
CHAPTER IJ. 
INFLUENCE FUNCTION

2.0 INTRODUCTION
In this chapter we de-fine the influence function of an 

estimator (statistical functional) and explain the use of it 
for the study of robustness.

Some properties of influence function (IF) are also 
given. The IF is essentially the first derivative of an 
estimator (viewed as functional) at some distribution (for 
details see definition 2.1.6). A number of examples of robust
and non-robust estimators are given. IF of r*-*1 raw and 
central moments at distribution F are obtained. The relation 
between the IF of S/D. and that of variance is obtained. The
influence functions for the s^*1 quantile and the q-quantile 
range have been obtained. The IF of MLE is also obtained.
Also influence functions for coefficient of skewness and 
coefficient of kurtosis are calculated. Some tfieoreni| and 
lemmas, related to IF, are given.
2.1 INFLUENCE FUNCTION AND RELATED MEASURES OF ROBUSTNESS

Hample (1968) introduced the idea of the IF. The IF was 
originally called the "influence curve", however, the more 
general name "influence function", in view of the 
generalization to higher dimensions. The IF describes the



-36-

effect of an additional observation x, on a statistio 
(functional T(.)), given a (large) sample with distribution F 
and it is denoted by the notation IF(x;T,F).

Before going to definition of IF, let us introduce the 
definition of derivative that has been used to investigate the 
properties of estimators. This derivative is known as 
Gateaux derivative.

Gateaux derivative [Differentiation of functionals T(.)3 :

Given two points F and H in the space F of all distribution 
functions, the "line segment" in ¥■ joining F and H consists

of the set of distribution functions { (l-t)F-ftH, OStSl }

[also written as{F+t(H - Fv), OltSl} ]. Consider a functional

T defined on F+t(H - F) for all sufficiently small t. If 
the limit

dtT(F; H - F ) - iig UJL+±LX.^En^.TLEl (2.1.1)

exists, it is called the Gateaux differential of T at F in the 
direction of H.

Note that dtT(F; H - F) is simply the ordinary 

right-hand derivative, at t = o, of the function

Q(t) - T[F + t(H - F) ] of the real variable t. That is

djT(F; H - F) - t[f + t(H - F)] 1^ , (2.1.2)
provided the limit exists.
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Let us illustrate one example of Gateaux derivative. The

rth central moment of a distribution F may be expressed as a 

functional

T(F) (x ~ >»F)r dF(x)

where ,»*F = J x dF(x) ^

If distribution G is such that G = (l~t)F+tH - F+t(H-F), 

oltll, then

= J x dG(x) = + t (j*h - >*F)

Therefore,

T(G) » J (x-jia)r,dG(x)

“ (xHnQ)r dF(x)
J

+ t | (xr-JiQ)r d[H(x)~F(x>] (2.1.3)

In order to obtain Gateaux derivative d,T(F;H~F), it is enough 

to find ^ T( F + t( H — F )) | . Hence, by

differentiating (2.1.3) w.r.t. t, we get
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T(G) - - r < J»H - > J ( x - )r~i dF(x)

+ | ( x - )r d[H(x) - F(x)]

- tr( - jtp) J ( x - jtQ )r~i d[h<x) - F<x)]

• r { - jip') { x - i»Q )r~i dG(x)
«J

( x “ ^ )r d[H(x) - F(x)].

Therefore,

— T(G) IL 9t 't=0
lt_0 “ J [< * - <* >r - wr_,x]d[H(x> - F(x)]

Thus, Gateaux derivative is given by
d,T(F, H - F) - (x~j*)r - r^p-iX - EF[(x-^)r- r^f.jx]. ■

Now in the following, we define the IF. Let IR be the 
real line, let T be a real-valued functional defined on some 
subset of the set of all probability measures on R, and let F 
denote a probability measure on IR for which T is defined. 
Denote the probability measure determined by the point

mass one in any given point x e IR. Mixture of F and some

^x are written as (l~t)F + t^x, for o<t<l. Then the influence 

function of T at F is defined as

IF(x;T,F) - Jig [ TC(l-t) F + - T(F)
A.., ] , —eo<x<o>, (2.1.5)

if the limit defind for every point x ® IR.A.
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It may also be written as

IF(x;T,F) 5>
it T [(l-t)F + tAx] oo<x«o. (2. 1.6)

provided the limit exists.
Note that the right member of (2\1.6) is the directional 
derivative of T at F, in the direction of

From the above definition of IF, we observe that the IF 
describes the influence of an additional observation x on 
the estimate T {This statistic T depends on a large number 
of i.i.d. observations drawn from F and is consistent for

functional T(F)>. The IF(x;T,F) is the first derivative of
v

functional T at an underlying distribution F. The IF is a 
collection of directional derivatives in the directions of 
the point masses ^x, and is usually evaluated at the model

distribution F. It is a very useful tool to define some 
important robustness measures such as the gross-error 
sensitivity, local-shift sensitivity and rejection point 
which will be defined in subsequent section. The influence 
function measures the effects of infinitesimal perturbations 
and its purpose is to measure the differential effect of a 
point mass at x that has on the functional of interest. ■
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For exponential distribution with parameter

0 > 0 having p.d.f.

I.et

f(x) = 0e_ex . x l 0

= 0 , Otherwise
T(F) — mean of the exponential distribution

Therefore,

f[( l-t)F + t*n] = Mean of [<l-t)F + t*x]

= (1-t) + tx,
where is the distribution function having point mass of

one at x (xio).

