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CHAPTER - I

MEANING AND SCOPE OF THE INFORMATION

Introduction :

In every-day life we get information by various 
means such as radio, television, newspapers, books and 
others. Literally, the term ’information* is used to 
mean some change in the state of mind or in the previous 
knowledge about some event. The amount of change in the 
knowledge that occurs upon getting the information 
(equivalent to observing the random variable X from the 
point of view of obtaining inferences about unknown 
parameter 0) is measured through a function that is 
called the entropy.

This chapter contains four sections. The section 
1,1 deals with basic concepts of information through 
communication process and terminologies used in the same 
process are defined. Then the motivation to the formula 
of the measure of information is used. Based upon some 
desirable properties of a measure of information it shows 
that the Shannon's entropy is a suitable measure to 
measure the information. In the section 1,2 the 
Shannon's entropy is defined and some properties of this 
entropy are given. The section 1,3 deals with the
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principle of the maximum information in which under 

certain conditions the unknown distribution which 

maximises the entropy is found out. The section 1.4 

deals with other measure of information in which a func­

tion which follows certain properties of entropy is 

considered as a ‘measure of information*. In this 

section we have discussed the Hartley*s entropy, the 

Renyi entropy, the generalised entropies. The 

Kullaback and Leibler information measure and the 

Fisher's information measure as measure of information.

1.1 Basic Concepts :

In every-day life various means of transmission of 

information are available. Some agencies like* Radio, 

news-papers, books, television and telegraph transmit 

the information.

We know that radio-broad cast in which the informa­

tion is transmitted in the form of waves and radio 

transmits these waves into the sound. News-papers give; 

various sorts of information of day-to-day event 

happenings in the world. The knowledge that we get from 

the books is also an information about the scientific and 

other developments. The television-broadcast;, sound waves
f
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and picture waves are transmitted through the T.y. sets.

It is quite evident that through television much more
v

information can be given as compared to radio.

Suppose A wants to pass some news (say I) by a 

device suitable to him to ’B‘, 'C* and *D'. Previously 

B knows all about *1*, *C* a little about ’I* and ‘D* does 

not know anything about *1'. After getting the news 'I', 

*B’ does not aware of ’I*, 'C' aware of 'I* but little, 

and ' D' is greatly surprised.

Observe that 'I' is not at all informative to 'B* 

while it is little informative to 'C* and is very much 

informative to 'D*» Further it depends upon how 'A’ passes 

this news. In general, the mind (that of 'A') affects 

another mind (may be of 'B', *0*, 'D‘, '••'.■*). This 

procedure of one mind affecting other mind is called a 

communication procedure.

A communication model means a device by which the 

message from the source is given to the receiver. Here, 

consider simple communication model :

Source 
----—

^ Channel

Fig.I

Receiver

f
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But practically there are a number of sources and 

receivers', hence clear-cut transmission of information 
is not possible. For example, in telephone system we 
can hear many sounds, therefore, sometimes we cannot 
understand what the message is.

•

Suppose that there is a noisy street and your friend 
says something which you cannot hear at all or you hear 
differently. In this way proper transmission of the 
information may not be possible; or even a great 
interruption may occur. To avoid such disturbances, the 
transmission of the information must be done efficiently.
The communication model is not deterministic nature but it

\

is a probabilistic one. In the telegraph system, the 
message from the message-sheet is transformed into the 
different language by which it can be transmitted. The 
process of transforming a message in the different language 
which is suitable for transmission is called.coding; such 
coded message is transmitted to the receiver. In this 
system, this coded message is transformed into the original 
form. It is called decoding. Suppose the message *A* is 
transmitted by a source. Let p(A) be the probability of 
receiving the message 'A* from the source. Let p(A\A) be 
the conditional probability of getting the message ’A' at 
receiver through channel given that the message passed to
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the receiver is 'A'* The probability of transmitting 
the message 'A* and also getting the message ’A' by 
receiver is given as s

p(A) p(a|a)

By adding encoder and decoder in the previous model 
(Fig.I), the efficiency of the model can be increased. The 
improved model is given as below i

Source Encoder Channel Decoder » Receivert

a

Fig.II

In this model the efficiency of the transmission could be 
improved.

Now, we describe different terms in the model.

1') Source : The source is defined as the agency which 
gives messages or sequence of symbols of the given alphabets.

2) Encoder ; It is a device which transforms a 
message into the specific codes and the codes can be 
transmitted.



- 12

3) Channel : The media in which an encoded 
message is transmitted to the decoder.

