e) C (8) + E(X*) Q (9)
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Therefore,

[lnfe(x)] - = [lnfe(x)],

&m(6) 50 em(8)

/

_ 9 p o » s
- [~CE%§% + xq (e)] [-3%5%— C (e)+E(X2)Q (@)]

= [—€ue) 4] (€@ m@) 4 gx2)]t (2.5.8)
c(e)a (o) cé)  q (o)

We know that,
Jh(x)C(G) exp{x.Q(e)}dx = 1
Differentiating this partially w.r.t. 6, we dget
Jh(x) [c(e) exp{x.a(e)}. x.q (8)+C (0) exp{x.q(e)}] dx = 0
That is
m(e)Q (6)+ -CL81 = o

C{o)
Therefore,

m(e) = — —C (&)
c(e)a (o)

Using this result in (2.5.8), we get

5;?9)[1nfe(x)] = [X - m(e)] [V(X)]*‘
Thus,

=4
JF = | [5oce, [1nfe ()] aF (0

= I [eme)]* [vix)] "ar(x)

- [v(x)]‘-—!

Hence, the R.H.S of (2.5.8) becomes

gy @
JTHEF) o [1nfa(x)] = x — m(e) (2.5.9)
From(2.5.7) and (2.5.9) the result follows.
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Properties of the IF: Following are the some properties of IF.

i)

ii)
iii)
iv)

v)

vi)

An appealing heuristic interpretation.

An indicator via GES of maximum bias due to infinitesimal
contamination.

To compare the influence of ihdividual observation on

estimator.

LS

To study the robustness properties of an estimator
From the IF we can obtain GES and local-gshift sensitivity
IF measures the effects of infinitesimal contamination at

the point x on the estimate. "