By definition (2.1.5), we have

and

IF(x;T, F) - it” [ T[(l~t)F + tAj T(F)

(1-t)
e + tx

t

I
0

“ X x > 0

V(T,F) = J IF(x;T,F)i dF(x)

tfhere V(T,F) is an asymptotic varianee
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Frotn the remark (iv) on page 222 of Serfling

(1980), note that there exists a function TjtFjx], x G (R, 

such that
djT{F;^X~F) = Tj[F;x] - J Tt[F;x] dF(x)

In the following we prove some mathematical properties of IF.
The proof of Lemma (2.1.1) basically depends on remark (2.1.1),

\

which states that the expected value of IF is always zero.

Lemma (2.1,2) is concerned with the asymptotic variance of

statistical functional T(F). We note that, if T(F) = K 
(constant) for all F then IF(x;T,F) = o.
Lemma (2.1.1) : If F is a distribution function and T(F) is

a statistical functional at F, then J IF(x;T,F) dF(x) = o 
proof : consider

L.H.S = J IF(x;T,F) dF(x)
= J d^F^-F) dF(x) By using (2.1.2) and (2.1.6)= J [T^Fix] - J Tj [F;x] dF(x)]dF(x) by remark (2.1.1) 
“ J T,[F;x] dF(x) - J TjCFjx] dF(x)

= 0
= R.H.S.

That is the expected value of IF is always zero. *

9925
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Let be i.i.d. from F and Fn be the

emperical distribution function. Let T(F) be the functional of

interest and define thfe statistic Tn = T(xt,x2...xn) — T(Fn).

By asymptotic variance of T(F) we mean the asymptotic 
variance of a/TT [l(Fn) - T(F)] .

Lemma (2.1.2) :
V(T,F) - J IF(x;T,F)* dF(x)

Proof : Let the observations xj. (i=l, 2, . . . ) be i.i.d. with

common distribution F and T(F) be the statistical functional 
at F. If some distribution H is near F, then the leading 
terms of first-order Von Mises expansion of T at F which is 
derived from a Taylor expansion [Hample(1986),P. 85],

V

evaluated in H is given by
T(H) = T(F) + J IF(x;T,F) d(H~F)(x) + remainder,

that is
T(H) - T(F) - J IF(x;T,F) dH(x) + remainder (2.1.7)

since, by lemma (2.1.1), J IF(x;T,F) dF(x) = 0
If the observations x^ are i.i.d. with common continuous

distribution F, then by the Glivenkcr-Cantelli theorem 
(Rohatgi, (1976),P.300), the emperical distribution Fn will

tend to F. In order to obtain the required relation, we 
substitute the emperical distribution Fn for H in the above

expression (2.1.7), we obtain
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.V n [T(Fn) - T<F)] = v^T | IF(x;T,F) dFn(x) -f remainder 

VlT fTn - T(F)] = .fc IF(x1;T,F) + remainder (2.1.8)

** —Zi + remainder•*/ n
*

= a/ n Z
Here, the remainder is asymptotically negligible. Since the 
observations x^ are independent with common distribution F,

then by CLT, we have
a/1T Z - N[ a/TT- EtZj), VfZ*)]

where
EtZi) - J IF(x;T,F) dF(x) - 0

and
V(Zt) - J IF(x;T,F)Z dF(x)

Hence, the leading term on the right-hand side of (2.1.8) is 
asymptotically normal with mean zero and varianceJ IF(x;T,F)* dF(x)
Thus,

vHT [Tn - T(F)] - N[0,V(T,F)]

where, the asymptotic variance equals 
V(T,F) = [ IF(x;T,F)Z dF(x)

Hence the required. ■
Following are some important measures based on IF, which 

measure the robustness properties.
1) QroasdErr.or Sensitiyity IflESl : The gross-error 

sensitivity of T at F is the supremum of the absolute value of
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the IF. That is
Gross-Error Sensitivity = r* = S£P |lF(x;T,F)|, (2.1.9)

where IF(x;T,F) exists for some T and F, and the supremum 
being taken over all x. Gross-error sensitivity r* may also 
be denoted as r*(T,F).

Gross-error sensitivity is the central local robustness 
measure, measuring the maximum bias caused by infinitesimal 
contamination. It measures the worst possible influence 
which a small amount of contamination of fixed size can have 
on the value of the estimator. Therefore, it may be regarded 
as an upper bound on the asymptotic bias of the estimator.

From the value of r*(T,F) we can conclude the following.

i) Since r (T,F) is the supremum of the absolute value of 
IF, so the influence of any outlier cannot exceed
r*( T, F).

ii) If r*(T,F) is finite, then we can say that T is B-robust 
at F. Here B is used to mean the boundedness of 
gross-error.

iii) If r*(T,F) is positive minimum for Fisher-consistent
estimators, then T is the most B-robust at F. That is 
an estimator minimizing GES is known as the most 
B-robust.

iv) If the gross-error sensitivity of T at F is infinite, 
then we can say that T is not robust.
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11) Local-Shift Sensitivity : The second summary value of
the IF, which is also important for robustness considerations,
is the local-shift sensitivity. When some values of
observations are changed slightly (as happens in rounding and
grouping and due to some local inaccuracies), this has a
certain measurable effect on estimate. Intuitively, the

\

effect of shifting an observation slightly from the point x to 
some neighboring point y can be measured by means of 
IF(y;T,F) - IF(x;T,F), because an observation is added at y 
and another one is removed at x. Therefore, the effect of 
"Wiggling" around x is approximatly described by a normalized 
defference or simply the slope of IF in that point. A measure 
for the worst effect of "Wiggling" the observations i3