4) Decoder ? A decoder is a device which converts 
coded message into the original form and passes it on to 
receiver,

5) Noise : The interruption, disturbance, 
resistance that occurs in the channel Which affects the 
coded message during the course of its transmission from 
encoder to decoder is called as noise e.g, i) In the news­
papers misprints or improper printing can be considered as 
noise (here, printed matter in the news-paper serves as 
channel), ii) Consider an example of a transport company, 
suppose some goods are to be transported by trucks, the bad 
condition of road and truck will decrease the efficiency
of transportation (here, the road or truck is considered 
as channel).

Suppose the result of an experiment is awaited. And 
the experiment results in one of k mutually exclusive and 
exhaustive outcomes! E^Eg* • • • .E^. Let ’A’, *B' and ‘C* 
are three persons who are interested in the 
result of the experiment with their belief (prior knowledge 
about the result of the same experiment). Let PA(Er) be 
the probability of the outcome Er according to the prior
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knowledge of 'A', similarly PB(Er)t Pc(Er) be defined.

Further let, Pa(H1) » pa(E2) ~ ••• = PA(Ek) i,e* 
according to 'A1, all possible outcomes are equally likely 
and let,

PB(E1> > PBtE2> » ••• > PB(Ek> 

i.e. according to 'B' Er is more likely than Er+1 
(r * 1,2,.. .k-1), Let

Pc<Ei> < Pq(< < PC (Ek)

i.e, E^ is likely than Er.

Suppose the experiment results in the outcome E^. Note
that 'B* is not at all surprised of the result, while 'C'

\is very much surprised. And 'A* says the event has occurred 
as per his guess. Basically, the 'information' that an 
event E^ gives to the persons depends on their prior 
knowledge about that specific event E^. If Pa(E^) * 1# the 
event is a sure event according to the prior knowledge 
of the person 'A*. Further, the occurrence of event E^ 
does not give any additional information as such, so that 
his state of knowledge about the experiment would not change 
after the occurrence of the event E^.

Suppose the experiment E results in the outcomes of 
the form (x^, y^) i =* 1,2,...m; j = 1,2,.,,n.
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Further let,

Pi3 = P [X = x±, Y = Yj]

and

pi = pu = rf x - *i ];

qji “ pii\pi-

the conditional probability of the event [Y=Yj J X = x-]. 
Let p^ i=l,2,...,m; j=l,2,...n be the prior distribution 
of a person 'A' in the experiment. Thus, p^, is the belief 
in the partial result X = Xj. of the experiment and 
is the distribution about the secondary result Y = y^ of 
the experiment given the primary result X = The 
information that the person 'A* gathers from the outcome 
[ X=*Xi Y=yj ] must be the addition of the information 
qathered from :

1) The partial observation X = x^ and

2) The secondary observations [ Y=y^ given X=x^ ]

We shall call this property as additivity of 
information. If f(p^) be a suitable measure of the 
•amount of information contained' in the outcome 
[ X = xj, Y = yj]. The f(*) is'a decreasing function on
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the interval (0,1) with

f(l) =0

and

ftPij) * f(Pi> + f(qjjL)

Where,

(1.1.1)

(1.1.2)

The solution of function ’f' satisfying the relation (1.1.2) 

is of the form f(x) » k log x. Further, this function 

satisfies j:rUc (l.-.:) properties (1.1,2) and (1.1.1). 

And k must be arbitrary and it is chosen as -1 for our 

convenience. Thus, a suitable measure to measure the amount 

of information contained in the event E which occurs with 

probability p is -log2P» The "amount of information" 
contained in the experiment £. y»hich results in one of the 

mutually exclusive, exhaustive outcomes E^, E^, ... with 

p^ = p(E^) is defined to be
m

H(p1,p2,...,pn) »-51Pi log2Pi

and to be denoted by H(p^,p2, ...,Pn).

This can be interpreted as ’the average information 

containedhithe experiment£’. The unit of information is 

termed as ’bit*.

t
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1.2. The Shannon* s Entropy :

In this section we will define the Shannon's entropy 

and prove some of its properties.

Consider, the telegraphic system, there n messages 

on the message-sheet are x^, x2, ...» xn with transmission 

probabilities p^» P2, Pn (the source selects particular

message xk with probability p^). The amount of information 

(Ik) associated with x^ is given by :

ik = - iog2 Pk (1.2.1)

Then, the average information (1) per message is given by

n
s ■* - Pk log2Pk (1.2.2)

lc—1 .
The average information per message is called the entropy.

