CHAPTER - III

SUFFICIENCY OF EXPERIMENTS

3.0 Introduction

Consider a statistical decision problem in which
Q@ is a parameter and @ takes values in parameter space ~l-
with the decision space D, and non-negative loss function
defined on space <~ x D, Let ro(‘n,) be the Bayes risk
when N is prior distribution of @, Let [F be the class of
random variables X arui{fx(tlw),ﬁ 6-4\-}be the family of
p.d.f. s where fx(°lw) is p.d.f. of X under @, We also
assume that @ takes finite values and /L = {wl.w2....wkj.
Z.be the set of all probability distributions W on <=
Wherem y > 0 WM, = {“1'“2"'-'%}‘”“‘? N, +tNy + iny =1,
We also know that risk function T, is a non~negative concave
funstion on the sety, (M.H., DeGrook(1970)), 1In the
following, by an "uncertainty function®, we mean a non-
negative concave function defined on%Z., set of all possible

distributionstfNe,

Let the problem of interest be to find a procedure
(of choosing random variables) that minimizes
E (H[vq_(xl,xz,....xn) 1) for given M, H, n and f (the
class of random variables), Since ro( n ) is non-negative

concave function onX,, one can take ro( n ) itself WS
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uncertainty function H , that is H (™W,) = ro(\L).

Another, choice of H be the Shannon's entropy

‘ \
i.e. H(M,) = ;Eéi'hi log M. (3.0.1)

Since the process of selecting random variables
is carried out in finite n stages, As there are only n
observations the optimal procedure can be determined by
backward induction, Let Xy Xos oo xn~l ére selected
and observed with‘:asgj;:flues XysXoseeoX, 1o Let‘n_n_l
be the posterior’fof @ and'h,n”l(xn) be the posterior
distribution of @ when n ob:ervations have been observed,

The optimal choice of the random variable Xp is made

through

E(HN ,_, (X)]) = igé E(Hlw __,(x)]) (3.0.2)

Let, H = H, and define the function Hy on set3as follows:
H, (®) = )1(2{? E(HJ[A(X)])for g €5, (3.0,3)

Here, we consider Hl(ﬁ) as the minimum value of the
expected uncertainty when ome observation remains to be

taken,
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In general, let H,, H2,...,Hn be functions defined

on <., the recufdnce relation is given as :
Hj+1(¢) = )1(2; E (Hj[p(x)]) for P € - (3.0.4)

Here P is the posterior distribution of @, when j
observations remain to be taken and Hj(ﬂ) is the minimum
value of the expected terminal uncertainty, In particular,
N, is the prior distribution of @ and H (n,) is the minimum
value of E (H[‘\L (xl’x2""’xn])’ which can be attained by
any sequential procedure, An optimal procedure of

selecting random variable xlefP at first stage is given as

o) = & (H_ D (xp]) (3.C.5)

M = ' =
At (j+1) state, the values Xy X1p ooe Xj X3
have been observed and the posterior distribution of these
3 variables is computed. Then the optimal procedure of

selecting a random variable Xj+1e‘F is given as

Hogu) = E(Hy 5y Dy (x5,))])  (3.c.8)

In this way the optimal sequential procedure can be

carried out, But actual computation may be very difficult,
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Note that through out discussion, we consider the

phrases 'performing experiment X' and 'taking observations

en random variable X' have same meaning,

In this Chapter the Section 3,1 deals with sufficient

experiments,

3.1 Sufficient Experiment

In this section we shall consider the optimal

sequential procedure for selecting n experiments. The

observations are taken from the random variable X E[F.

Theorem 3,1,1 : Suppose that there exists a random

variable X* ¢ F such that for any distribution
P & ¥.and any random variable X € F ,

EHIBOM Y < EHIB(0]) (3.1.1.)

Then, for any prior distribution ¥\~, a sequential
procedure that minimigesthe expected terminal uncertainty

E (H[n,(xl,xz,...xn)] is to take all n observations on the

random variable x*.

Proof : From equations (3.1.1) and (3.CR) we can say that

the nth observation must be taken on the random variable X*,

without considering which random variable is selected at



earlier stages and regardless of the observed values of

random variable., Hence for any distribution, § &L

Hy(p) = E (H[p (X))

Suppose for any random variable X 6 and P £T.it will be

shown that

E ( Hlt?)(X*)] ) & E ( Hy[p(x)] ). (3.1,3)

We can say that all (n-1) observations are made on random
variable X® because of (3.1.,1). Wwhen same argument is made
on each stage, then the all n observations are carried on

the random variable X* by induction

L}

e, Hy(B) = E (H[B(X)])

Hy(B) = E ( H[p(x)])

H () = E (H_,[8(x")7])
Now we will prove equation (3.1.32).