V

therefore provided by the local-shift sensitivity, which is 
denoted as ** and is defined as

y* - |lF(y;T,F) - IF(x;T,F)| . Ijr-xl”1 (2.1.10)

For the proper interpretation of **, however, one has to 
keep in mind that it refers only to local changes of the value
of the estimator, so that even an infinite value of ** may 
refer only to a very limited actual changes.
Ill) Rejection point : It is an old robustness idea to reject
extreme outliers entirely. It is aften of interest to know 
whether an estimator rejects outliers and, if so, at what
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distance?. In the language of the IF, this means that the IF 
vanishes outside a certain area. Indeed, there may be a 
region outside of which the influence function is identically 
nero. The contamination in those points does not have any 
influence at all. The distance from the centre of symmetry 
of a distribution to the point at which the influence 
function becomes identically'zero, is called the "rejection
point". It is denoted by the notation P* and is defined as

P* = inf{r>0;IF(x;T,F) = 0 when lxl>r}. (2.1.11)

All observations farther away than the rejection point 
are rejected completely. Therefore, it is a desirable
feature, if P* is finite. Note that, if there exists no such 

r, then P = oo by definition of the mfimum.



-47-

Let us work-out an example to illustrate the above.
: Let us compute the IF of mean for poisson

distribution where the sample space 3? equals the set of 
nonnegative integers {0,1,2,...}. Let x,,xz,...,xn are i.i.d

with respect to poisson distribution Fq(x), where the unknown

parameter 8 belongs to the parameter space 8 = (0, o?). The 
density function of F0 is

fe<x) = e~e8x
x! , x - 0,1, 2, . . .

Let the estimator Tn

functional is T{F) = E xf(x)
x=0

x^ , and the corresponding 

with existing first moment

about origin (mean) for any distribution F on * = {0,1,2,...} 
This functional is clearly Fisher consistent, because

co 00
T(Fe) E xfe(x) - E x a 

x=0 x=0
-e ex
x! 8e-e x^l

= e,

for all 8 in O = (0,co).
Now,

T[(l-t)F0 + t*x] * Mean of [(l-t)F0 + t^x]

= (l-t)8 + tx
Therefore, by definition (2.1.5), we have

IF<x; T, F) - tJg f ]
- t ]
- x - 8
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Here the contaminating point masses may only occur in points 
X e so the IF(x;T,F) can only be calculated at integer 
values of x. Thus, the IF of T at poission distribution is a 
discrete set of points.

The pictorial representation of IF of the mean at 
poisson distribution F with a specific value of 9 — 3.5 is 
shown in the Figure(2.1.2). The IF is only defined for 
integer arguments.

distribution with 9 *= 3.5
The gross-error sensitivity is given by

r*( T, F) - S£P | IF(x; T, F) |

=» j x—0 |

00
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since IF is unbounded so that the mean of the poisson 
distribution is not robust.
Remarks2.1.4) : We can generalise the above result for any
distribution F. If T(F) = J xdF(x) with existing mean 9 at 
F, then IF of the mean at F is given by

IF(x;T,F) = x~9, - ®<x<® (2.1.12)
and GiS is

r*(T,F) = , when (2.1.13)
Comment : The IF of the mean for any distribution is equal to
x 9, - ffl<x<», where the mean of the distribution exists and 
is equal to 9 and the IF of variance at any distribution is
(x“0)2 - <r2, - co<x<oo, (proved in particular case of
Lemma (2.2.2)), whenever the second moment about mean exists.
In case of poisson distribution although the mean and the 
variance are equal, their influence functions are not equal. ■ 

In the following sections we compute the IF of various 
functionals like,

i) Tr(F) = J xrdF(x) = j1[f_1(t)]r dt =

ii) Tr(F) = | (x-j*)rdF(x) = rth central moment of

distribution F=j*r, where j* is the mean of distribution F

iti) QS(F) = sth quantile of distribution F

iv) Sq(F) = q-quantile range of distribution F
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v) Tg(F) = skewness of distribution F

vi) TCS(F) — coefficient of skewness of distribution F

vii) Tck(F) = coefficient of Kurtosis of distribution F.

The existence of all these functionals is assumed.

In further discussion, the distribution Q is used to 

denote the mixture of distributionsF and such thatV A

G - (l-t)F + t^x, 0<til.

2LJ2 IF OF THE rth MOMENT :

Lemma(2.2.1) : If the rth moment Tr(F) = J xrdF(x) at F with 
existing r^*1 moment about the origin, then 

IF(x;Tr,F) » xr - yr, x s

Proof : We are given the r^ moment Tr(F) = J xrdF(x) at F
with existing rth moment about the origin.

Therefore,

Tr(G) = r^*1 moment about origin of distribution G

= J yr dG(y)
- J yr d[(l-t)F + ^x] (y>

= + xr

Thus, by definition (2.1.5), we have

IF(x;Tr, F) = yg { HUOl^JElXX }

- yg { d-t)^ «r j
= xr - x ® R (2.2. 1)

Hence the proof.
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In partcular, if r=l, we get the IF of the mean which is 
IF(x;T\F) = x -

Lemma(2.2.2): If for a given distribution F,

Tr(F) = J <x-jOr dF(x) with existing the r*'*1 order central 
moment ^r, then IF(x;Tr,F) exists and is given by

IF(x;Tr,F) = (xr~>Or - r^-i <x-j*) - vv> x e «?. 

where is the mean of distribution F which is known.