Shannon (1948) defined the entropy as given below :

Definition 1.2.1 : Consider the discrete probability

distribution p^ such that

n
21 Pi * 1. 1 = 1.2,... ,n
i=l 1

The shannon's entropy Hn(ppp2,...,pn) is defined as

n
H(p) - Hn(plfp2,.. .,pn) = -IL.^ log2pi

UM. BALASABEB KRAROEWR LIBfUSt
university
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Interpretations :

1) It is the expected value of -log2P(x), where X is 
a. r. v, such that p(X) = p^^

2) It is considered as "the measure of uncertainty 
contained in the experiment before the result of 
experiment has occurred.

3) If © is a parameter (in many standard experimental 
setup for example, i) Binomial random variable
ii) poisson random variable, the probability of 
different events or function of © is called the 
parameter p(E^) * p^(©) f°r i=l»2,...,n) which is 
unknown, H(©) is considered as "the amount of missing 
information in 0*.

Example 1,2,1 s Consider two experimentsand £ , 

where has two events and A2 with probabilities
p^ and P^2* There also two events of the experiment£. 2 

are and B^ with probabilities p21 and p22 respectively. 
Let

pi = ^pil» pi25 1 = 1,2 
If

pU = p P12 = i - P - q

and
f p21 = q » P22 = p
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The amount of information missing in the both experiment* 

is same according to the H(P^) = H(P2),

£ H( Pll* Pl2^ * "*p ^^^2P (^“P) ^og2(t*“P) =H(P21 * ^22^

In particular,

P11 = P12 * l/2* P21 * 1^4’ P22 ” 3/4

Then we have

H(p21*P22^ < H^P11*p22^ 

i.e. 2 - log23 < log22

In the following, we use the term ’the amount of information 

contained in’ and the'amount of information missing in* 

with the same meaning. An appropriate term is used as 

per context.

Properties : The Shannon’s entropy satisfies following 

properties :

1) Symmetry :

Hn(pi»p2»***»pn) “ Hn^ pk(1)’pk(2)’* * * pk(n)^ (1.2.3)

Where, k is arbitrary permutation on (l,2,...,n).

This means the amount of information does not change when 

order of event is changed.
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2) Normality : H2(l/2, 1/2) = 1 ' (1.2.4)

If experiment has equally likely two cases the amount 

of information in the experiment is unity.

3) Expansibility j

Hm.l(pl'P2......... V°> * Hn(prp2”--pn> ^1-2-5*

If the additional outcome added in the experiment with 

zero probability, the amount of information in the experiment 

would not change.

4) Decisivity : H2(1,0) * H2(0,1) =0 (1.2.6)

The amount of information corresponds to the sure 

event is zero.

5) Recursivity :

Hn<pl>p2......... Pn* = Hn-ltpl+P2- p3............ pn> +

+ (p1+p2)H2(p1/(p1+p2>p2/(p1+p^)

U.2.7)

Where, + P2 > 0*

If an experiment E* is derived from the experiment E by 

clubbing different events of the experiment E. The amount 

of information missing in E* will increase.
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vProof ; Let, P s Px + P2 q * P2/CP1 + p2j

1 - q 35 Pi/fPjL + Pq) > p2 “ pq* 
i.e. p^ » p(l-q)

Hn( p(l-q), pq, P3,• • • ,Pn ) * —P(l-q) log2 P^1"^) **

- pq log2 pq + H( P3» p4,..., pn)

Hn(p(l-q), pq, p3,...,Pn)
* -p(l-q)log2P-p(l-q)log2(l-q)-pq log2p -

-pq log2q + H(p3»P^»•»•»Pn)• 
n

a -p log2p -X. Pk lo92Pk - p[U-q)log2(l-q) + k—l
+ q log2q]

* Hn-1 (P»P3»“«»Pn^ + PH2(l-q,q)

= Hn-l(p>P3‘ • • • pn)+(pl+p2)H2< Pl>(pl+p2V P^(Pl+P^

6) Maximality ;

For any probability distribution
n

p, 0 (i=l,2,...n) and X. P< ~ 1.1 i=l x

Hn(p^,P2» ♦..,Pn) ^ Hn( 1/n, 1/n,... 1/n) (1,2.8)

t
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This shows that the amount of information missing 

in any distribution is less than the amount of information 

missing in uniform distribution, i.e. the entropy 

maximizes for the uniform distribution.

Consider the joint experiment A and B and their 

outcomes are n&t independent. Then the entropy of 

combined experiment is defined as

Hmn<A * B>
n m 

i*=l j=l
log p^

i = 1,2,.. .n

j s 1,2,.. .m

Define : 
m

p(i/j) * Pij/^j * P(j/1) = Pij/Pi

))

Vow, we shall give some definitions.

