CHAPTER - II

SUFFICIENCY AND INFORMATION

2.0 Introduction :

Suppose a certain experiment is performed, the main job of the statistician is to store and interpret data and draw valid conclusions. To store the raw data is very costly, since he likes to condense whole data in terms of a single figure, i.e. the figure represents whole data, that single figure is called 'statistic'.

In the problem of statistical inference one has to estimate an unknown parameter as to test certain hypothesis, based on the data collected for the purpose. Often the data can be simplified through the computation of a few numerical values (called statistic). The statistical analysis can be based on the above summarised data, just as effectively as an analy that could be based on the original data. Such summaries are known as sufficient statistic. Loosely speaking, a statistic T is called sufficient it contains all the information that entire data contains. In the classical setup sufficient statistic is defined as follows :

Definition 2.0.1 : Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a sample $\operatorname{from}\left\{F_{\theta}: \theta \in(H)\right\} A$ statistic $T=T(x)$ is said to be sufficient statistic for the unknown parameter θ, if and only if, the conditional distribution of X given $T=t$ is independent of θ.

The entire sample is always sufficient for e. Thus the problem is to find a sufficient statistic of minimum dimensions. To find a sufficient statistic the factorization criterion can be used.

The Factorization Theorem 2.0.1 : Let, $x_{1}, x_{2}, \ldots, x_{n}$ be random variables with probability mass function $f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \theta \in\left(\mathbb{H}\right.$. Then, $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sufficient for θ if and only if,
$f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}, \theta\right)=h\left(x_{1}, x_{2}, \ldots, x_{n}\right) f_{\theta}\left(T\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$, Where h is independent of θ and it is non-negative function of X and $f_{\theta}\left(T\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ is non-negative function of θ and statistic T.

The discussion given above is interms of a classical setup. This chapter contains three sections. The Section 2.1 deals with sufficiency through information in which sufficiency of estimator is defined in terms of information theory. The Section 2.2 deals with minimum discrimination function in which 1
related to the estimation is given, and $f_{1}(x)$, the density function which close to $f_{2}(x)$ is found out under certain conditions such that the discrimination function must be minimum. The section 2.3 deals with a variant of the fundamental lemma of Neyman and Pearson in which the Neyman-Pearson Lemma is proved in bayesian form (Renyi 1966).

2.1 Sufficiency Through Information :

Let, ($\Omega, \mathbb{F}, \mathrm{p})$ be a probability space. Where is non-empty any arbitrary set, \boldsymbol{F} - field of subsets of Ω and p is a probability measure defined on F. Let θ be a discrete random variable in (Ω, F, P). A function $\theta=\theta(\omega)$ where, $\omega \in \Omega$, taking finite number of different values $\theta_{1}, \theta_{2}, \ldots, \theta_{r}(r \geqslant 2)$ for $\omega \in \Omega$. We define event B_{k} such that,

$$
\begin{equation*}
B_{k}=\left\{\omega \mid \theta(\omega)=\theta_{k}\right\} \quad k=1,2, \ldots r \tag{2.1.1}
\end{equation*}
$$

and $B_{k} \in \mathbb{F}$.

We interpret θ as the parameter of probability distribution. And the event B_{k} as hypothesis that the true value of θ is equal to θ_{k} i.e.

$$
\begin{equation*}
p_{k}=p\left(B_{k}\right)=p\left(\theta=\theta_{k}\right) \quad k=1,2, \ldots, r \tag{2.1.2}
\end{equation*}
$$

Thus the prior distribution of θ be $P_{1}, P_{2}, \ldots, P_{r}$. Then the Shannon's entropy is defined as

$$
\begin{equation*}
H(\theta)=-\sum_{k=1}^{\Gamma} p_{k} \log _{2} p_{k} \tag{2.1.3}
\end{equation*}
$$

$H(\theta)$ is interpreted as "the amount of missing information" about θ when θ is unknown except its prior distribution is given $\left(\theta_{1}, \theta_{2}, \ldots \theta_{k}\right.$ are known).

$$
\text { Let } X=X_{1}(\omega), X_{2},(\omega), \ldots, X_{n}(\omega) \text { are random }
$$ variables which take only finite number of ' s ' different values. Let $X=X(\omega)$ be a random sample and $p(k \mid j)=p_{k}(x)$ be the posterior distribution of θ after observing $x=x_{j}$ is qiven by $p(k \mid j)=p\left(\left\{\omega \mid \theta=\theta_{k}\right\} \mid\left\{\omega \mid x=x_{j}\right\}\right)$

where, $x_{1}, x_{2}, \ldots, x_{\$}$ are the vector values of x. Then,
the posterior entropy will be

$$
\begin{equation*}
H\left(\theta \mid x_{j}\right)=-\sum_{k} p(k \mid j) \log _{2} p(k \mid j) \tag{2,1,5}
\end{equation*}
$$

This can be interpreted as the amount of the information concerning θ still missing even observing x_{j} i.e. $X=x_{j}$. The average amount of information concerning θ still missing" is given as
$H(\theta \mid x)=\left\langle H\left(\theta \mid x_{j}\right)\right\rangle=-\sum_{k=1}^{r} \sum_{j=1}^{S} p\left\{\omega \mid x=x_{j}\right\} p(k \mid j) \log _{2} p(k \mid j)$

Which is interpreted as "the average amount of information
still missing for θ after observing random sample $X^{* *}$.

Define,

$$
\begin{equation*}
R(\theta, x)=H(\theta)-H(\theta \mid x) \tag{2.1.7}
\end{equation*}
$$

Where, $R(\theta, X)$ is the amount of information in the observed sample X with respect to unknown parameter θ^{\prime}. It is the sierage decrease of the entropy of Θ after observing X.