Eroilf: Here, we have

Tr(F) = | (x-y)r dF(x) at F with existing the r^ 
order central moment ^r.
Therefore,

Tr(G) = r^ order central moment of distribution G.

= J [ y - {(l-t)j* + tx}]r dG(y)
where (l-t)^ + tx is the mean of distribution G.
That is

Tr(G) = | [(y-iO - t(x-y)]r d[(l-t)F + t*x](y)

= J [(yJ1)1" “ rt(y->i)r“1 (x-ja) + tz(jr->»)r“z(x-i1)i

. ,+(-l)rtr(x-^)r] d[(l-t)F + t*x](y)
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Hence

(1-fc) [>‘ r~rt (x- ) j* r _, 12 (x-u) zy- r _ ?

—. , .l)rtr(x—>i)r] + t( 1—t)r(x—y)1

IF(x;Tr,F) - Jig J

(x~^)r - r(x-j*)jir_t - (2.2.2)
Hence the required.

In partcular, if r *= 2, we get the IF of variance at F 
which is

IF(x;Tz, F) = (x^)2 - tr2

where T2(F) = J' (x~>*)2 dF(x) with existing the variance <r2.

Lemma(2.2.3): If the standard deviation (S.D)

f' (j?) = /\/ J ()z dF(x) at F with existing S.D.tTand

known mean j» of F. Then

IF(x; T , F) - , x ® IR, o->0

Eroof: We are given the S.D. T (F) - a/ f (x~p)z dF(x) 
which is defined for all probability measures with existing
S.D. o-.
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Therefore,

T (G) = S.D. of distribution G.

A/7 J [y^td-tJjM-tx]]1 dG(y)
/s/J [(y~~- t(xr-.u)]2 d[(l~t)F+t*x](y) 
A/f [(y~^Z + t*<xr-iO*] d[(l~t)F+t*x](y)

_ A/'/ J (l~t)[cr* + t^X-J*)*] + t { 1+t2 ) ( X-M )

= ../IT (say)
Hence

IF(x;T , F) - tJj { }V /

^3 { ^ ^ ^ ^ } since T (F) ■= V a2. = a/TT

Ii8 { 
ti8 {

B_-A_ }t ( a/'~B + ■'/ A" )
Mintiixrillirg!: ill t.t* II xri*)1

a/~B~ + a/F
(x-jO*-<t&

2 <?■ (2.2.3)

Hence the proof.
Now we obtain the relation between the IF of S.D. and that of 
variance. From Lemma(2.2.2), the IF of variance is given by

lF(x;T-, F) - (xr-fO ± 2 X —<J (2.2.4)

hur. miasm® wmeotubwb
UNIVERSITY KOLUAWI* * 

At
!
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and from Lemma(2.2.3), the IF of S.D. is given by

JF(x;T ,F) - raf2cr (2.2.5)

f rom (2.2.4) and (2.2.5), we have

IF(x;T2,F) - 2a- IF(x;T ,F) (2.2.6)

which is required relation between IF of S.D. and that of 
variance.
2^3 THE INFLUENCE FUNCTIONS OF....8th PANTILE. q-QUANTILE RANGE

MQ_MLE :
For the distribution H, let Qg(H) be the s^*1 quantile of 

H. That is, QS(H) is such that H(Qg(H)) = H(H~‘(s)) = s, 0<s<l 

IF for the sth quantile : Let QS(F) and Qg(G) respectively be 

the sfch quantilesof F and G. Where G = (1—t)F + t*x. Here
iexistence of quantile is assumed. We know that from (2.1.5) 

IF(x;Qs,F) - Jig { Qa((l’^s<F) } - ~ [Qs«3>]|„
11=0 (2.3.1)

In the following we shall find the R.H.S of (2,3.1). We 
need to consider the following three cases.
Case I : If x> QR(F) - F~i(s)

If x> Qg(F), then

G[Qg<G)] = (l-t) F(Qg(G)) + O.t 

s - (l-t) F(Qg(G))

F[Qg(G)] - s
l-t
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Differentiating this w.r.t. t, we get

— [0.(0)] " (1®t)i- f(Qg(G))

9t~ lt=0 " f(F“‘(s))

Therefore, from (2.3.1), we have

IF(x;Qs,F) = —pifo- „ x>F-1(s)

Case II : If x< QH(F) = F~1(s)

If x< QS(F), then

g[qs(G)] = <l-t) F(Qg(G)) + t 

s = (1-t) F(Qs(G)) + t

ftvo] - -auZ
Differentiating this w.r.t. t, we get

[Qs < G)] f(Qs(G))
et

d
tQI<G)]lt=o . S....I-

f (F (s))
Therefore,

IF(x;Q<a, F) - .,s.~.1 x<F-i(s)*s’l/ f(F_1 (s)) * 
Thus, the IF for s^ quantile of F is

IF(x;Q«,, F) JSLf(F’l(s)) if x>F“‘(s)

" • lf X<F"<S)

(2.3.2)

(2.3.3)

- 0 if x = F-,(s)



-56-

and GES is
r*(Qs,F) f(F-‘^T)

finite
This implies that the s^1 quantile {if it is exists) is 

B-robust at any distribution.

Graphical representation of the influence function for the 
sth quantile at F is shown in the following figure (2.3.1).

Figure (2.3.1)
Influence function of the sfcb quantile

EarMcuJLar cases :

i) If s = |, then Qt/Z(F) and Qi/Z(G) become the medians of 
distributions F and G respectively.

