
CHAPTER - II

SUFFICIENCY AND INFORMATION 

2.0 Introduction :

Suppose a certain experiment is performed, the 

main job of the statistician is to store and interpret 

data and draw valid conclusions. To store the raw data 

is very costly, since he likes to condense vtfiole data in 

terms of a single figure, i.e. the figuie represents 

whole data, that single figure is called 1 statistic* ♦

In the problem of statistical inference one has
\

to estimate an unknown parameter as to test certain 

hypothesis, based on the data collected for the purpose. 

Often the data can be simplified through the computation 

of a few numerical values (called statistic). The 

statistical analysis can be based on the above summarised 

data, just as effectively as an analysis that could be 

based on the original data. Such summaries are known as 

sufficient statistic. Loosely speaking, a statistic T is 

called sufficient it contains all the information that 

entire data contains. In the classical setup sufficient 

statistic is defined as follows :

f
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Definition 2.0.1 : Let X = (,x2» • • •»x ) be a sample

from^Fg : Q 6 @ A statistic T = T(x) is said to be

sufficient statistic for the unknown parameter 0, if and 

only if, the conditional distribution of X given T = t is 

independent of 6.

The entire sample is always sufficient for ©. Thus 

the problem is to find a sufficient statistic of minimum 

dimensions. To find a sufficient statistic the 

factorization criterion can be used.

The Factorization Theorem 2,0.1 : Let, X^, x2, ..., xn 

be random variables with probability mass function

(xi* x2» •••* xn^ ® ® Then, T(x^, x2,..., xfi) is 

sufficient for 6 if and only if,

= h(xx»x2*****xn^ f©CT(xi»x2»***’xn^»

Where his independent of Q and it is non-negative function 

of X and fQ(T( Xp x2,,.., xn)) is non-negative f unction of •& 

and statistic T.

The discussion given above is interms of a classical 

setup. This chapter contains three sections. The Section 2.1 

deals with sufficiency through information in which sufficiency 

of estimator is defined in terms of information theory. The 

Section 2.2 deals with minimum discrimination function in which

f result...
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related to the estimation is given4and f^(x), the 

density function which close to f2(x) ^ounc!* ou-t under 

certain conditions such that the discrimination function 

must be minimum* The section 2.3 deals with a variant 

of the fundamental lemma of Neyman and Pearson in which 

the Neyman-Pearson Lemma is proved in bayesian form 

(Renyi 1966),

2.1 Sufficiency Through Information ;

Let, p) be a probability space. Where -a.

is non-empty any arbitrary set, & be 6"- field of subsets 

of -Ti-. and p is a probability measure defined on Jp. Let 

© be a discrete random variable in (-A-, ff, P). A 

function 6 = ©(a) where, w € -TV-, taking finite number of 

different values ©^, ©2, • ••*©£ (r >2) for u> 6-*"'-. We 

define event Bk such that,

Bk * l«(«) = «k) k = 1,2,... r (2.1.1)

and Bk 6. fF.

We interpret © as the parameter of probability 

distribution. And the event Bk as hypothesis that the true 

value of O is equal to «k i.e.

Pk 8 p(Bj^) s p(© 8 Ojj) k * 1,2, ...,r (2.1.2)

f
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Thus the prior distribution of 6 be Px»p2’* * * ,Pr* Then 

the Shannon's entropy is defined as

r
H(©) = - Pk lo92pk (2.1.3)

H(©) is interpreted as "the amount of missing information* 

about © when © is unknown except its prior distribution is

given (©j, ®2****°k are known)•

Let X « Xx(w)» ^n^ are random

variables which take only finite number of ' s* different 

values. Let X = X(w) be a random sample and p( k[ j) =Pjc( x) 

be the posterior distribution of © after observing 
X - Xj is given by p(k\j) * p(«[uj© ® ek = xjl ^ C2*1*4)

where, x1,x2,...,x^ are the vector values of X. Then, 

the posterior entropy will be

H(©|xj ) =-^p(k|j) log2|Q(l j) (2.1.5)

This can be interpreted as "the amount of the information 

concerning © still missing even observing x^ i.e. X = x^. 

The average amount of information concerning 9 still 

missing* is given as

H(e|x) = < H(eJXj)> * -SI 'S! p\wlx=x/\p(k\j)iog2p(k| j)

(2.1.6)
Which is interpreted as "the average amount of information

f
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still missing for 9 after observing random sample X*.

