
CHAPTER - III

SUFFICIENCY OF EXPERIMENTS 

3,0 Introduction ;

Consider a statistical decision problem in which 

Q is a parameter and Q takes values in parameter space -rt- 

with the decision space D, and non-negative loss function 

defined on space x D, Let r0( \ ) be the Bayes risk 

when Y^is prior distribution of Q, Let ^ be the class of 

random variables X and|fx 

p, d.f.s where fx(*lw) is p.d.f. of X under Q, We also
* * * *wk3*

■2H.be the set of all probability distributions Yi on -jT\-

Where Yj, ^ >0 y\t= +*L k=l.
\

We also know that risk function rQ is a non-negative concave 

function on the setX» (M.H. DeGroofc(1970)). In the 

following, by an "uncertainty function", we mean a non­

negative concave function defined onX, set of all possible

di stributions®t-A-,

Let the problem of interest be to find a procedure 

(of choosing random variables) that minimizes 

E (H[ ^1*^2* * * * **n^ 1) ^or given Y\, * H, n and f (the

class of random variables). Since r ( n ) is non-negative 

concave function on2£ , one can take rQ( n ) itself Its

assume that Q takes finite values and -A. =

(5 -A-j be the family of
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uncertainty function H , that is H (>v,) = r ( V\, ) •

Another, choice of H be the Shannon's entropy

i.e. rt( K) = -5L \
i=l a (3.0.1)

Since the process of selecting random variables 
is carried out in finite n stages. As there are only n 
observations the optimal procedure can be determined by 
backward induction. Let Xp X2» ••• are sele<rtecl
and observed with their values x,, xot... x„. ,. Let Yi , 
be the posterior^of €> andX„ ,(X ) be the posterior

11-** X 1•

distribution of Q when n obnervations have been observed.
The optimal choice of the random variable X_ is maden #
through

ECHCin-l (Xn>^ * ^

Let, H = HQ and define the function on set^£s follows:

Hx(0) = inf H(Ho[^(X)])for 0 € ^ (3.0,3)
X€F

Here, we consider H^(0) as the minimum value of the 
expected uncertainty when ore observation remains to be 
taken.

f
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In general, let Hp be functions defined

on "5L, the recu^Snce relation is given as :

H,.,(0) » inf E (H,[JZKX)]; for 0 6 X. (3.0.4)3+J. X€F 3

Here 0 is the posterior distribution of €, when j 

observations remain to be taken and H^(0) is the minimum 

value of the expected terminal uncertainty. In particular, 

Y^is the prior distribution of Q and Hn0\) the minimum 

value of E (Xj. »X2* * * * *Xn])t which can be attained by

any sequential procedure. An optimal procedure of 

selecting random variable X^€ij(F at first stage is given as

Hn00 = ECHrv.ilX(^p]) (3.C.5)

•

At (j+l)4* state, the values X^ x^, ...

have been observed and the posterior distribution of these 

j variables is computed. Then the optimal procedure of 

selecting a random variable (P is given as

Hn-A> = E(Hn-j-l N <xj+l>3^>

In this way the optimal sequential procedure can be 

carried out. But actual computation may be very difficult.

f
■i

* ,
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Note that through out discussion, we consider the
phrases ’performing experiment X* and ’taking observations
an random variable X’ have same meaning.

In this Chapter the Section 3,1 deals with sufficient 
experiments,

3,1 Sufficient Experiment :

In this section we shall consider the optimal 
sequential procedure for selecting n experiments. The 
observations are taken from the random variable X e|p.
Theorem 3,1,1 j Suppose that there exists a random 
variable X1* 6 F such that for any distribution 

0 6X.and any random variable X € F ,

E(H[0(X*)]) < E(H[0(X)]) (3.1.1.)

Then, for any prior distribution a sequential
procedure that minimi-Sesthe expected terminal uncertainty
e (h(X (x1,x2,...xn)] is to take all n observations on the

*random variable X .

Proof t From equations (3,1.1) and (3.0fi) we can say that
"tH ^the n observation must be taken on the random variable X ,

without considering which random variable is selected at 

I
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earlier stages and regardless of the observed values of 

random variable. Hence for any distribution, 0 &T.

Hx(0) = E (H[0 (X*)])
v

Suppose for any random variable X Gff and 0-6T.it will be 

shown that

E ( H^X*)] ) < E ( Ht[0(X)] ). (3.1.3)

We can say that all (n-1) observations are made on random 

variable X because of (3.1.1). When same argument is made 

on each stage, then the all n observations are carried on 

the random variable X by induction

i.e. H2(0) = E ( Hx[0(X*)] )

H3(0) = E ( H2[0(X*)] )

HnW * E ( Hn-1[0(X*)] )

Now we will prove equation (3.1.3)*

For any given distribution 0 € T_ Let 0* = 0(X*) be the 

posterior distribution when single observation is made on the 

random variable X** Then, for any random variable X 6 IF, then,

f
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E( H[0(X;,X*)] ) = E( E(H[0(X* X)] | X*) )

= E( E(H[0*(X)3 J0*) )

> E( E(H[0j(X*)] | $\) )

» E[H1(JZ5^)1 * E^H1[0(X'*)3} (3.1.4)

Similarly, for any distribution 0 61 and for any random 

variable X 6flp » let f>x = 0(X) be the posterior distribution 

when a observation is made on the random variable X»
We know that 0(X* X) = 0 (X,X*) i.e. the posterior 

distribution will be same without considering order in which 

the observations are taken. Therefore,'

E( H[0(x? X)] ) = E( H[0(XvX*)] ) * E( E(H[0( X.X*) 3 | X))

= E( E(H[01(X'lf)] ( 0d) )

= = E( Hi[0(X)] ) (3.1.5)

From (3.1.4) and 3.1.5).