Therefore,

2f(F-‘(i/±)) if x>F_1(1/2)
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_nJL2f(F-1 (i/2.)) 

= 0
This can also be written as

, if x<F~1(1/2)

, if x " F-1(1/2).

]F(x;Ql/it,F) r-i

2f(F -^T/z)) 

2f(F“‘(i/*))

(sign 0=0)

and

GES = ______ 1_______2f(F_1(i/z)) ~ finite.

ii) If s = | and F = ? (the standard normal distribution), 
then Qi/fcf^) - 0

Therefore,

and
F~1(s)v= S-1 (i/z) = 0

f [f-1 (s)] = + (0) _1_
a/ 2jt

Thus, the IF of the median at the standard normal 
distribution (S.N.D) is

IF[x:Qi/£.*] 2*(0)

JL2+(0) ’

if x>0

if x<0

— 0 , if x = 0
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It can also be written as
sign(x) [(———)1 ,

x = 0 or x<0.

1.253, which is minimal 
value, so the median is most B—robust. ®

For distribution F, let Sq(F) be the q-quantile range of F,
defined by Sq(F) = F_1(l-q) - F‘J(q), 0<q<l/2.
IF for the q-quantile range :L.et Sq(F) and Sq(G) respectively 
be the q-quantile ranges of F and G. Where distribution G
is, as usual, the mixture of distributions F and ^x. Here the 
existence of q-quantile range corresponding to distributions
F and G is assumed. We know that

IF(x;Sq,F> = “ [s„(G)]|t=0 . <2.3.4)
V

So that, in order to obtain the IF for the q-quantile range 

at F, it is enough to find —— [sq(G>]| . We need to

consider the following three cases.

IfTx G / sl * -SlgoXxl =Lx’yiA’*J 2*<0)
where sign(x) = 1.,0,-1 as x>0, 
and

GES - -^rr ” -

If x<F-‘(q)
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The q-quantile range of G is

Sq(G) = G~1(l~q) ~ G-1{q)

where
= F-,f F“[^-].

G [g~ 1 (9) ] = d~t) FCG'^qJJ+t

q - (1-t) F(G~1{q))+t
Therefore,

and
G_,(q) = F"1[

G [G~1 (1—q) ] = (1-t) F(G"1(l-q))+b 

Therefore,

G' <q) = F~* [ ]

Differentiating (2.3.5) w.r.t. t, we get

9b
[S„(G)] e

1-t
______L______ __

[IrctrA]-

(2.3.5)

9
fCF-^f^))

1-t
JL. -SCiL

f[f-1(inari)] (1-t) fCF"1^)] (1_fc)

y tVQ>] lt=o jszJl
9b L"<*' 'J,t-0 f ( F—1 ( 1~q) ) f ( F~1 ( q) )
Therefore, from(2.3.4), we have

IF(*;S^> " Hf^TT - q

f(F~1(q))

f(F-1(q)) f(F~1(i-q))

C(F), if x<F~1(q), (2.3.6)
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where
C(F) = q

If F

f f(F_,(q>) + fiF^O-q)) 

1(q)<x<F~1(1—a)

]

Figure(2 .3.3^ 
Here the q-quantile range of G is

Sq(G) - G”1(1—q) - G-1(q)

where
G [g-1{q)] - (1-t) F(G-1(q)) 

Therefore,
G“1(q) = F"1^)

and
0 [g-1 (q)] = (1-t) F-^G-^l-qJJ+t

(2.3.7)



-61-

Therefore,

G~1{l~ft) = F~‘
1-t

Differentiating (2.3.7) w.r.t. t, we get

?b
-|sq«i)] = —— f-—-~a~]

1-/1 —4- \ 2. Jf[F_1 (JLradt) i L(l-t) 
l-t ,J

f--ft.---IL / i — 4. v i- If[F-1(—1-)1 (It)
1—t

[sq(G>]|L-q — 'Jlt=0 

Therefore,

IF(x;Sq,F)

f ( F 1 ( i~q) ) f (F~1 (q))

f(F-1(l-q)) f(F-1(q)) 

C(F), if F“1(q)<x<F“1(l-q) (2.3.8)

£ase__UI

Figure(2 .3.4)
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In this case the q-quantile range of G is

Sq(G) - G“‘(l-q) ~ G~1(q)

F-i r_JL=9_l_L i-t J l j_fc J’ (2.3.9)
where

/

G [g~* (q)] = (l“t) F(G~1 (q))

Therefore,

and

G~1 (1—q) = F~* L 1—tJ
Differentiating (2.3.9) w.r.t. t and putting t = 0, we get

tVG>]lt„0
■Irg. .a.

at

Therefore,
f(F~1(l~q)) f(F~1(q))

IF(x;Sq.n - jjp.fr-y, _1_f(F-t(q)) f(F-1(l-q)) J

C(F), if x>F~‘(l-q) (2.3.10)f(F"1(l-q))
Thus, from(2.3.6), (2.3.8) and (2.3.10), the IF for the 
q-quantile range will be

J------ C(F) , for x<F~1 (q)IF(x;Sq,F) — (q))

= - C(F),

f(F~1(1—q))

for F~1(q)<x<F~*(l~q) 

C(F), for x>F-1(l~q), (2.3.11)
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where

C<F) “ q f(F""1(q) ) ' f(F“‘(l-q.)) 

and GES is given by

(Sq’F) f (F-MT-q) ) C(F)