(1.2.9)

(1.2.10)

Definition 1.2.2 : The conditional entropy calculated for 

experiment B under assumption that event a^ of experiment 

A is happened. m
i.e. H^(B \ ai) »-2Ip(jU) log2p(j(i) (1.2.11)
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Definition 1.2.3 : The conditional entropy of the 
experiment B given A is

Hm(B/A) » 2 PiH(B|ai) (1.2.12)

Similarly, we have

Hn(A|b.) =51 p(i/j) log2 p(i|j)
■* issl

(1.2.13)

n mH (a[b) 2. q.p(i[ j)log2p(i/j)
n i=l j=l 3 2 (1.2.14)

Proposition 1,2.1 :

Hmn<A 8 B> ■ Hn(A> + «m<BfA>

=* Hm(B) + Hn(A|B) (1.2.15)

Proof :

n m21 2- Pm 1o92 Pii i=l j=l 13 ' 2 13

f
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Hmn <A 9 B>

n m
~ - 2EI^5^P(il j)^j log2p(i| j)q^ p(i| j )q^. log q^

* STXqjP(i|j) iog2p(i/j) - X q j iog2q,j

* H(A|B) + H^B)

* Hm(B) + H(A|B)

Where,

Ptj * p(i/j)qj

Similarly,

Hmn(A *B)= Hn(A) + Hm (B|A)

Definition 1,2,4 : For any two experiments

Hn(A) - Hn(A|B) = H^B) - Hm(B|A) (1.2.16)

is known as the Information balance'.

Let us consider the experiments A and B are 

independent, then

pij = pi--q3

H (B|A) » H (B) and H (Ale) = H (A) m * m n ' n
Therefore,

Hmn(A »B|= Hn(A) + Hm(B) (1.2.17)
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Proposition 1,2.2 : For any two experiments A and B 
we have

< Hm;(B) ' (1.2.17)

Proof : We will use here Jensen’s inequality for concave
function. Let g(x) be real valued function v*hich Is concave
defined on the interval £r , sQ . Let Xp x2,..., xnfc- [r, s]
and Ci such that 51 c. = 1.1 i=l 1

n ni.e. 51. c.gU.) < g (SI cixi) i=l 1 1 1 i=l 1 1 (1.2.18)

In the equation (1.2.18) put r = 0 S = 1, 
g(x) = —x log2x c^ = P± = q(j|i)

- 5L PidOU) log2q( jfi) £ - X. PjqCjli) loq2( X- P^dOl i) i=»l i=l i = l

= - djlog dj
m n. mi.e. Pj d(3l l) log«q( j| i) < - 51 lo90d,j=l i=l 1 2 j=l 3 2 J

i.e. Hm(BlA) < HjB).

Hence, the proof.
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1.3 Principle of Maximum Information j

The Shannon'• entropy is a natural and most useful 
measure of information and discrete uniform distribution 
has maximum entropy. According to Laplace's 'Principle 
of insufficient Reason’; two events are to be assigned 

equal probabilities, if there is no reason to think 
otherwise. Thus, vhen nothing is known except that there 
are n possible outcomes according to Laplece's principle, 
the probability of an outcome will be 1/n. This is a 
distribution having more uncertainty than any other 
distribution.

However, Wien some thing about the probability 
distribution is known under constraints one would
like to maximize the entropy. Thus, when partial informa­
tion is available (say through constraints) we must use 
the distribution which has maximum Shannon's entropy 
subject to the given constraints. Thus the only unbiased
assignment that one can do, otherwise it would to measure

\

some more information being known. Now we shall prove 
here theorem.

Theorem 1.3.1 : Let X be a random variable having density
f (x) such that x6 (a,b). Let k^,^,... be integrable 
functions on (a,b) satisfying the condition
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J k^xjffxjdx = m^ i = 1,2... (1.3.1)

Where, ra^ are known constants.

The density of the form

f(x) » exp[aG + a1k1(x)+a2k2(x)+.,.] (1.3.2)

maximises the entropy. The constants aQ, a^,... are 

determined such that f(x) satisfies the conditions 

i) It must be density function (ii) (1,3.1).