Let the conditional distribution $p(k \mid j)$
$p(x \mid j)=\left(p_{1}(x), \ldots p_{r}(x)\right)$ of θ is indentical with the prior distribution ($p_{1}, p_{2}, \ldots, p_{r}$); if and only if θ and x are independent.

$$
\begin{align*}
& \text { In this case, } \\
& H(\theta \mid x)=H(\theta) \tag{2.1.8}\\
& \text { i.e. } R(\theta, x)=0
\end{align*}
$$

i.e. the observations of X cannot give any information about Θ. From equation (1.2.10)

$$
\begin{align*}
H(\theta \mid x) & \leqslant H(\theta) \tag{2.1.9}\\
\text { i.e. } R(\theta, x) & >0 .
\end{align*}
$$

Let $T(X), X \in E_{n}$ be any k dimentional vector valued borel measurable function on n - dimentional space E_{n}. We call $T(X)$ as statistic because after observing the sample X, we can calculate $T(X)$.

Theorem 2.1.1 We have,

$$
\begin{equation*}
R(\theta, T(x))=R(\theta, x) \tag{2.1.10}
\end{equation*}
$$

if and only if the conditional probability distribution of Θ given value of X is fixed, if it depends on the value of $T(x)$ only,

$$
\begin{equation*}
\text { i.e. } p(k \mid i)=p(k \mid j) \tag{2.1.11}
\end{equation*}
$$

Proof - Let us define,

$$
\begin{gather*}
p(k, j)=p\left(\left\{\omega \mid \theta=\theta_{k}, x=x_{j}\right\}\right) \tag{2.1.12}\\
q_{j}=p\left(\left\{\omega \mid x=x_{j}\right\}\right)
\end{gather*}
$$

Let $y_{1}, Y_{2}, \ldots, Y_{m}$ be the values taken by the function T on the set $\left\{x_{1}, x_{2}, \ldots x_{s}\right\}$

Let,

$$
\begin{equation*}
C_{\mathcal{L}}=\left\{j \mid T\left(x_{j}\right)=y_{\mathbb{L}}\right\} \cdot \mathcal{L}=1,2, \ldots, m \tag{2,1.13}
\end{equation*}
$$

Now define,

$$
\begin{equation*}
h\left(x_{j}\right)=\alpha, j \in C_{1}(1=1,2, \ldots, m) \tag{2.1.14}
\end{equation*}
$$

The probability,

$$
\begin{align*}
& r(k, \mu)=p\left(\left\{\omega \theta=\theta_{k}, T(x)=y_{1}\right\}\right) \\
& r(\ell)=p\left(\left\{\omega \mid T(x)=y_{\mathcal{L}}\right\}\right) \tag{2.1.15}
\end{align*}
$$

The numbers,

$$
\begin{equation*}
u(k, j)=r(k, \lambda) q_{j} / r(\ell) \tag{2.1.16}
\end{equation*}
$$

Where $r(k, l)=\sum_{j \in C_{\ell}} p(k, j)$.
ie. $R(\theta, x)-R\left(\theta, T(x)=H(\theta)-i H^{\prime}(\theta \mid x)-H(\theta)+H(\theta \mid T(x))\right.$

$$
=H(\Theta \mid T(x))-H(\theta \mid x)
$$

ie. $H(\theta \mid T(x))-H(\theta \mid X)$

$$
\begin{align*}
& =-\sum_{k=1}^{r} \sum_{l=1}^{m} r(k, \lambda) \log _{2}[r(k, \lambda) / r(l)]- \\
& -\sum_{k=1}^{r} \sum_{j=1}^{s} p(k, j) \log _{2}\left[p(k, j) / q_{j}\right] \\
& =-\sum_{k=1}\left[p(k, 1) \log _{2} u(k 1) / \mathbf{a}_{1}+\right. \\
& \left.+p(k, 2) \log _{2} u(k, 2) / q_{2}+\ldots+\right]+ \\
& +\sum_{k=1} \sum_{j=1} p(k j) \log _{2} p(k j) / q_{j} \\
& \text { ide. }-\sum_{k=1} \sum_{j=1} p(k, j) \quad \log _{2}\left(u(k, j) / q_{j}\right)+ \\
& +\sum_{k=1} \sum_{j=1} p(k, j) \log _{2}\left(p(k, j) / q_{j}\right) \\
& =\sum_{k=1} \sum_{j=1}\left[p(k, j) \log _{2}(p(k, j) / u(k, j)) \geqslant 0\right. \tag{2.1.17}\\
& \text { if and only if (2.1.10) satisfies } \\
& p(k, j)=u(k, j) \\
& \text { if } r\left(k, h(x,) q_{j} / r\left(h\left(x_{j}\right)\right)=u(k, j)\right. \\
& \text { if and only if, } \\
& u(k, j) / q_{j}=u(k, i) / q_{i} \tag{2.1.18}
\end{align*}
$$

i.e. $R(\theta X)-R(\theta, T(x) \geqslant 0$
i.e. $R(\theta, T(x) \leqslant R(\theta, x)$.

The amount of information contained in the observations of X is greater than the amount of information contained in $T(X)$, i.e. $H(\theta \mid X) \leqslant H(\theta \mid T(x)$

$$
\text { It } \begin{aligned}
R(\theta, T(x))=R(\theta, x) \text { with } \\
P(k \mid j)=P(k \mid i) \text { a. e. }
\end{aligned}
$$

We call the function $T(X)$ is sufficient for Θ. Now definition of sufficiency is given as

Definition 2.1.1 The function :T(x) of the observations is said to be sufficient if and only if the amount of information contained in the observations is equal to the amount of information contained in the function $T(x)$ about the unknown parameter θ.