- Finite
This implies that the q-quantil^ range is robust at any 
distribution.
In particular, (i) if Q ~ ^ then St/4 (F) becomes

interquartile range of F which is

S1/4(F) = F"‘(3/4) - F-‘{l/4) (2.3.12)

and its corresponding IF of interquartile range at F is 

IF<x;S1/4,F) = -p4( ,/4)) - C(F), if x<F-1 (*/•*)

- C(F),
_1_f(F-‘(3/4)) C(F),

if F“1(l/4)<X<F“‘(3/4)

if x>F_1(3/4), (2.3.13)

where

C<F> = i t-?7¥^ ]4 L f(F_I(l/4)) f(F_1(3/4))
ii) if q = | and if S*/4(F) denotes the Quartile Deviation

of F, then
S*/4(F) = £ [f-*(3/4) - F-i(i/4)]
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and its corresponding IF(x;S*/4,F) will be

IF(x;S*/d,F) X2f(F_1(1/4)) 
- C{ F),
_____ 1______2f(F_1(3/4))

C(F), if x<F_1(i/4)

if F~1 (i/4)<x<F-1(3/4)
C(F), if x>F"‘(3/4), (2.3.14)

where

C(F) -i----13/4)) J8 L f(F~i(i/4)) f(F-1(

and (iii) if F is symmetric about zero, then these formulae 
(2.3.11), (2.3.13) and (2.3.14) respectively reduce to

IF(x;Sq,F) -

XcL

and

f(F-‘(q)) '
IF(X;S*/-F) " 2f(F=W)

= -12f< F~1(1/4))

IFtxlS^.F) - i4f(F~‘(1/4))

if x<F~1 (q) or x>F-t(l~q) 

if F"1(q)<x<F“1(l-q), 

if x<F-1(i/4) or x>F“1(3/4) 

if F-1(1/4)<x<F-1(3/4)

if x<F-t(i/4) or x>F_1(^/4) 

if F~1 (1/4)<x<F-1(3/4).4f(F_1(1/4))
IE—Qf_maximum likelihood estimator : Under regularity 

conditions (given in section 4.4.2, P.152 of Serfling,(1980)) 
on the family of distributions {F(x;6),0se} under

consideration, the maximum likelihood estimate of 0 is the
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solution ofI— Inf(x;6) dFn<x) = 0
That is, the maximum likelihood estimate is 6(Fn), where 6(F)

is the functional defined as the solution of
r 9 Inf(x;6) dF(x) = 0

Let 6(G) = 6(F+t(Ax-F)) denote the functional of maximum 
likelihood estimate defined 'as the solution of

I ee lng(x;6) dG(x) » 0
That is solution of H(6(G), t) = 0
In order to obtain IF(x;6(F),F), it is enough to find

9b
6(G) = -ST- 6(F+t(^ -F)) 

t=0 1t=0
by implicit differentiation through the equation

H(6(G),t) = 0,
where

G = F+t(^ -F) and H(6,t) = f -f- lng(x;6) dG(x).
J

we have
eu

66 1^ p j 9b 6(G) 911
t=0 9b

0
t=0

that is

6t 6(G)
t=0

Here

6H [ _mS>t lt_0- L at
'6=0(F)r

m\ =
9b It=0 90

(2.3.15)

Inf(x;6) (2.3.16)
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and

&n
ee 0=0(F)

p 9ZJ 96*
Inf(x;0) dF(x)

= - f f— Inf(x;0)] * dF(x) 

using (2.3.16) and (2.3.17) in (2.3.15), we get
(2.3.17)

~T e<F+t(*x-F>)| - ~ lnf(x:9). -—5--------- 1------- ~j-----------
db ' t=0 f [— Inf(x;0)1 dF(x)
thus,

lF(x;0(F),F) ae
&

Inf(x;0)
! tig- df<x)

which is IF of the MLE 
2^A

(2.3.18)

: Let the functionals

TCS(F) and Tr(F) be the coefficient of skewness and the

central moment of distribution F respectively and let, 
corresponding to distribution Q, these functionals be TCS(G)

and Tr(G) respectively.
t

Therefore,

and

t3(F)' £
’Tz<F>' 3

TCS(0) [T,(G)]3
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where
T,(G) =» second central moment at G

J fr-C(l-t)^+txl]Z dG(y)
“ (l-t).Hz+t(l-t)(x-.u) (2.4. 1)

and

T,(G) = third central moment at G

= (1-t) [^3-t3(x“>‘) *-3t(x-.n)j*z] +t( 1-t) 3(x-*') 3

Here, the existence of all these functionals at F and G is 
assumed.
Therefore,

IF(x;Tcs,F) = U8 f TC.<G>- •Tostf)

= it s 4 [t3(G)‘ z t3(F)' z

. [t4(g>; 3 Ti(F)
gr

lim i [{(1-t) [jts-t3(x-.n)3-3t(x-jQ^2-]-t-t( l-t)?(x-M)3}' 
* l F( 1—t).n,+t( 1—t) (x“-J*) *1 Z )>

h>
 K
4M

 h>



{*l*( l~t)z [j*3-t7(x-y) ^-Stfx-jO^i] 3t+Jif [t( 1-t) ’(x-jO] 
+Zp ^ t { 1—t)4 (x~y)3 |j* 3~t3 (x-ji)3—3t (x~il)p z]

im j-^| [( l~t)P^t{ 1-t) (3C-J1) *] ?} _

t.^3 [( 1~tJ-H^+tt 1-t) (X~P) *]

{^2 ^3~® ^2 ^(j^-*1) + 2( t) 4 P* .M.jJX-i1)*
—3(1—fc) 3jh^ y|(x->l)* + terms containing t with powers 
more than one}

pl [{l~t)y*+t( 1-t) (xr-p) *] 3

>l •, [y z J1 g-6y\ (x-i1 )~3>*3 (x—y) z+2p z (xr-p) 3] , p, ^ 0 (2.4.2)

Remark(2.4.1): For symmetric distribution, the IF of the
vcoefficient of skewness is zero.