Define,

R(9, X) * H(9) - H(9|x) (2.1.7)

Where, R(9,X) is 'the amount of information in the observed 

sample X with respect to unknown parameter 9*. It is the 

/erage decrease of the entropy of 9 after observing X.

Let the conditional distribution p(k)j) 

j) - (p^(x), ... pr(x)) of 9 is indentical with the 

prior distribution (p^.Pj*•••»Pr)# it and only if 9 and X 

are independent.

In this case,

H(9]X) = H(9). . (2.1.8)

i.e. R(9,X) = O

i.e. the observations of X cannot give any information 

about 9. From equation (1.2,10)

H(Ojx) « H(9) (2.1.9)

i.e. R(0,X) > 0.

Let T(X), X6En be any k dimentional vector valued

borel measurable function on n - dimentional space E . Wen
call T(X) as statistic because after observing the sample 

X, we can calculate T(X).
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Theorem 2.1.1- We have,

R(6>, T(x)) a R(Q , X) (2.1.10)

if and only if the conditional probability distribution 

of Q given value of X is fixed, if it depends on the value 

of T(x) only,

i.e, p(k|i) a p(kjj) (2.1.11)

Proof - Let us define,

p(M) = p( | ule = e*, x = x^ )

qj = p({U\ X = xj p

Let YpY2»**»»Ym the values taken by the function T on
*

thfi S6*tr Xj^| Xjl • • * Xg ^ '

Let,

Cjl« {jlKxj) a 1 = i,2.....

Now define,

h(x^) = X, j 6 (X a 1,2,..., m)

The probability, 

r (k^X) « p(^« ©=«k, T(x)=^j^5, 

r ( JL ) * p(^w\T(x) = Yjl^)*

The numbers,

(2.1.12)

,m (2.1.13)

(2.1.14)

! •

(2.1.15)

u(k, j) = r(k,X) '■ / r (X) (2.1.16)

r
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Where r( k, 4-) P(k,j)
jG^l,

i.e. R(©.X) - R(©,T(x) * H(©)-*'H'(€>| X)-H(©)+H(© |T (X))

■ H(fl|T(X))-H(©\x)

i.e. H(©(T(x))- H(Q|X) 

r m 

~ k=l 1=1r(k,l) log2 [r(k.l)/r(l)] -

£. ,SL P(k,j) log2[p(k,j)/q,] 
k=l j=l 2 3

- ^-*[p(k,l) log- u(k 1) / q + 
k=l 2 1

+ p(k,2) log2 u(k,2)/q2 + ... +J+

+ ’2- P(k J) log„p(k j) / q.
k-1 j=l 2 1

i.e. -5L£>Ck*3} log2(u(k»i)/ci-| ) +
ic.%^ j—\

+ T "EL p(k.3) log9(p(k,j) / q ) 
k-1 j=l 2 3

= T! H. [p( k, j) log (p(k,j) / u(k,j)) > 0 (2.1.17)
k=l j=l 2

if and only if (2.1,10) satisfies

p(k,j) = u(k,j)

if r(kth(x^))q^ / r(h(x^)) = u(k,j) 

if and only if,

u(k, j) / q^ = u(k,i) / qA (2.1.18)

(
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i.e. R(© X) - R(0, T(x) > 0 

i.e. R(©, T(X) 4R(°»X)*

The amount of information contained in the observations of 

X is greater than the amount of information contained in 

T(X), i.e. H(«jX) ^H(6lT(x)

Too) - RCe.x) toi+h 

pCK\j) ~ PCK\i) . a. e. .

We call the function (T(X) is sufficient for ©. Now 

definition of sufficiency is given as

Definition 2.1.1 The function 'T(x) of the observations 

is said to be sufficient if and only if the amount of 

information contained in the observations is equal to the 

amount of information contained in the function T(x) 

about the unknown parameter ©.

Let the random vector X^as density function 

f q ( Xp x2,..., xn) and ^(Ttx)) be the density function of 

T(x). Then,

fQ (xl»x2»***xn^ = 0k(T(x),«) . h(x) (2.1.20)

Where, h(x) is independent ©. This is usual definition of 

sufficiency (through factorization theorem).

f
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2,2 Minimum Discrimination Function :

In the previous chapter (Section 1.4) we have 
considered the Kullback-Leibler information measure 1(1:2), 
and it is given as

It is also considered as directed divergence.