Let the random vector X has density function $f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\emptyset_{k}(T(x))$ be the density function of $T(x)$. Then,

$$
\begin{equation*}
f_{\theta}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\varnothing_{k}(T(x), \theta) \cdot h(x) \tag{2.1.20}
\end{equation*}
$$

Where, $h(x)$ is independent θ. This is usual definition of sufficiency (through factorization theorem).

2.2 Minimum Discrimination Function :

In the previous chapter (Section 1.4) we have considered the Kullback-Leibler information measure $I(1: 2)$, and it is given as

$$
\begin{equation*}
I(1: 2)=\int_{f_{1}}(x) \log _{2}\left[f_{1}(x) / f_{2}(x)\right] d^{\lambda}(x) \tag{2.2.1}
\end{equation*}
$$

It is also considered as directed divergence.

Suppose that, $f_{2}(x)$ is given, then our aim is to select a probability measure P_{1} close to P_{2}, i.e. we select $f_{1}(x)$ such that $I(1: 2)$ must be minimum. That is the mean information for discrimination in favour of H_{1} against H_{2} is minimum, where $H_{i}, i=1,2$ is the hypotheses that the density of X is $f_{i}(x)$.

Definition 2.2.1 The variation of the information when we pass from the initial probability measure p^{*} to the new probability measure p absolutely continuous to p^{*} is denoted by $H\left(p \mid p^{*}\right)$ is defined as

$$
\begin{equation*}
H\left(p \mid p^{*}\right)=\int_{\Omega} \varnothing(x) \log _{e} \phi(x) d p^{*} \tag{2.2.2}
\end{equation*}
$$

where, $\varnothing(x)$ is Randon-Nikodym derivative of p with respect to p^{*}.

Note that

$$
\begin{equation*}
\int \phi(x) \log _{e} \phi(x) d p^{*}=\int \log _{e} \phi(x) d p \tag{2.2.3}
\end{equation*}
$$

Let, ($\Omega, \mathbb{F}, \nu_{2}$) be a probability space and $T(x)$ be a real valued $F=$ measurable, non-degenerate bounded function. The probability measure ν^{*} is defined as

$$
\left.\nu^{*}(A)=\overline{[} \int_{A} \exp (-\beta T(x)) \mathrm{d} \nu_{2}\right] / \varnothing(B)
$$

For every $A \in F$, where,

$$
\begin{align*}
& \phi(\beta)=\int_{\sim} \exp (-\beta T(x)) d \nu_{2}(x) \tag{2.2.5}\\
& \int_{\Omega}^{\text {and }} T(x) d \nu^{*}(x)=\theta . \tag{2.2.6}
\end{align*}
$$

Lemma 2.2.1: The equation $\varnothing(\beta) / \varnothing(\beta)=-\theta \quad$ (2.2.7) has unique solution.

Proof : Let, $g=0-T$
Observe that, T is non-degenerate then,

$$
\nu_{2}\{g>0\}>0, \quad \nu_{2}\{g<0\}>0
$$

Define

$$
\begin{align*}
G(\beta)= & \int_{\Omega}(\theta-\mathrm{T}) \exp [\beta(\theta-\mathrm{T})] d \nu_{2} \tag{2.2.9}\\
= & \int_{A}(\theta-\mathrm{T}) \exp [\beta(\theta-\mathrm{T})] d \nu_{2}+ \\
& +\int_{A}(\theta-\mathrm{T}) \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}
\end{align*}
$$

Where,

$$
A=\{x \mid g(x)>0\}, A^{C}=\{x \mid g(x) \leqslant 0\}
$$

we can write

$$
\begin{aligned}
& \lim _{\beta \rightarrow \infty} \int_{C_{\sim}} g(x) \exp [\beta g(x)] d \nu_{2}(x)= \\
& =\lim _{\beta \rightarrow \infty} \int_{A} g(x) \exp [\beta g(x)] d \nu_{2}(x)+
\end{aligned}
$$

$$
+\lim _{B \rightarrow \infty} \int_{A}^{C} g(x) \exp [\beta g \cdot(x)] d \nu_{2}
$$

$$
=\infty+0
$$

$$
=\quad+\infty
$$

Similarly,

$$
\begin{aligned}
& \lim _{\beta \rightarrow-\infty} \int_{\mathcal{R}^{2}} g(x) \exp [\beta g(x)] d \nu_{2}(x)= \\
& =\lim _{\beta \rightarrow-\infty} \int_{A} g(x) \exp [\beta g(x)] d \nu_{2}(x)+ \\
& +\lim _{\beta \rightarrow-\infty} \int_{A} g(x) \exp [B g(x)] d \nu_{2}(x) \\
& =0-\infty=-\infty
\end{aligned}
$$

i.e. $G(\beta)$ is the increasing function taking values $-\infty$ to ∞

Therefore,

$$
G^{\prime}(\beta)=\int_{\Omega} g^{2}(x) \exp [\beta g(x)] d \nu_{2}(x)>0
$$

$G(\beta)$ exists, therefore, $G(\beta)$ is continuous

$$
\begin{equation*}
\Rightarrow \mathrm{G}(\beta)=0 \tag{2.2.10}
\end{equation*}
$$

has unique solution.