Remark 12...4.21 •' The resut (2.4.2) can also be abtained by 

defferentiating -*r~——' partially w.r.t. t at t = 0.
t3(G)1£

‘tz<G)]3 .

Let the functionals

Tck(F) and Tck(G) be the coefficients of Kurtosis of

distribution F and G respectively and let the functionals 
Tr(F) and Tr(G) be the r^*1 central moments of F and G

>5

respectively.
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Therefore,
Tck<F> = T4(F)

[t^F)]1
and

Tck<«) “ t4(G)
[T^G)]1

where
T*(G) = (l-t)^j.+t( 1-t) (x-m) * from

and
T4(G) = {1-t) [j* 4-4t>* 3 (x~j*) +6tV z (x—j* )z

+t4 (jc-ji) 4] +t(1-t)4 {xr-.u) 4.

Here we assume the existence of mean, second and fourth 
central moments at F and G.
Therefore,

IF<x;Tok,F) - [ Ick?a>. t Tck(F) j
= 11- 1 f T4(G) _ T4(F)

vI'* l [t^g)]*

J( 1—t) [m4—4tJ*3!(x~u)+6tz.nz(x~>t)*+t4(x—.n)4]+t( 1—t)4 (xr~.n)4 
l [(l-t)ji2+t(l-t)(xr-ji)*]£
— U .

>‘tj

M4J*|-4( l-t^^x-j* )J*£ + ( l~t) 4<x~ji) 4>t|-.n£>i4(xr-.n)1 
-t-.fcermgL-jsoniaiija^ han-oog

j* i [ (1-t) .m z+t (l-t) (x-jd1]J

[>14-4.tt?<xr->t)-f(x-.4)4] - 2j*4(xt-j*): ^ 0 (2.4. 4)
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2^5. SOME RESULTS RELATED TO INFLUENCE.FUN.CTIQK:

In the following we are giving some theorems which are 

related to IF.

Theorem (2.5.1): Let Tt, T2,...,be functionals and

T(F)
fc aiTiO

i = l
(F). Then

IF(x;T,F) - L a^IF(x; Ti, F) 
i = l

provided the influence functions of Tj(i=l,2,...,k) exist. 

Erjoof: By definition (2.1.5), we have
IF(x;T,F> - Jig {-TLn-t>^Jbl<n)

its {f ^iVF) 1
l t J

fc h\ tiei=l L
Ti[(l-t)F^x]-T1(F)

t

fc a^IF(x;Ti?F) 

i = l

Hence the proof.

symilarly, we can prove the following

Corollary(2.5.1): If Tt and T2 be the two functionals

corresponding to the distribution F and T = aT$- bT2, 

then

IF(x;T,F) = aIF(x;T,,F) - b!F(x;T2,F)

where a and b are the constants.
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For example, i) if we put s = 4 in (2.3.3), then the IF of
4

the first quartile at F will be
_ 3 1IF(x:Ql/4,F) 4 f(F-‘(i/4))
1_____i.
4 f(F"1(i/4))

, for x<F 1(i/4) 

, for x>F"1(1/4)

and if we put s = in (2.3.3), then the IF of the third4 '
quartile at F will be

IF(x;Q3/4,F) 4 f(F~J(*/4))

_L
thus,

4 f(F“1(3/4))

IF(x;Q3/4)F) - IF(x,Ql/4,F)

, for x<F *(3/4)

for x>F-1(3/4)

= .3 X
4 f (F~* (1/4)) 4 f(F"‘(3/4))

«= - 1 _L
4 f(F"‘(3/4)) 4 f(F-1(1/4))

4 f(F_1(3/4)) 4 f(F_1(l/4))
That is,

IF(x;Q3/4,F)-IF(x;Ql/4,F)

, for x<F"‘(i/4)

1 for F-1(1/4)<x<F~‘(3/4)

, for x>F_1(3/^)

-C(F), for x<F_1(1/4)f(F“1(»/4))

-C(F) , for F_1(1/4)<x<F_1(3/4)

Xf(F~ *(3/4)) -C(F), for x>F“‘(3/4),
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which is equivalent to IF(x;St/4, F),

where
C(F) 4 l f(F'‘(l/4)) + f(r_1(3/4)) }■

This implies that, if St/4 = Q3/4 ~ Qt/4, then

IF(x;Sl/4,F) = IF(x;Q3/4,F) - IF(x;Ql/4,F).

ii) we know that, skewness ,= 3 (mean-median), 
that is, Ts = 3(1’,-^).

Therefore, by Corollary (2.5.1), we can show that
IF(x;Ts,F) = 3IF(x;Tt,F) - 3IF(x;T*.F). R

In the following, we state and prove some results regarding 
asymptotic information inequality for a sequence of Fisher 
consistent estimators, which are related to IF.