Suppose that, f2(x) is given, then our aim is to 

select a probability measure close to P2, i.e. we select 
f^(x) such that 1(1:2) must be minimum. That is the mean 

information for discrimination in favour of against 
is minimum, Wiere H^, i=l,2 is the hypotheses that the 
density of X is f^(x).

*

Definition 2.2.1 The variation of the information 
when we pass from the initial probability measure p* to the 
new probability measure p absolutely continuous to p* is 
denoted by H(p|p*) is defined as

(2.2.2)
where, 0(x) is Randon-Nikodym derivative of p with respect 
to p*.

f
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Note that

j0(x)loge0{x) dp"* » J loge0(x) dp (2.2.3)

Let, ( -O-, fF , v2) be a probability space and T(x) 
be a real valued f - measurable, non*degenerate bounded 
function. The probability measure v* is defined as

** (A) * [ J exp(-0T(x))dv2 ] / 0(0) (2.2.4)
A

For every A €fp, vtfiere,

0(0) a / exp (-0T(x)) dv2 (x) (2.2.5)

andJ T(x)dv*(x) * 0. (2.2.6)

Lemma 2.2.1 : The equation 0 (0) / 0(0) = - © (2.2.7)

has unique solution.

Proof : Let, g a © - T (2.2.8)

Observe that, T is non-degenerate then,

v2{g > 0) > 0, v2\g < o] > 0

f

#■

I
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Define
GO) » 5 (S-T) exp [0(W)]dvo

-ru z

« J (0-T) exp [0(©-T)] dv2 +
A
+ f (€>-T) exp [P(e-T)] dv2

Where,
A = \ x\g(x) > 0*\# AC = g(x) .< 0^

we can write
lim \ g(x) exp [0g(x)] dv (x) =0 —>oo «c*u 2

lim
0 —► oo exp [0g(x)]dv2(x) +

+ J r gU) exP [^g-(x)] dv2
0 00 ^

= oo +• 0
= + 00 

Similarly,
lim>0 - „ )00 -ru

g(x) exp [0g( x)l dv2(x)

= lim / 9(x) exp Og( x>] dv2(x) +0 -*• '°° A
■q* lim f g(x) exp [0g( x)l dv2(x)0 -*■ 1 8 >' o

= 0 - 00 = -• 00

(2.2.9)
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i.e. G (0) is the increasing function taking values ~ooto ca

Therefore,

G'(0) 5 g (x) exp [0g(x)] dvAx) > 0.

G (0) exists, therefore, G(0) is continuous

^ GO) * 0

has unique solution.

\ (© - T) exp J>(©-T)] dv2 s o

(2. 2.10)

© exp [P(©-T)]dv2 - f T exp [0(©-T)] d*2 *

J © exp [0(©-T)]dv_ * S T exp [/3(©-T)] dv

0

i.e. exp [0©] i © exp [-0T]dv2 = exp [/3©] i T exp[-/9T]dv

i.e. J

i.e. - ©

© exp [-0T] dv2 *

^ exp [-0T]dv2 = •

J T exp [-/3T] dv2

/ T exp [-0T] dv2

- © 0(0) 0O)

i.e. 0 (0) / 0(/3) * -©

f
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Theorem 2.2.1 Let,

i T(x)dv.(x) = Q (2.2.11)
-a*

then the inequality,

Hfvjvj) ^H(v*jv2) * loge[l/0O)]-^e (2.2.12)

where, the equality holds if and only if the probability

measure v. is equal to the probability measure v* on p .
A \

Proof : The above inequality holds if

H(vllv2> = 00

Let us, v^ is absolutely continuous with respect to 

v2 which is initial probability measure. Therefore suppose 

that
m

H (VjJ v2) < +co

and there exists unique function by Randon-Nikodym theorem

0(x) « (d vx / dv2)(x)

Then,

H(v1|v2) * ^J_0(x) loge 0(x)dv2(x) (2.2.13)

H(v*|V2) » 5 0*(x) log^xjdv^x) (2.2.14)

Where, 0*(x) = (dv* / dv2H*) = exp[-/3T(x)] / 0(0)

I
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By the equations (2.2*6) and (2.2.11) we can write 

J 0(x) log 0*(x)dv2(x) = J ^(xHogJ^xJdVjU)
m/\m «wAm»

(2.2.15)

But frcm the equations (2.2.13), (2.2.14) and (2.2.15) it 

is enough to show that

5 0(x)loge0*(x)dv2(x) _< / ^(x)loge0(x)dv.

th eref ore.