$$
\begin{aligned}
& \int_{\Omega}(\theta-\mathrm{T}) \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}=0 \\
& \int_{\Omega} \theta \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}-\int \mathrm{T} \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}=0 \\
& \int_{\Omega} \theta \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}=\int_{\Omega} \mathrm{T} \exp [\beta(\theta-\mathrm{T})] \mathrm{d} \nu_{2}
\end{aligned}
$$

$$
\text { i.e. } \exp [\beta \theta] \int_{\Omega} \theta \exp [-\beta T] d \nu_{2}=\exp [\beta \theta] \int_{\Omega} T \exp [-\beta T] d \nu_{2}
$$

i.e. $\int_{\Omega} \theta \exp [-\beta I] d \nu_{2}=\int_{\Omega} T \exp [-\beta I] d \nu_{2}$
i.e. $-\theta \int_{\Omega} \exp [-\beta T] d \nu_{2}=-\int_{\Omega} T \exp [-\beta T] d \nu_{2}$

$$
\begin{array}{r}
-\varnothing \emptyset(\beta)=\varnothing^{\prime}(\beta) \\
\text { i.e. } \varnothing^{\prime}(\beta) / \varnothing(\beta)=-\theta
\end{array}
$$

Theorem 2.2.1 Let,

$$
\begin{equation*}
\int_{\Omega} T(x) d \nu_{1}(x)=\theta \tag{2.2.11}
\end{equation*}
$$

then the inequality,

$$
\begin{equation*}
H\left(\nu_{1} \mid \nu_{2}\right) \geqslant H\left(\nu^{*} \mid \nu_{2}\right)=\log _{e}[1 / \varnothing(\beta)]-\beta \theta \tag{2.2.12}
\end{equation*}
$$

where, the equality holds if and only if the probability measure ν_{1} is equal to the probability measure ν^{*} on \boldsymbol{F}. Proof : The above inequality holds if

$$
H\left(\nu_{1} \mid \nu_{2}\right)=\infty
$$

Let us, ν_{1} is absolutely continuous with respect to ν_{2} which is initial probability measure. Therefore suppose that

$$
H\left(\nu_{1} \mid \nu_{2}\right)<+\infty
$$

and there exists unique function by Randon-Nikodyin theorem

$$
\phi(x)=\left(\mathrm{d} \nu_{1} / \mathrm{d} \nu_{2}\right)(x)
$$

Then,

$$
\begin{align*}
& H\left(\nu_{1} \mid \nu_{2}\right)=\int_{\Omega} \phi(x) \log _{e} \phi(x) d \nu_{2}(x) \tag{2.2.13}\\
& H\left(\nu^{*} \mid \nu_{2}\right)=\int_{\Omega} \phi^{*}(x) \log _{e} \phi^{*}(x) d \nu_{2}(x) \tag{2.2.14}
\end{align*}
$$

Where, $\phi^{*}(x)=\left(d \nu^{*} / d \nu_{2}\right)(x)=\exp [-\beta T(x)] / \varnothing(\beta)$

By the equations $(2,2.6)$ and $(2.2 .11)$ we can write

$$
\begin{equation*}
\int_{\Omega} \not(x) \log _{e} \phi^{*}(x) d \nu_{2}(x)=\int_{\Omega} \phi^{*}(x) \log _{2} \phi^{*}(x) d \nu_{2}(x) \tag{2.2.15}
\end{equation*}
$$

But from the equations (2.2.13), (2.2.14) and (2.2.15) it is enough to show that
$\int_{\Omega} \not(x) \log _{e} \phi^{*}(x) d \nu_{2}(x) \leqslant \int_{\Omega} \phi(x) \log _{e} \not \varnothing(x) d \nu_{2}$
therefore

$$
\begin{equation*}
\int_{\sim} \phi(x) \log _{e}\left[\phi^{*}(x) / \phi(x)\right] d \nu_{2}(x) \leqslant 0 \tag{2.2.16}
\end{equation*}
$$

$=-I\left(\nu, \nu^{*}\right) \leqslant 0$ which is true.

$$
\text { i.e. } I(1: 2) \geqslant 0
$$

equality holds if and only if $\nu_{1}=\boldsymbol{\nu}^{*}$.
Theorem 2.2.1 has the following interpretation :
Let, ν_{2} be given probability measure and P be the class of all probability measures ν_{1} satisfying the condition $\int T(x) d \nu_{1}(x)=\theta$.

Then, $H\left(\nu_{1} \mid \nu_{2}\right)$ is minimum for $\nu_{1} m \nu^{*}$ when minimum is taken over β.

1

Equivalently,

$$
\min _{\nu_{1} \in P}{ }_{P}\left(\nu_{1} \mid \nu_{2}\right)=H\left(\nu^{*} \mid \nu_{2}\right)
$$

The above theorem 2.2.1 can be used for the estimation problems also. The corresponding criterion is similar to that of maximum likelihood criterion. The criterion based on theorem (2.2.1) is a variant of the principle of maximum information applied to the discrimination function. The following result gives the similarity of the principle of maximum information and that of the principle of minimum discrimination function.