For any given distribution § 6 . Let ¢l* = p(x*) be the
posterior distribution when single observation is made on the

random variable x*, Then, for any random variable X &F, then,



E( E(H[B(X* X)) [ x*) )

E( H[A(X,X")] )

E( E(H[B1(0]{#]) )

E( E(H[Y(x*)]| 1) )

A\

E[H,(#])] = E{Hl[ﬂ(x*)]} (3.1.4)

Similarly, for any distribution § €% and for any random
variable X & F , let ¢1 = P(X) be the posterior distribution
when a observation is made on the random variable X.

We know that ¢(Xf X) =g (X,X*) i,e, the posterior
distribution will be same without considering order in which

the observations are taken. Therefore,'

E( H{p(x¥ X7 ) = EC H[A(X,X")] ) = E(E(H[B(X,X*)] ] x))

EC E(H[B, ()] | 8) )
= E[H,(#,)] = E( H[A(X)] ) (3.1.5)
From (3.1.4) and 3,.1.5).

E( Hy[B(0] ) 2 EC H[B(X*)

Hence proved.
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Now we will define the term sufficient experiment

under condition (3.1.1).

Definition 3,1,1 Let X and Y are random va:iables_or

experiments in classf . Let Sx and Sy are sample spaces
corresponding variables X and Y respectively, If the

experiment Y is sufficient for the experiment X, there

exists a non-negative function h on the space Sx X Sy, for
which the following conditions are satisfied.
£ 0xl0) = § h(XY) £,(yle) @ (y) for v -,
Sy X € S, (3.1.6)
I n(xy) de (x) =1 Y€ S, (3.1.7)
Sx
0 < J h(x,¥) du(y) < o for x & S, (3.1.8)
S
Y

Intuitively it is clear that, by observing Y instead of X
no information is lost. i.e. observing Y is equivalent to

observing X.

Let A be the set of all vectors.a=(al,;..,ak) such that

a3 20 (i = 1,2...k). The set $ is the subset of set A
k
with 2. a; = 1, For any vectors a & A, b & A we define
i=1l
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k
a.b = E:'aibi’ And for a,b > O we define a R b as
i=1
ag b = (albl,...akbk) / a.b, (3. 1.9)

Where a8 b g $.

If a.b = O we take a® b as any arbitary'vector‘i;.

Now we will prove following lemma, It is used in

next theorem (3.1.2).

 Lemma:334 LetH be an uncertainty function, and let P & Sany

fixed vector, Let ¥ be defined on the set A by
v(a) = (P.a) H(PRa) for a @ A (3.1,10)
Then ¥ is a concave function on set A,

Proof : Let any vectors a @ A and b & A and positive
constants @ and B such that @ + B =1 It will be shown

that

v (ea + Bb) 3 a »(a) + p¥(b) (3.1.11)
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» (aa + Bb)

=[ p.(aa + Bb) ] H[P @ (aa + Bb)]

= [ a(p.a)+B(p.b) JH([P,a,+BP bys...,ap 2, +BB b ]/ [a(p.a) +
+ B(p.b)] )

= 'Ed-(poa)i-ﬁ(p.b)]H tg.(ﬂlal,pzaz s ¢kak) +

+ B(Byb) +. B D)] / a(P.a)+B(P. . D)

= ta(¢-a)+ﬁ(¢.b)]Hié(ﬂca)(ﬂﬂa) / [a(p.a) % B(P.b)] +

+ B(p.b) (p8b) / [a(Pia)+B(8.D)] |

= [a(@.a)+B(P.b) JH[c*(gRa) + a*(peb)] (3,1.12)

where,

o = a(g.s) / [a(@.a) + B(P.D)], B* =1 -a®  (3.1.13)
Here, we let B.a > 0, P.b > 0

Since H is concave functien from equation (3,1.12) and

(3.1,13) follow the relation.
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v(xa+pb) » [a(@B.a)+B(B.b)][a™H(g®a) + E*H(pab)]

a a*i:;é.a) H(p ® a) + a*(p.a) H(P B b) +
+ *B(P.0) (P 8 a) + BE*(P.b) (P B b)

a (1-p%) (P.a) H(p @ a) + ap*(g.a) H (B ® b) +

+ a8 (B.b)(P @ a) + B(1- a®)(p.b) (P @ b)