Proof ; Let f(x) be of the form

f(x) e exp [a0+a^kjJx) + a2k2(x)+

Let g(x) be another density function satisfying condition 

(1.3.1)

Therefore,

Jg(x) loge [g(x)/f (x)] dx > 0

i.e. Jg(x) logeg(x) dx Jg(x) loggf(x) dx

\

- Jg(x) logeg(x)dx^- J g( x) logef(x) dx 

« - Jg(x)[a0+a1ki(x)+.,.]dx 

«- (a0+a1m1+a^i»2+ ...) (1.3.4)
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This shows that

— (aQ + + a2m2 * ***'
is fixed upperbound for - J*g(x) loge g(x) dx

If g(x) be density function and satisfies the condition 

(1.3.1), The upperbound is obtained when g(x) is chosen of 

the form of (1,3.2) with finding suitable constants 

a0,a^,... (Kagan and Linnik, £<\o)

Mathematically, the maximum entropy distribution has the 

important property that no possibility is ignored; it 

assigns positive weight to every situation that is not 

absolutely excluded by the given information. The density 

function which maximizes entropy is found out by using 

Lagrangian multiplier method.

Now we shall give following example.

Example 1.3.1 : Let the support of X be (0,10)

Maximizes the function

H,n

Subject to condition

E(x) * 6
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Using Lagrangian multiplier method, we have

l°
x)dx - /3 Jxf(x) dx

cs

* Jf(x)[log(l/fCx) - a - /3x] dx

lo
= / f (x) log [exp (-a-£x)/f(x)] dx

lo
< ( f(x) log [<pxp (a-£x)/f (x)}-l] dx

because if x fi l, t log x .< x-1

Eguality holds if and only if

f(x) » exp (-a - fix)

Where a and fi are Lagrangian multipliers. 

To determine a and fi using equation

V*J f(x) dx = 1

lo
J exp (-a-0x) dx = 1

lp
( exp (-fix)dx s* exp (a)

IP
a = loge f exp (-fix} dx

f
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A

Using the condition

xf(x)dx » 6

lo
x exp (-0x)dx / J exp (-0x)dx = C

o
lo lo
J x exp (-0x)dx = 6 j exp (-ax)dx 
o o

i.e. -(40+1) exp (-10/3) • (60-1)

exp (- 100) = (1 — 60) / (40+1)

Thereforef

0 = - O.123

f (x) = exp (—0x) / / exp (—0x)
o

= 0 exp (—0x) / (1 - exp (-10 0)

i.e. f(x) = 0,0508006 exp (0.123 x)

Therefore, 

lo
f(x) log f(x)dx « -0.738 - log 0.050806 © ©

In the above example, the density function f(x) which
v

maximizes function HR under E(x) = 6 is given as

f(x) a 0.0508006 exp (0.123 x) 

i.e. the f(x) has nature like equation (1.3.2).

(
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In the following table we shall give supports of 

random variable X, restriction and corresponding density 

functions.

Table - 1

Set of 
values of 
r.v.

Restrictions
Density function corres­
ponding to maximum 
entropy

(O 1) - f(x) ^.1

(0 1) E log0 x = gx

E loge(l«x)-g2
f (x)s=3P^(l-x)n'jf 0{m n)

(0 CO) Ex * g^ f(x) * a exp (-ax )

(0 00) Ex = gx

E log x = g2

•

f (x)=^ exp(-ax)x Vfp

(-00 OO ) Ex » gA

Ex2 = g2
f (x)«exp[-k-u)2/\J~y6 V2tT

(-00 00) Ex = 9l f(x) =(?j(j)exp (-a lxl)

From above it is clear that all density functions 

(given above) have same nature as (1.3,2) (exponatial

type). li'
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X,4 Other Measures of Information :

In the previous section we discussed Shannon’s 

entropy. This is a logarithmic function which satisfies 

certain properties such as symmetry, expansibility and 

subadditivity or additivity. These are ’essential’ and 

•natural* properties of an entropy as a measure of 

information.

There are sane other logarithmic functions which 

dlso have above properties; considered as measure, of 

information. Some specific measure can be chosen 

depending on the problem of interest. In the following 

we discuss some of the measures of information.

I) Hartley* s Entropy ;

Hartley (1928) first introduced a measure of 

information. His intention was to store information by 

some instrument. Wherein one needs to consider how much 

information can be stored in each store. For this suppose 

a storage unit (such as knob) has n possible states, then 

r such storage units put together provide 'nr' states.

Thus duplication of the storage units can be used as a 
strong criterion to increase the storage capacity.

f
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Moreover, maintaining through r storage units each of n 

states is easier than that of maintaining through a 

single storage unit of n states.

As the number of states depends on the number of 

storage units exponentially, for fixed n, the storage 

capacity (total number of states) depends on r, the 

duplication of storage units. Thus basically, the storage 

capacity can be measured on the basis of the values of r 

that is

C = log2 N (1.4.1)

the capacity of storage which can store N distinguishable 

states.