Theorem 2.2.2 The probability function

$$
\begin{equation*}
f_{1}^{*}(x) \geqslant 0, \quad \int_{\Omega} f_{1}^{*}(x) d \lambda(x)=1 \tag{2.2.17}
\end{equation*}
$$

which minimizes the discrimination function

$$
I(1: 2)=\int_{\Omega} f_{1}(x) \log _{e}\left[f_{1}(x) / f_{2}(x)\right] d \lambda(x)
$$

subject to constraint

$$
\begin{equation*}
\int_{\Omega} T(x) f_{1}(x) d \lambda(x)=\theta \tag{2.2.18}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f_{1}^{*}(x)=f_{2}(x) \exp [-\beta T(x)] / \phi(\beta) \tag{2.2.19}
\end{equation*}
$$

Where, $\varnothing(B)=\int_{\Omega} f_{2}(x) \exp [-P T(x)] d \lambda(x)$
β being the unique solution of the equation

$$
(d / d \beta)\left(\log _{e} \phi(\beta)=-\theta\right.
$$

and T being a non-degenerate random variable.

Proof : We have to maximize the function

$$
I=-I(1: 2)=\int_{\Omega} f_{1}(x) \log _{e}\left[f_{2}(x) / f_{1}(x)\right] d \lambda(x)
$$

using the Langragian multiplier method, and considering that

$$
\begin{array}{r}
\log _{e} x<x-1 \text { if } x \neq 1 \\
\text { and } \log x=x-1 \text { if } x=1
\end{array}
$$

We get,

$$
\begin{aligned}
& I-\alpha-\beta \theta=\int_{\Omega} f_{1}(x) \log _{e}\left[f_{2}(x) / f_{1}(x)\right] d \lambda(x)-\alpha\left[\int_{\Omega} f_{1}(x) d \lambda(x)\right]- \\
&=\int_{\Omega} f_{1}(x)\left[\log _{e}\left(f_{2}(x) / f_{1}(x)\right)-\alpha-\beta T(x)\right] d \lambda(x) \\
&=\int_{\Omega}(x) d \lambda(x) \\
& f_{\sim}(x) \log _{e}\left[\left(f_{2}(x) / f_{1}(x)\right) \exp (-\alpha-\beta T(x)] d \lambda(x)\right. \\
& f_{1}(x) \log _{e}\left[\left(f_{2}(x) / ⿷_{1}(x)\right)(\exp [-\alpha-\beta T(x)]-1] d \lambda(x)\right.
\end{aligned}
$$

Where the equality holds if and only if

$$
f_{1}(x)=f_{2}(x) \exp [-\alpha-B T(x)] \text { a.e. } \lambda .
$$

We get the constants α and β using the equations (2.2.17) and (2.2.18).

We get

$$
\alpha=\log _{e} \varnothing(\beta)
$$

and also we obtain the minimum value of the discrimination function. It is given as

$$
\begin{equation*}
I(*: 2)=-\Theta \beta-\log _{e} \not \supset(\beta) \tag{2.2.21}
\end{equation*}
$$

We know that θ is the parameter if we take a sample of n observations and we estimate the value of θ on the basis of the sample observations say $\hat{\theta}(x)$. Then, we also. estimate the value of $I(*: 2)$ and also $\beta(x)=\beta(\hat{\theta}(x))$ such that,

$$
\begin{aligned}
T(x)=\hat{\theta}(x) & =-\left[(d / d \beta)\left(\log _{e} \varnothing(\beta)\right)\right]_{\beta=\hat{\beta}(x)=\beta(\hat{\theta}(x))} \\
\text { i.e. } \hat{I}(*: 2) & =-\hat{\theta}(x) \hat{\beta}(x)-\log _{e} \phi(\hat{\beta}(x)) \\
& =-\hat{\theta} \beta(\hat{\theta})-\log _{\varnothing} \varnothing(\hat{\beta}(\theta))
\end{aligned}
$$

The $\hat{I}(*: 2)$ is the minimum discrimination information function between the populations with the probability density function $f^{*}(x)$ with the parameter value Θ and its estimated
value $\hat{\theta}$ and wi th the density function $f_{2}(x)$. And

$$
\hat{I}(*: 2) \geqslant 0
$$

If equality holds, the estimated value $\hat{\theta}$ is equal to the parameter value θ and population having probability density $f_{2}(x)$: Also $I(*: 2)$ is interpreted as deviation between the sample and the population density function $f_{2}(x)$.
As application of above theorem (2.2.2) we consider following example :

Example 2.2.1 $\quad: f_{2}(x) \rightarrow N(\theta, 1)$ and $T(x)=\bar{x}$

$$
\begin{array}{r}
T(x)=\bar{x} \text { i.e. } \bar{x} \rightarrow N(\theta, 1 / n) \\
f_{2}(x)=1 / \sqrt{2 \pi} \exp \left[(-1 / 2)(x-\theta)^{2}\right]
\end{array}
$$