A^mp±_QMg-J[iLC ormatipjxJLnjefluallty

[Asymptotic Cramer-Rao Inequality]: If the sequence of 
estimators {Tn;nll} for which the corresponding functional T

of distribution F is Fisher consistent, then
IF(x,T,F*)* dF*(x) > ---4-- 

■- J v" *)
where J(F*) is Fisher information

Proof: Let density of Fg be fg and put Fg# = F#, where 0* is 

some fixed member of 0.
The functional T is Fisher consistent, therefore,

T(Fg) « 0, for all 0 in 6. (2.5.1)
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By the difinition of Fisher information, we have

J<F*> ” { [ 55- dF(x) (2.5.2)

where 0<J(F*)<a>.

If some distribution H is "near" F, then the first-order 

Von-Mises expansion of T at F (which is derived from a Taylor 

series) evaluated in H is given by

T(H) - T(F) + IF(x;T,F)d(H—F)(x) + remainder 

In the above expression if we put H = F0 and F = F*, we get

T(F0) = T(F*)+ IF(x;T,F*)d(F0-F*)(x) + remainder. (2.5.3) 
We note that the remainder is asymptotically negligible, hence 

the expression(2.5.3) becomes
T(F0) = T(F*)+jlF(x;T,F*)d(Fe-F*)(x), 

which reduces to
T(F0) = T(F*)+JlF(x;T,F*) dFe(x), 

due to the fact that
JlF(x;T,F*) dF*(x) = 0.

Therefore,

9 r -,9

by lemma

90 [t<M 90
[ JlF(x;T,F*)dF0].

That is

90
[ JUUiT.f,) dF9]et = ~ [T<F0>]

00 0*

» f_f£ 1Is[90 ] since from (2.5.1)

1



-74-

The L.H.S of (2.5.4) can also be written, by changing the 

order of defferentiation and integration, as 
1 » JlF(x;T,F*)^- [f0(x)]0!ldx

- JlF(x;T,F*) [lnf0(x)]0j|dF*(x).

using the cauchy-schwarz inequality, we have
\

1 < [ J'lF(x;T,F*)IdF*(x>] [ l {£- [InfetxHefcj'dFfcfx)] 

Therefore,
JlF(x;T,F#,zdFjje(x, » (2.5.5,

Hence the proof.

Remark(2.5.1): The equality holds in the asymptotic 

information inequality(2.5.5) iff

IF(x;T,F*) is proportional to [lnfe(x)l , 

that is, the estimator is asymptotically efficient iff 

IF(x;T,F*> = J-(F*) ■£- [lofe(x>]e:||

Remark(.2.5.2): based on (2.5.5) the (absolute) asymptotic 

efficiency of an estimator is given by

e - [V(T,F*)J(F*)]-1

Theorem(2.5.3): If the estimator T(Fn) for which the 

corresponding functional at F is T(F) — E(x) and x has the 

p.d.f f0(x) = h(x) C(8) exp[xQ(0)], then to prove that the
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estimator is asymptotically efficient, provided

Q (0) 0, V- 0 e ©, where Q (0) = Q(0)

Proof: Here we have to prove the asymptotic efficiency of the 

estimator T(Fn). That is, from remark (2.5.1), it is enough 

to show that

IF(x;T,F) = J_i(F) [lnfe(x)] (2.5.6)

If T(F) is the mean of the distribution F (= m(0) say), then 

from Remark(2.1.4) the L.H.S of (2.5.6) will be

IF(x;T,F) = x-m(0) (2.5.7)

Now, we have

fe(x) = h(x)C(«) exp{x.Q(0)} 

lnfe(x) = lnh(x)+inC(0) + x.Q(0)

Differentiating this partially w.r.t. 0, we get

[lnf@(x)] = .^■ j|j + xQ (0), where C (0) = -- C(0)

Also, we have
m(0) = |xh(x) C(0) exp{x.Q(0)}dx 

Differentiating this partially w.r.t. 0 under integral sign, 

we get
m(0) = Jxh(x) [c (0)exptx.Q(0)]+C(0)exp[x.Q(0)]xQ (0)]dx

“ffj- C (0) + E(XZ) Q (0) 
u(0)
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Therefore,

■[lofe‘*>] “ST !>*<><*>]•0m(0) 0m(0)

+ **' <e)] I-cm- c <9>+e(xMq (8)]

c tf) + x] [—. jiiei + e<x2>]“‘ (2.5.8)
C(0)Q (9) Q (0)

We know that,
Jh(x)C(0) exp{x.Q(0)}dx = 1 

Differentiating this partially w.r.t. 0, we get 
jh(x) [C(0) exp{x.Q(0)}. x.Q (0)+C (0) exp{x.Q(0)}] dx = 0 

That is

Therefore,
m(0)Q' (0)+ = 0V/\ & )

m(0) JL±e±
C(0)Q (0)

Using this result in (2.5.8), we get 
9

0m(0) [lnf0(x)] = fx - m<0)] fv<x)] -l

Thus,
J<F> = I [i^9)flnf0<X,^dF<X>

- | [*-111(9)]* [v(x)]~*dF(x> 

= [V(x)]-

Hence, the R.H.S of (2.5.6) becomes

J~‘(F) —- [lnf0(x)] - x - m(0) 
From(2.5.7) and (2.5.9) the result follows.

(2.5.9)
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Following are the some properties of IF.

i) An appealing heuristic interpretation,
ii) An indicator via GES of maximum bias due to infinitesimal 

contamination.
iii) To compare the influence of individual observation on 

estimator.
\

iv) To study the robustness properties of an estimator
v) From the IF we can obtain GES and local-shift sensitivity

vi) IF measures the effects of infinitesimal contamination at
the point x on the estimate. I