[a (B.2) H(P & a) + B(P.b)(P B b)] -ap*(p.a)H(PRa) +

+ ap¥(P.a) H(p & b) + a*B(P.b) H (P ® a) -

- -a*g(p.b) H(P & b)

[a(p.a) H(P & a) + B(P.b) (P @ b) +
+ ap®(p.a)[H(p & b) - H(p @ a)] -
- a*a(;o.b)t H(P 8 b) - H(p B B)]

ta(ﬂ.a) H(p @ a) + B(P.b) (P& Db)] + —

II

+ [H(g @ b) - H(P & a)].[aB*(P.a)-a¥B (9.b)]
[a(B.2)H(P @ a)+ B(.0)(P @ b)] +

+ [H(B & b)-H(P & )].[F"*c - a"6* c]

= [ a(p.a)H(p & a) + B(p.b) (P & b) ]

From (3.1.13) ¢ a* = a(@.a)
’ c g* = a(p.b)
where C = a(p.a) + B(@.Db)
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Hence relation (3,1,11) is satisfied,

If both #,a = O and P.b = O each side of relation vanishes,

Theorem 3,1,2 ¢ Suppose that the experiment Y is

sufficient for the experiment X, when X and Y belongs to
(F . Thep, for any uncertainty function H and any
distribution §p &%,

E{H (001} 3 E { [8(N]] 3.1.14)

Proof : Any non-negative function g(.) is defined on
parameter space == can be considered as a

vector (g;, 9y e.sy 9y) in the set A, Let g; = g(uw;) for
1 =1,2,s..ke We will use this conventlon in the proof.

Here, experiment Y is sufficient for experiment X,
Then, there exists a non-negative function h on the space
Sy X Sy wiich satisfies the conditions (3,1.8), (3.1.7) and
(3.1.8), For every x € s, we shall define the function

‘V(wi\x) for every point of €3 as follows :

Yol x) = [S{ h(xY) £y W) au(y)] / J h(x Y)du(y)

Y
(3.1,15)

fori = 1,2,000 k

Frm equation (3,1.14) and P(X) is the posterior distribution,

It can be shown that the following relation must be satisfied,
‘ R
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Hp0)) = S v [eyxdey)] @ (0. (3.1.16)
X

From the equations (3.1,6) and (3.1,15)

\

e (1{p(0]) = J ¥ (010 LSJ h(xyy) du(y)] du(x)
X Y o (3.1.17) ~
In equation (3.1.17) we used the fact that

v(aa) = av(a), a> O for all vectors a & A.

For every point x G.Sx, let *+*(ylx) denote the p.d.f. on
the sample SY defined as follows 3

£*(ylx) = h(xy) / [ s{h(xly)du(y)] fory €s, (3.1.18)

From equation (3.1.,15) 1 =1,2,...,k we can say that
ﬂk(wi\x)vis nothing but the expection of fY(y[mi) when the
random variable Y has p.d.f. f*(y\x). By Lemma 3,1.1 % is
a concave function on set A. Therefdre, using Jensen's
inequality for a concace function of a k dimentional

random vector, we get folléwing :
v [Y(eg]x ] }Sf_v{fy (vlo)] £*(y]x) du(y) (3.1.19)
v |

Inteqrating both sides of equation (3.1.19) and using
equation (3.1.17),



- 8 -

With respect to X, we get

Siv[\\»(wit 1.0 hOxqgy) au(n] @
Y
> S e, vle)IhCay)e § hixgy))aun) /[ S h(xy)du(y)]
Sx ‘Y Sy SY
i.e.

EHB0T > [ | [y (vlop) Th(xy) du(x)auly)  (3.1.20)

Sx SY

Reversing the order of integration, we get,

E (Hf;b(x)] > f fvtfy(Ylwi)]h(xiy) du(x) du(y)
Sy Sx

E (H[A(X)]) > [7 HyOrlep] atn of nixy auco
3

By equation (3.1.7) we get,
E (H[A(X)])>-E (H [B(Y)]) \ (3.1.21)

Hence proof : _
The final result, which says that performing n

replications of a sufficient experiment must be an optimal

procedure,

Corollary 3,1.1 :
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Corollary 3.1.1 Suppose that there exists a random

variable x* ¥ wh.ich is sufficient for any other random
variable X 6 F. Then, for any uncertainty function H on3_
for any prior distributionm & Z., and for any positive
integer n, the seqdential procedure that minimizes the

expected terminal uncertainty
. E{;H M (Xl. Xos eees Xn) ]313 to take all n observations

on the random variable X*.