$$
-\infty<x<\infty
$$

We know that

$$
\int_{\Omega} \bar{x} f_{1}^{*}(x) d x=\theta^{\prime}
$$

$$
\begin{aligned}
\phi(\beta) & =\int_{-\infty}^{\infty} \exp (-\beta \bar{x})(1 / \sqrt{2 \pi 1 / n}) \exp \left[(-n / 2)(\bar{x}-\theta)^{2}\right] d \bar{x} \\
& =\sqrt{n} / \sqrt{2 \pi} \int_{-\infty}^{\infty} \exp \left[-\beta \bar{x}-(n / 2)(\bar{x}-\theta)^{2}\right] d \bar{x} \\
& =\sqrt{n} / \sqrt{2 \pi} \int_{-\infty}^{\infty} \exp \left\{(-n / 2)\left[(\bar{x}-\theta)^{2}+2 \beta \bar{x} / n\right]\right\} d x \\
& =\sqrt{n} / \sqrt{2 \pi} \int_{-\infty}^{\infty} \exp \left\{(-n / 2)\left[\bar{x}^{2}-2 \bar{x} \theta+\theta^{2}+2 \beta \bar{x} / n\right]\right\} d x \\
& =\exp \left(-n \theta^{2} / 2\right) \mid / \bar{n} / V \overline{2 \pi} \int_{-\infty}^{\infty} \exp \left\{(- n / 2) \left[\bar{x}^{2}-2(\theta-\beta / n) \bar{x}+\right.\right. \\
& =\exp \left[\left(-n \theta^{2} / 24 n(\theta-\beta / n)^{2} / 2\right] V^{n} / V^{2 \pi} \int_{-\infty}^{\infty} \exp \left\{-n / 2\left[\bar{x}-(\theta-\beta / n)^{2}\right]\right] d x\right. \\
& =\exp \left[-n \theta^{2} / 2+n(\theta-\beta / n)^{2} / 2\right] \\
& =\exp \left[-n \theta^{2} / 2+n / 2\left(\theta^{2}-2 \beta \theta / n+\beta^{2} / n^{2}\right)\right] \\
& =\exp \left[-\beta \theta+\beta^{2} / 2 n\right] .
\end{aligned}
$$

Also, we know that,

$$
\begin{aligned}
& \left((\alpha / d \beta)\left[\log _{e} \varnothing(\beta)\right]=-\theta^{\prime}\right. \\
& (d / d \beta)\left(-\beta \theta+\beta^{2} / 2 n\right)=-\theta^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e. }-\theta+2 \beta \quad 2 n=-\theta^{\prime} \\
& \text { i.e. } \beta=n\left(\theta-\theta^{\prime}\right) \\
& \text { i.e. } f^{*}(x) \\
& =f_{2}(x) \exp (-\beta \bar{x}) / \varnothing(\beta) \\
& =(V \bar{n} / \sqrt{2 \pi}) \exp \left(\frac{n}{2}\right)(\bar{x}-\theta)^{2} \exp (-\beta \bar{x}) / \exp \left[-\beta \theta+\beta^{2} / 2 n\right] \\
& =(\sqrt{n} / \sqrt{2 \pi}) \exp \left\{(-n / 2)\left[(\bar{x}-\theta)^{2}+2 \bar{x} / n-2 \beta \theta / n+B^{2} / n^{2}\right]\right\} \\
& =(\sqrt{\bar{n}} / \sqrt{2 \bar{\pi}}) \exp \left\{(-n / 2)\left[\bar{x}^{2}-2 \bar{x} \theta+\theta^{2}+2 \beta \bar{x} / n-2 \beta \theta / n+B^{2} / n^{2}\right]\right. \\
& =(\sqrt{n} / \sqrt{2 \pi}) \exp \left\{(- n / 2) \left[\bar{x}^{2}-2(\theta-\beta / n) \bar{x}+(\theta-\beta / n)^{2}-(\theta-\beta / n)^{2}+\right.\right. \\
& \left.\left.+\theta^{2}-2 \beta \theta / n+B^{2} / n^{2}\right]\right\} \\
& =\left(\sqrt{\bar{r}},(\overline{2 \pi}) \exp \left\{(-n / 2)[(\bar{x}-\theta-\beta / n)]^{2}-(\theta-\beta / n)^{2}+(\theta-8 / n)^{2}\right\}\right. \\
& =(\sqrt{n} / \sqrt{2 \pi}) \exp \left\{(-n / 2)[\bar{x}-(\theta-\beta / n)]^{2}\right\} \\
& =(\sqrt{n} / \sqrt{2 \pi}) \exp (-n / 2)\left[\bar{x}-\left(\theta-n\left(\theta-\theta^{\prime}\right) / n\right)\right]^{2} \\
& =(\sqrt{n} / \sqrt{2 \pi}) \exp \left\{(-n / 2)\left(\bar{x}-\theta^{\prime}\right)^{2}\right\} \\
& \text { Thus } f^{*} \longrightarrow N\left(\theta^{\prime}, 1 / n\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
I(幺: 2) & =-\theta^{\prime} \beta-\log _{2} \phi(\beta) \\
& =-\theta^{\prime} n\left(\theta-\theta^{\prime}\right)+n \theta\left(\theta-\theta^{\prime}\right)-n^{2}\left(\theta-\theta^{\prime}\right)^{2} / 2 n \\
& =n\left(\theta-\theta^{\prime}\right)^{2} / 2
\end{aligned}
$$

2.3 A variant of the Fundamental Lemma of Neyman and Pearson :

Let, θ be the unknown parameter and $x_{1}, x_{2}, \cdots x_{n}$ be a sequence of random variables (say random sample X). The distribution of a random sample X depends on θ. We also consider as θ is a random variable which takes values θ_{0} and θ_{1} with probabilities W_{0} and W_{1} respectively. We also suppose that the random variables x_{n} independently and identically distributed under $\theta=\theta_{0}$ as well as $\theta=\theta_{1}$. The density functions of a random sample under $\theta=\theta_{0}$ and $\theta=\theta_{1}$ are $f_{0}(x)$ and $f_{1}(x)$ respectively with $f_{0}(x) \neq f_{1}(x)$.