C is called the Hartley’s on t ropy %
*■

Remark j Hartley's measure can be viewed as -when 

all N states are equally probable.

Hence,

C — Hj^j (1/N, 1/N) H^(p^,p2» • • •,p^) (1.4.2)

Following is a characterisation of the Hartley's entropy.

Corollary 1,4.1 : If and only if an entropy is weakly

subadditive, additive, symmetric, normalised and intensive, 

then it is Hartley's entropy ( J.Aczel, B. Forte and 

C.T. Ng (1974)).
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The linear combination of the Shannon's entropy 

and the Hartley's entropy is aqain an entropy. Let 

Hn(PitP2»»• • »Pn^ ke ’the Shannon's entropy and C be 

Hartley's entropy, then,

H (Pl>P2....pn> “ a Hn(Pl-P; Pn) + b.C (1.4.3)

(Aczel at al (1974))

II) The Renyi's Entropy :

Here, we will define the entropy which depends on 

its order. The order a (constant) entropy is considered 
as Renyi entropy.

Definition 1,4,1 : The Renyi entropy of order a / 1 of

the probability distribution (p1,p2,...,Pn) 6 i=l,2,.,n

is defined as

With Oa = 0 Where

Where a is real.

Remarks : 1) When a —► 1 the Renyi entropy tends to the

Shannon entropy.

r



33

lim a Pi*P2* • • •» Pj-j) a>l
= lim |Jl/l-o)log2'i: P?] 

a-*-l ^ 1=1 x

= -sLPl log2 Pi

= Hn<Pi-P2....pn>
e.'n Vroipy

2) If a a* 0 the Renyi4* tends to the Hartley entropy,

3) The Renyi entropies are symmetiic, normalized, 
expansible, decisive, additive, non-negative, 
measurable. If a >, 0 they are also maximal, bounded
and monotonic, if a > O they are continous small for 
small probabilities. They are also subadditive for 
a as 0 and a = 1.
The Renyi entropies are not recursive,

HI) The Generalized Entropies :

In the previous article we have discussed the

f

entropies of order a. Now we will define the class of 
entropies of degree a ^ 1,
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Definition 1.4,2 : The entropies of degree a ^ 1 are 
given as :
h“(PjP2.... Pn) = (21_a-l)'1Cp:iP( - l).a 1 (1.4.5)

Where p^, P2» • • •»€ 0^» ^ = 2* •
With Oa = 0, where On = ^(PrP2,... ,pn)/X- pi=l, Pi>.0,

1=1.2,..n ^

Remark : If a —► 1 the generalized entropies tends to the 
Shannon entropy.

lim H a (p,,P9.... P_) s lim ( 2 p^ - 1)
a-*l n 1 2 n a*l '*

= lim (5Lp?log/P*)/(-2(1-a)log 2)
a-*l i=l * *

= - l^pj log2 pt

■Hn(Pl*P2*---Pn>
In the following we give the properties of generalized 
entropies without proof.

Theorem 1.4,1 s The entropies Hna; On -*■ R (n=2,3...)

of degree a are symmetric, normalised, expansible, 
decisive, non-negative measurable and have sum properties.

f
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The entropies non-negative degree (a 0) are also maximal,
bounded and monotonic and of positive degree are continuous

*

and small for small probabilities. Those of degree a >, 1 
are also subadditive. These Hna entropies also follow 

the following properties,

i) Additivity of degree a :

Hmn (pl ql* p2 q2* * * * pmql* piq2,,,pnqn5

s Hjjj {p^» P2» • • •»Pm) + ql* q2* * * * * qn^ *

(2 •*!) (P^»?2» •«•»Pjjj) cf2* * * * *^n^
(1.4.6)

for all (PrP2.... Pm)K (q>,q2,...,qn)e On

ii) Strong additivity :

Knn^l qll»pl q12* * * * plqln * * ,pmqml* pmqm2* * * pmqm2^

* Hrn^pl*p2* * * ,pm^ + ?-,pJHna^qjl,qj2 ***qjn)
(1.4.7)

for all^pltp2t • • ‘tPnJ^ °m»Cqjl* qj2»*** qjm)^ °n

j, *s 1,2,,.. m m = 2,3,... n = 2,3,...