S 0(x) loge [0*(x) / 0(x)]dv2(x) .< 0 (2.2.16)

*-I(v, V*) <0 which is true, 

i.e. I (1:2) >/ 0
equality holds if and only if v^ » v*.

Theorem 2.2.1 has the following interpretation :

Let, v2 be given probability measure andp be the 

class of all probability measures satisfying the condition

J TfxJdVj^x) * 0.

Then, H(v^|v2) is minimum for « v* when minimum is taken 

over

f

•mvaji uauvEasrix

t



- 60 -

Equivalently,

min. H .(*,]»-)»1 Sp h(»*1*2)

The above theorem 2.2.1 can be used for the estimation 

problems also. The corresponding criterion is similar to 

that of maximum likelihood criterion. The criterion based on 

theorem (2.2.1) is a variant of the principle of maximum 

information applied to the discrimination function. The 

following result gives the .similarity of the principle of .! . 

maximum information and that of the principle of minimum 

discrimination function.

Theorem 2.2.2 The probability function

fj(x) £ 0, [ f*(x)dMx) = 1 • (2.2.17)

which minimizes the discrimination function

1(1:2) * J
subject to constraint

fx(x) loge[f1(x)/f2(x)] dX(x)

(

i T(x)fx(x)dX(x) = 0 (2.2.18)

is given by

f*(x) m f2(x) exp [-0T(x)] / 0(0) 
f

(2.2. 19)
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Where, 0(0) = J f2(x)exp[-0T(x)]dX(x) (2.2.20)

0 being the unique solution of the equation

(d/d/9) (loge 0(0) =-©.

and T being a non-degene rate random variable.

Proof : We have to maximize the function

£ = -1(1:2) * J fx(x) loge[f2(x)/f1(x)] dX(x)
■/V—

using the Langragian multiplier method, and considering that

log x < x-1 if x / 1
©

and log x - x-1 if x = 1.

We get,

1 - a - 0© = $ f1(x)loge[f2(x)/f1(x)]dX(x)-a[J fx(x)dX(x)]-

-0 / T(x)f.(x)dX(x)

= J f1(x)[loge(f2(x)/f1(x)) -a-0T(x)]dX(x)

= f1(x)loge[(f2(x)/f1(x))exp(-a-0r(x)]dX(x)

4* / f1(x)loge[(f2(x)/fi1(x))(exp[-a-0T(x)3-l]dX(x)
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Where the equality holds if and only if

f^x) * f2(x) exp [-a - 8T(x)] a.e. X.

We get the constants a and 8 using the equations (2.2.17) 

and (2.2.18).

We get

a » loge 0(8).

and also we obtain Hie minimum value of the discrimination
function.

It is given as

I(* ; 2) = - 08 - loge0(8) (2.2. 21)

We know that 6 is the parameter if we take a sample of n

observations and we estimate the value of © on the basis of
A

the sample observations say 9(x), Then, we also, estimate 

the value of I(* : 2) and also fi(x) = 8(e(x)) such that,

T(x) = &(x) = -[(d/dPHlog^O))]p=*(x)=p(^(x))

i.e.I(«:2) = -©(x) 8(x) -loge 0(8(x))

= -.©8(e) - log 0 (8(e))

A
The I(* : 2) is the minimum discrimination information 

function between the populations with the probability density 

function f (x) with the parameter value © and its estimated

\

f
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vedue 9 and with the density function f2(x). And

I(* i 2) >y O

AIf equality holds, the estimated value 9 is equal to the 

parameter value 9 and population having probability density 

f2(x) ; Also I(* : 2) is interpreted as deviation between 

the sample and the population density function f2(x).

As application of above theorem (2.2.2) we consider 

following example :

Example 2.2.1 V f2(x) N(9,1) and T(x) = x

T(x) = x i.e. x —► N (9,1/n)

f2(x) * 1/s/ST exp [(-l/2)(x-9)2]