We know that the amount of information $R(\theta, x)$
containing in observing the sample is given as :

$$
\begin{equation*}
R(\theta \quad X)=H(\theta)-H(\theta \mid X) \tag{2.3.1}
\end{equation*}
$$

Where, $H(\theta)$ is the entropy of θ.

$$
\text { i.e. } \begin{aligned}
H(\theta)= & w_{0} \log _{2} 1 / w_{0}+w_{1} \log _{2} 1 / w_{1} \\
H\left(\theta \mid x_{n}\right)= & p\left(\theta=\theta_{0} \mid x_{n}\right) \log 1 / p\left(\theta=\theta_{o} \mid x_{n}\right)+ \\
& p\left(\theta=\theta_{1} \mid x_{n}\right) \log _{e} 1 / p\left(\theta=\theta_{1} \mid x_{n}\right)
\end{aligned}
$$

Where, $H(\theta \mid x)$ denotes the expection of $H\left(\theta \mid x_{n}\right)$. Also $R(\theta, X)$ is interpreted as the average information about θ after observing sample X.

The fundamental lemma of Neyman and pearson'used in obtaining most powerful test for testing $\theta=\theta_{0}$ verses $\theta=\theta_{1}$. But here we consider bayesian form of Neyman Pearson Lemma. It is stated as 'decision procedure for which probability of an error is minimal'. Such decision is called as standard decision.

Let us, consider a decision $\Delta=\Delta(x)$ is a borel measurable function of a sample on the values of $\theta=\theta_{0}$ and $\theta=\theta_{1}$. If $\Delta=\theta_{0}$, we accept the hypothesis $\theta=\theta_{0}$ and if $\Delta=\theta_{1}$ we accept the hypothesis $\theta=\theta_{1}$. The error in the decision is defined as the decision which taken is not correct and it is denoted by ϵ.

$$
\epsilon=\mathrm{p}[\Delta \neq \theta]
$$

i.e. $\epsilon=W_{0} p\left(\Delta=\theta_{1} \mid \theta=\theta_{0}\right)+W_{1} p\left(\Delta=\theta_{0} \mid \theta=\theta_{1}\right)$

On the basis of the sample standard decision is :
$\begin{array}{lll}\text { if } p\left(\theta=\theta_{0} \mid x\right)>p\left(\theta=\theta_{1} \mid x\right), & \text { accept } \theta_{0} \\ \text { if } p\left(\theta=\theta_{1} \mid x\right)>p\left(\theta=\theta_{0} \mid x\right), & \text { accept } \theta_{1} \\ \text { if } p\left(\theta=\theta_{0} \mid x\right)=p\left(\theta=\theta_{1}|x|,\right. & \end{array}$

The choice is made either θ_{0} or θ_{1} with probability W_{0} and W_{1} respectively for $p\left(\theta=\theta_{0} \mid x\right)=p\left(\theta=\theta_{1} \mid X\right)$.

Theorem 2.3.1 : No decision can have a smaller error than standard decision.

Proof : Consider the sample space 'S' and it is divided into three disjoint parts as S_{0}, S_{1} and S_{2} such that

$$
\begin{align*}
& x \in S_{0} \text { if } p\left(\theta_{1} \mid x\right)<p\left(\theta_{0} \mid x\right) \\
& x \in S_{1} \text { if } p\left(\theta_{0} \mid x\right)<p\left(\theta_{1} \mid x\right) \tag{2.3.4}\\
& x \in S_{2} \text { if } p\left(\theta_{0} \mid x\right)=p\left(\theta_{1} \mid x\right)
\end{align*}
$$

Let, $\bar{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and $f_{i}(\bar{y})=\sum_{i=1}^{n} f\left(y_{i}\right)$

Define,

$$
\delta(\bar{y})=\left\{\begin{array}{llll}
1 & \text { if } & \bar{y} \in & s_{1} \\
0 & \text { if } & \bar{y} \in & s_{0} \\
w_{1} & \text { if } & \bar{y} \in & s_{2}
\end{array}\right\}
$$

Equivalently δ is given as

$$
\delta(\bar{Y})= \begin{cases}1 & \text { if } f_{1}(\bar{y}) w_{1}>f_{0}(\bar{y}) w_{0} \tag{2.3.6}\\ 0 & \text { if } f_{0}(\bar{y}) w_{0}>f_{1}(\bar{y}) w_{1} \\ w_{1} & \text { if } f_{0}(\bar{y}) w_{0}=f(\bar{y}) w_{1}\end{cases}
$$

The error in the standard decision is also given as

$$
\left.\epsilon=w_{0} \int \delta(\bar{y}) f_{0}(\bar{y}) d \bar{y}+w_{1} \int[1-\delta(\bar{y})] f_{1}(\bar{y}) d \bar{y}\right)
$$

$d \bar{y}$ denotes $d y_{1} d y_{2} \ldots, d y_{n}$ and integral is all over sample space.

Let us consider Δ^{*} be another different decision from standard decision Δ, then

$$
\delta^{*}(\bar{y})= \begin{cases}1 & \text { if } \Delta^{*}=\theta_{1} \\ 0 & \text { if } \Delta^{*}=\theta_{0}\end{cases}
$$

The error ind decision Δ^{*} is denoted by ϵ^{*}.

$$
\epsilon^{*}=w_{0} \int \delta^{*}(\bar{y}) f_{0}(\bar{y}) d \bar{y}+w_{1} \int\left[1-\delta^{*}(\bar{y})\right] f_{1}(\bar{y}) d(\bar{y})
$$

Therefore,

$$
\begin{gathered}
\epsilon^{*}-\epsilon=\int\left[\delta^{*}(\bar{y})-\delta(\bar{y})\right]\left[w_{0} f_{0}(\bar{y})\right] d \bar{y}-\int\left[\delta^{*}(\bar{y})-\delta(\bar{y})\right] W_{1} f_{1}(\bar{y}) \\
\geqslant 0 \\
\vec{\epsilon} \geqslant 6
\end{gathered}
$$

By likelihood ratio test we accept hypothesis

$$
\theta=\theta_{1}, \quad \text { if }\left[f_{1}(\bar{y}) / f_{0}(\bar{y})\right]>\left[w_{0} / w_{1}\right]
$$

and the hypothesis $\theta=\theta_{0}$ is accepted if

$$
\begin{aligned}
& {\left[f_{1}(\bar{Y}) / f_{0}(\bar{Y})\right]<\left[w_{0} / w_{1}\right] } \\
& \text { if } \quad\left[f_{1}(\bar{X}) / f_{0}(\bar{Y}]\right]=\left[w_{0} / w_{1}\right]
\end{aligned}
$$

The random choice is made between $\theta=\theta_{0}$ and $\theta=\theta_{1}$ with probabilities W_{1} and W_{0} respectively.