Recursivity of degree a
(Pl-P2... Pn> = H^.1(P1+P2-P3....Pn> +

+ (pi/( pl+p2^»p2/^ pl+p2^ 1

(1.4.8)
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for all (prp2 9 • • • 9

with pj + P2 > O

Note that meaning of properties has been given in 

the previous section (1,2). '

IV) The Kullback and Leibler Information ;

Measure :

The Kullback and Leibler information measure is used 

for the purpose of testing statistical hypotheses. Let 

( S IF p^ ) i«l,2 be measure spaces, v<here PpP2 are 

absolutely continuous probability measures and dominated 

by measure X. Let X be a random variable and H. (x) i=l,2 

be hypotheses that X has distribution p^, i= 1,2.

According to Bayes’ theorem

p(Hj x)s[p(Hi)fi(x)]/[p(H1)fi(x)+p(H2)f2(x)] (1.4.9)

Where f^(x) is Radon Nikodym derivative.

f^x) « dpJ dX

lo9e[^l( x)/^2^ X^1 = lo9e[p(Hll x)/p(H2( x)] -

- loge[p(H1)/p(H2)] W (1.4.30)

f
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Klttiere is the prior probability and p(Hi|x) is the
conditional or posterior probability. And

iogeU^U) /

is defined to be the information.

i.e. It is the information that the observation x contains 
for discrimination in favour of against H2# Further, 
the mean information for discrimination in favour of 
against H2 given that x € A from p.^ is given as

I(l:2;A)s flogJJf1(x)/f2(x))dp1(x]i/p1(A)
A

a J log2(fi(x)/f2(x)^fi(x) dX/ PX(A)
A

a O if px(A) = 0 (1.4.11)

Where, xQA €fF dp^x) sf^xJdXCx).

Let A be the entire sample space S, I(1:2;S) i.e. the mean 
information for discrimination in favour of against H2 
per observation from p^ is given as

X(l:2{,S)=l(li2)=]loge(f1(x)/f2(x))dp1(x) (1.4.12)
* Jloge(f1(x) / f2(x)Jf1(x) dX (x)

= Jloge [p(Hj'x) /p(H2|x^] dPi - 

- loge [ pCl^) / p(H2) ].
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I(1l2) is the difference between the mean value with 
respect to p^ of the logarithm of posterior probability

\of the hypotheses and the logarithm of the prior
probability,

1(1;2) is also called as the information of p^ with 

respect to p2.

Also the mean information for discrimination H2 against 

H! is defined as

1(2:1) * |f2(x) loge(f2(x)/f1(x)) dX(x)

= - Jf2(x)loge(fi(x)/f2(x)) dX(x) (1.4.13)

The necessary condition for 1(1:2) and 1(2.:1) be finite is

P1 = P2
Example 1.4.1 ; f^(x) —>>V/(o,l)f f2(x) —^Vj(o 2)

1(1*2) - /log*. ax +

o

= loge

(1/2/0). 1/2 dx

as log 1/2 «#» oo (using log (C/0) = oo)
© Q

(Where C is constant)

oo
f
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i.e. 1(1:2) is finite but 1(2:1) is infinite.

Example 1, 4,2 :
for f^(x) —► VJ(o 2)

f2(x) —»• 0(1, 3)

1(1:2)= / l/2.1og (1/2/0)dx + / l/21og fl/2/l/2]dx

o 2 e
3

+ / log (0/1/2) 0 dx
2

= 00+0+0 

= 00

Similarly,

I (2:1) = cd

From above examples it is clear that although = p2 
the 1(1:2) and I (2:1) may be infinite.

In general, we can observe that 

I (1:2) / I (2:1)
and hence, 1(1:2) or 1(2:1) cannot be used as a measure of 

divergence between and H2 •

Jeffery (1946, 1948, p,158) introduce the measure of 

divergence between and H2 which is defined as follows :

f

r
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Definition 1,4.3 :

= I(l}2) 4* 1(2:1)

= jloge [p (H^ x)/p(H2|x)]dp1(x) - 

- Jloge[p(H1/x)/p(H2/x)] dp2C?0

(1.4.14)

This measure of divergence is symmetric. This is not 

a metric, since traingular inequality property is not 

satisfied*

Wow we will consider some properties of k - L 

information measure,

Theorem 1.4,2 : Let X and Y be independent random

variables under H^, i s 1,2 then

I( 1:2;X,Y) * I(1:2;X) + I (1:2,Y) (1.4.15)

Proof :

1(1:2 X,Y)=s Jf(x y)logQ[f1(x y)/f2(x y)] dX (x y)

= Jg1(x)hjl(y)loge[g1(x)h1(Y)/g2(x)h2(y)]dw(xV

H^XyT
mm.

mHV&Ji UWIVEBSITY. KOLUAflMb
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Where, f^x y) * gi(x)hj.(y) i * 1,2

dX(x Y) » dw(x). dv(y), Jfi(x)du(x) = 1.