-oo <x<oo

We know that

J x f*(x) dx * 9*
n *

f
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CD

0(0) = J exp(-0x) (1/ |/2jrl/n)exp[(~n/2) (x-©)2] dx 
.00

oo
= \/n /{/2if / exp [-

-00

0x - (n/2)(x - ©)2] dx

2* exp f (-n/2)[(x-©)2 -l- 20x/n] j dx
-oo ^ j

= \fnl\f2M exp^ (-n/2) [x2- 2x© + ©2 + 20x/n]Jdx

oo
= exp(-n0^2)\/n/\/Si / exp $ (-n/2) [x2-2(©-0/n) x ♦

' —oo l

♦ (© - 0/n)2 - (©-0/n)2]Tj dx

CD

= exp[^n©2/^n(©-0/n)2/2]\/n/^2jr j exp
-oo

= exp [ -n©2/2 + r\{Q-p/n)2/ 2]

* exp [-n©2/2 +n/2(«2-200/n + p2/n2)]

= exp [ —06 + 02/2n ].
\

Also, we know that,

((<Vdp) [ loge 0 (0) ] = - O'

(d/de) (-00 + e2/2n) = - o*

f
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i,e. ~© + 20 2n « -©'

i.e, 0 * n(©-©') 

i.e. f*(x>
* f2U) exp (-0x) / 0(0)

■ (\/n/^/2ji)exp (.n)(x-©)2 exp(«0x)/exp [-0©+02/2n]
2

= (V^/v'2?)*xP^ (~n/2)[(x« ©)2+20x^n - 20©/n + B2/n2] ^

■ (Vn/\^ exp^(-n/2)[x2-2x©+©2+20yn-200/n + B2/ n2]

* (\/n//2ir) exp ^ (-n/2)[x2-2(©-0/n)x + (0-0/n)2-(©-0/n)2+

+ ©2 - 20©/n + B2/ n2]^j

* (n/ri ^ y2x) exp ^(-n/2)[(x - © - 0/n)]2-(© -0/n)2+(©-0/n)2 

- (Vn//5r) exp|( -n/2 ) [ x -• ( © - 0/n ) f j

* (v/S/\Z5) exP (~n/2) [x-(©-n(© - ©' )/n) ]2

* ( V** /\/2* ) exp -n/2 ) ( x - ©' )2 }

Thus f* —* N(©', 1/n)

Therefore,

I(* s 2) » • ©*0 - log2 0(0)

= -©* n(©-©* )+n©(© -©* )-n2 (© -©»)/^n 

a n(© - ©*)2 / 2
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2.3 A variant of the Fundamental Lemma of Neyman and
Pearson :

Let, © be the unknown parameter and Xi»X2’****n fae a 

sequence of random variables (say random sample X). The 

distribution of a random sample X depends on ©. We also 

consider as © is a random variable which takes values ©o
and ©^ with probabilities WQ and respectively. We also 

suppose that the random variables xn independently and 

identically distributed under © = ©Q as well as © = ©^.

The density functions of a random sample under © = ©q and 

© *s ©^ are fQ(x) and f^(x) respectively with fQ(x)^ f^Cx).

We know that the amount of information R(©,X) 

containing in observing the sample is given as :

R(© X) * H(©) - H (©|X) (2.3.1)

Where, fj,(©) is the entropy of ©.

i.e. H (©) s W0log2 1/WQ + Wxlog2 1/WX

H(©|xn) * p(© = ©oJ xn) log 1/p(© = Qq\ xn) +

p(© = ©^\xn) log^ l/p(©=©1^ xn)

Where, H (©Jx) denotes the expection of H (©\xn) • Also 

R(© , X) is interpreted as the average information about © 

after observing sample X.

(
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Vs
The fundamental lemma of Neyman and pearson'used in 

obtaining most powerful test for testing © - ©^ verses 

© * ©^. But here we consider bayesian form of Neyman 

Pearson Lemma. It is stated as 'decision procedure for 

which probability of an error is minimal'. Such decision 

is called as standard decision.

Let us, consider a decision A= VA(x) is a borel 

measurable function of a sample on the values of © = ©o
\

and © * ©,. If A sb © . we accept the hypothesis © = © and 1 o o
if ©i we accept the hypothesis © = ©^. The error in 

the decision is defined as the decision which taken is not 

correct and it is denoted by 6.

6 s= p[A^ © ]

i.e. e = w0p(A= e^e = ®0> + w1p(As=©0| ©=©x) (2.3.2)

On the basis of the sample standard decision is :

if P(e ss ©o)x) > p(© bs ©1|x), 

if p(© * ©1|x) > p(© = ej x), 

if P(© = ©jx) « p(© = ©Jxl,

accept ©q )

accept ©^ (2.3.3)

f
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The choice is made either ©Q or ©^ with probability WQ and 

Wjl respectively for p(© = ©Q|x) = p(© = ©Jx),

Theorem 2,3,1 : No decision can have a smaller error than

standard decision.