Theorem 2.3.2 There exist constants A and λ with $A>0$ and $0<\lambda<1$ depending on $f_{0}(x), f_{1}(x)$ and W_{0}, such that $0<t f(\theta)-R(\theta, x) \leqslant A \lambda^{n} \quad(n=1,2, \ldots)$

For λ we may take the value

$$
\lambda=\inf _{0 \leqslant \alpha \leqslant 1}\left(\int_{-\infty}^{\infty} f_{1}^{\alpha}(x) f_{0}(x)(1-\alpha) d x\right)
$$

Theorem 2.3.3 Let \in denote the error of standard decision, Then,

$$
\epsilon \leqslant[H(\theta)-R(\theta, X)]
$$

From these both theorems, the σ_{n} is error in the standard decision after observing sample X. Therefore, $\epsilon_{n} \leqslant A \lambda^{n}$,

$$
n=1,2, \ldots
$$

This implies the series $\sum_{n=0}^{\infty} \epsilon_{n}$ is convergent. Then by Borel cantelli lemma, if we take samples indefinitely in number and make standard decision for each n with 1
probabilityl, the situation will occur that our all decisions are correct. Here, to find out Δ_{n}, we consider following example :

Example 2.3.1: If $f \theta / x(x)=\exp (\theta)$ based on single observation $p\left(\theta=\theta_{1}\right)=1 / 3=W_{0}$.

$$
\begin{gathered}
p\left(\theta=\theta_{2}\right)=2 / 3=w_{0} \text { with } H_{0}: \theta_{1}=1 \\
H_{1}: \theta_{2}=2 \\
\delta(x)=1
\end{gathered}
$$

Let,

$$
\begin{aligned}
\Delta_{n}: d & =\theta_{1} \text { if } p\left[\theta=\theta_{1} \mid x\right]>p\left[\theta=\theta_{2} \mid x\right] \\
d & =\theta_{2} \text { if } p\left[\theta=\theta_{1} \mid x\right]<p\left[\theta=\theta_{2} \mid x\right] \\
d & =\theta_{1} \text { or } \theta_{2} \text { if } p\left[\theta=\theta_{1} \mid x\right]=p\left[\theta=\theta_{2} \mid x\right]
\end{aligned}
$$

$$
\begin{aligned}
p[\theta & \left.=\theta_{1} \mid x\right] \\
& =f\left(x \mid \theta_{1}\right) \cdot p\left(\theta=\theta_{1}\right) /\left[f(x \mid \theta) p\left(\theta=\theta_{1}\right)+f\left(x \mid \theta_{2}\right) \cdot p\left(\theta=\theta_{2}\right)\right] \\
& =\theta_{1} \exp (-\theta x)(1 / 3) /\left[\theta \exp (-\theta x) 1 / 3+\theta_{2} \exp \left(-\theta_{2} x\right)(2 / 3)\right]
\end{aligned}
$$

similarly,

$$
\begin{aligned}
p[\theta & \left.=\theta_{2} \mid x\right] \\
& =\theta_{2} \exp \left(-\theta_{2} x\right) \cdot 2 / 3 /\left[\theta_{1} \exp \left(-\theta_{1} x\right) \cdot 1 / 3+\exp \left(-\theta_{2} x\right) 2 / 3\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } p\left[\theta=\theta_{1} \mid x\right]>p\left[\theta=\theta_{2} \mid x\right] \\
& \theta_{1} \exp \left[-\theta_{1} x\right](1 / 3) /\left[\theta_{1} \exp \left(-\theta_{1} x\right)(1 / 3)+\theta_{2} \exp \left[-\theta_{2} x\right] \cdot(2 / 3)\right] \\
& >\theta_{2} \exp \left(-\theta_{2} x\right)-(2 / 3) /\left[\theta_{1} \exp \left(-\theta_{1} x\right)(1 / 3)+\theta_{2} \exp \left(-\theta_{2} x\right) \cdot(2 / 3)\right] \\
& \quad \text { i.e. } \theta_{1} \exp \left(-\theta_{1} x\right)(1 / 3)>\theta_{2} \exp \left(-\theta_{2} x\right)(2 / 3) \\
& \quad \text { i.e. } \exp \left[\left(\theta_{2}-\theta_{1}\right) x\right]>2 \theta_{2} / \theta_{1} \\
& \quad \exp (x)>4 \\
& \quad x>\log _{e} 4
\end{aligned}
$$

Thus, Accept H_{0} if $x>\log _{e} 4$
Accept H_{1} if $x<\log _{e} 4$

Accept θ_{1} or θ_{2} if $x=\log _{e} 4$.
$\delta(x)= \begin{cases}\text { Accept } H_{0} & \text { if } x>\log _{e} 4 \\ \operatorname{Reject~} H_{0} & \text { if otherwise }\end{cases}$