(h:(y) dv (y) = l.

Theorem ; 1.4,3 : If X and Y are not independent

1(1:2; X,Y) = I(1:2;X) + 1(1:2; Yfx) 

= I(1:2;Y) + 1(1:2; X,fY) (1.4.16)

1(1:2; y\X**) is the conditional information of Y for the 

discrimination in favour of against H2 when X = x under 

H1. i.e. I (1:2; y) X) is the mean value of the conditional 

discrimination information undefc Hj.

Theorem 1.4,4 : The 1(1:2) is positive, i.e. 1(1:2) >, 0.

If equality holds if and only if f^(x) = f2(x) a*s. [*•].

Proof : Let us define g(x) = f^(x)/f2(x) (1.4.17)

1(1:2) » {f1(x)loge[f1(x)/f2(x)] dX(x)

Where d p2(x) = f2(x)dX(x).

Define function ‘V(f) = t loge t with 0 < g(x) < oo[X] 

Expanding by Taylor's series,

5748
A
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ttg(x)) = f(l) + [9(x)-l]'V(l)+l/2[g(x)-l]2y"(h(x))[\]

(1.4.17)

i.e. g(x) < h(x) < 1 and 0 < h(x) < oo.

With'j'(1) = 0, f(1) = 1

j g(x) dp2(x) a Jf^xJdMx) = 1 (1.4.18)

and j v^(g(x))dp2(x) = 1/2 J [g(x)-l]2v|/'(h( x)) dp2( x)

(1.4.19)

Where, V(l) * 1/t > 0 for t> o
i.e.
J g(x)loge9(x)dp2 =J fj^Cx) loge [f1(x)/f2(x)]dX(x) >, 0

If fx(x) a f2(x) a. s. [X] (1.4.20)

Therefore I (1:2) = 0

Theorem 1,4.4 tells us that, the mean discrimination 

information obtained from statistical observations is positive 

And also'there is no discrimination information if the 

distributions of the observations are same under both 

hypotheses.

V) The Fisher's Measure of Information :

This measure is used in the problems of estimation of 

unknown parameter Q. It is used in obtaining minimum
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variance unbaised estimate of statistic *T* i.e. Cramer- 

Rao - inequality.

Let X be a random variable with sample space S and 

having probability density function f(x,©) with respectit* 

a cf- finite measure u and f(x > ©) is differentiable with 

respect to Q. Then, for any measurable set A,

(d/dO) / f(x Q) du = J (d/d 6) [f(x . ©)] du (1.4.21) 
A A

It can be observed that

E [(d/d6)[logef]] = 0 and E j-(d2/de2)[logef]}

= E ^(d/d8)[logef] ) 2
«

e E [ f * (X ©)/f(x ©) ]2 

= V [(d/d©)(logef)] (1.4.22)

Definition 1.4.4 : The Fisher’s information measure on 

Q contained in the random variable X, is defined to be

E [ (d/d©) (logef) ]2

and is denoted by 1(d).

f
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The properties of this measure are given as below:

1) Let I^(©) and I2(G) are information contained in 

two independent variables X and Y. Let 1(G) be the 
information contained in joint (X Y) then,

I(«) = I1(C) + I2 (G) (1.4.23)

2) Let Xp X2, ...,Xn be identically distributed random 

variables and 1(G) be the information contained in each 
variable. Then, the information contained in
(Xp X2» • • •»X^) nl(©)»

3) Let X be a random sample, X - (xpX2,...xn) independently, 
identically distributed with f(x G). And 7 be a measurable 
function of X with a density function^(*, Q) with 
respect to a <5*- finite measure v. And it is 
differentiable with respect tp Q. Let Lj.(G) be the 
information contained in the statistic T about G,

It(Q) * E [V(T 0)/f< T,G) ]2 (1.4.24)

Observe that

a) e [f'(x,e)/f(x.e)| T=t ]
(Rao (1973))

f
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b) i(e) >, iT(e) {1*4.25)

The result (b) is equivalent to

K©) >,iT(«) ;(Xi»X«, »,|X )1**2*........ n'

That is the information contained in a sample is greater 

than or equal to any statistic T. It will be shown in 

the Section (2.1). if equality in b holds, the statistic 

T is sufficient statistic.

Remark : If © is vector, the result is similar to b 

can be established in terms of the Fisher information 

matrix.

f