Proof : Consider the sample space 'S' and it is divided

into three disjoint parts as S0» and Sg such that

X©s0 if pU^lx) < p(«clx) ) 

X<3 sx if p(o0\x) < p(ex\x) | 

X€S2 if p(«0\X) = p(«J X) )

Let, y = (yx, y2, .... yn) and f^y) H f (yj) 
is*l 1

Define,

6(y) =

( 1 if y € Sx 

j O if y 6 S0 

| if y € S2

)
)
)

Equivalently 6 is given as

6(7)

( i if fjWWj. > f0(7) w0

| o if fQ(y)w0 > fx(7) wx

[wx if f0(y)w0 = f(y) wx

(2.3.4)

(2.3.5):

(2.3.6)

(



69 -

The error in the standard decision is also given as

€ =» WQ J6(y)f0(y)dy + wx $ [ i -6{y)]f 1(5r) dy) (2.3.7)

dy denotes dy^ d^ dyn and integral is all over

sample space*

Let us consider A be another different decision from 

standard decision A* then

(1 if A? « %

6*(y) = j (2.3.8)

( o if -&* = o

The error ci-Srs decision A.* is denoted by 6*.

e* = /s^Cy)f0(y)<iy + / [1-6'k(y)] f1(7)d(y) ^

Therefore,

e* - e = J[6*(7) - 4(y)][w0fo(?)l <V-

> o
&•
G >/ G

By likelihood ratio test we accept hypothesis

e = er if [fx(y) / f0(?)] > [w0 / wx]

(
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and the hypothesis © = ©Q is accepted if

[fx(7) / f0<7>] < Cwo/wj.]

if [fl(?) / f0(7j] = [wywj -

The random choice is made between © s © and © = ©, witho l
probabilities and WQ respectively.

Theorem 2,3.2 There exist constants A and X with A > O and 

0 < X < 1 depending on fo(x), f^(x) and WQ, such that

0 < *t(©) - Rt«,X) 4 AXn (n = 1,2,...)

For X we may take the value

X a* inf ( 
0$g^l

Theorem 2,3,3 Let 6 denote the error of standard decision, 

Then,

6 < [ H(©) - R(9, X) ]

From these both theorems, the 6 is error in the standard
decision after Oservin, sa^X. THerefore, e„ < *«.

n is 1,2 
oo

This implies the series Z. 6 is convergent. Then by
nnO

Borel cantelli lemma, if we take samples indefinitely in 

number and make standard decision for each n with
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probabilityl, the situation will occur that our all decisions 

are correct. Here, to find out -^n* we consider following 

example :

Example 2.3.1 : If f{^ (x) » exp (©) based on single

observation p(© » Q^) = 1/3 » WQ»

p(© s ©2) « 2/3 « WQ with H0 ; Q± = 1

H1 * G2 = 2

6(x) =1

Let,

: d « Qx if p[« * «X\X] > p[©=©2\ X]

d = «2 if p[« * X] < p[©=92| X]

d * Qx or ©2 if p[© = ©x\x] = p[Q = ©2\X]

p[© * ©x l X]

* fCxJOj^J.pC© a ©x) / [f(x|©)p(© ©1)+f(xj©2).p(© = ©2)]

= ©! exp (-© x)Q./3)/ [© exp (-© x) 1/3 + ©2exp(-©2 xX2/2[J)

Similarly, 

p[© a ©2\X]

* ©2 exp (-©2x).2/3 / [©x exp (-©jX).l/3 + exp (-©2x)2/3 ]

f
••niS
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If p[ © = o11 X] > p[© = q2 | X]

©x exp [-©^3(1/3) / [©x exp («©1x)^l/3)+ ©2 exp [-©2x]^2/3(]

> ©2 exp (-e2x)«{2/3}/ \©x exp (-©^Xl/S)* ©2 exp(-©2x)«^2/3| 

i.e. ©j^ exp (-©^x) (l/3j) > ©2 exp (-©2x) (2/3)

i.e. exp [ (©2 - x ] > 2 ©2/©x

exp (x) > 4 

x > loge 4

Thus, Accept H if x > log 4
U V

Accept if x < loge 4

Accept ©^ or ©2 if x = loge 4. '

(Accept Hq if x > loge 4
6(x) *

Reject H0 if otherwise

f