E( H^[0(X)] ) } E( H1[0(X4i)3

Hence proved.

f
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Now we will define the terra sufficient experiment 

under condition (3.1.1).

Definition 3.1.1 Let X and Y are random variables or

experiments in class p . Let S and S are sample spacesx y
corresponding variables X and Y respectively. If the 

experiment Y is sufficient for the experiment X, there 

exists a non-negative function h on the space X S^, for 

which the following conditions are satisfied.

fx(x|«) « J Mx^y) fY(yjw) dn (y) for

SY X 6 sx (3.1.6)
\

J h (XjY) dii (x) = 1 y«Sy (3.1.7)
sx

0 < / h(x,y) dl»(y) < OO for x C SY (3.1.9)
s Asy

Intuitively it is clear that, by observing Y instead of X 

no information is lost. i.e. observing Y is equivalent to 

observing X.

Let A be the set of all vectors as=(alf,a^) such that

a. >/0 (i * 1,2...k). The setX,i.s the subset of set A 
1 k

with X, a 1. For any vectors a £ A, b £ A we define 
iasl

f
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k
a.b =X- a,b., And for a.b > 0 we define a ’ft b as 

i=l 1 1

aft b * (a1b1,.,.akbk) / a.b* (3.1.9)

Where aft b €. HL

If a.b « O we take aft b as any arbitary vector X-»

Now we will prove following lemma. It is used in 

next theorem (3.1.2).

Lemma-344; LetH be an uncertainty function, and let 0 G'Sjny 

fixed vector. Let v be defined on the set A by

v(a) * (0.a) H(0fta) for a 6 A (3.1.10)

Then v is a concave function on set A.

Proof : Let any vectors a GA and b GA and positive 

constants a and 0 such that <x + 0 = X It will be shown 

that

v (aa + £b) > a v{a) + 0v(b) ' (3.1.11)

f
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v (aa + 0b)

= [ 0.(aa + 0b) ] H[0 8 (aa + 0b)]

= [ a(0.a)+0(0.b) 3h( ««, ,a0^ajt+^jtbjt]/[a(^5.a) +

+ 009. b)] )

* [a(0.a)+|5(0,b)]H t?(0iai.'#2a2 ’** ^kak^ +

+ 0(0!b! ••• 0kbk)] / <*(#.*)+0(0‘»b)

= [a(0.a)4-0(0*b)]H^a(0.a)(0«a) / [a(0.a)-fr 0(0.b)] +

+ 0(0.b)(00b) / [a(0}a)+0(0.b)] }

[a(0.a)+0(0.b)]H[a*(08a) + a*(09b)] (3. 1.12)

Where,

a* « a(0.a) / [a(0.a) ♦ 0(0*b)], 0* = 1 -a* (3.1.13)

Here, we let 0.a > O, 0,b > 0

Since H is concave function from equation (3.1.12) and 

(3.1,13) follow the relation.

f
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v(aa+0b) [ot(0.a)+0(0.b)][a*H(00a) + 0*H(0®b)]

= a a*('0.a) H(0 8 a) ♦ <*0*(0.a) H(0 8b) +

+ a*0(0.b)(0 8 a) + P0*(0.b)(0 8 b)

= a (1-0*) (0,a) H(0 « a) + a0*(0.a) H (0 8 b) +

+ <x*0 (0*b) (0 a a) + 0(1- a*)(0.b) (0 a b) 

s [a (0.a) H(0 8 a) + 0(0.b)(0 8 b)] -a0*(0.a)H(0«a) + 

+ a0*(0.a) H(0 8 b) + a*0(0.b) XH (0 » a) - 

- "a*0(0,b) H(0 a b)

= [a(0.a) H(0 a a) + 0(0.b) (0 8 b) +

+ a0*(0. a) [H(0 fib) - H(0 » a)] - 

- 0*0(0.b)[ H(0 8 b) - H(0 * *)]

« [a(0.a) H(0 « a) + 0(0.b) (0 a b)] +

+ [H(0 a b) - H(0 fi( a)],[a0*(0.a)-a*0 (0.b)]

* [a(0.a)H(0 a a)+ 0(0.b)(0 a b)] +

+ [H(0 a b)-H(0 8 a)].[0*a*c - a*0* c]

ss [ a(0.a)H(0 8 a) + 0(0.b) (0 8 b) ]

From (3.1.13) c a* = <*(0.a)

, C 0* = a(0.b)

Where C * a(0.a) + 0(0.b)
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Hence relation (3,1.11) is satisfied.

If both 0.a = 0 and 0,b = 0 each side of relation vanishes.

Theorem 3.1,2 : Suppose that the experiment Y is

sufficient for the experiment X, when X and Y belongs to 

(p . Thep, for any uncertainty function H and any 

distribution 0 ■€.%,

E^H [0(X)]] £ E{H[0(Y)]] (J.l. 14)

Proof s Any non-negative function g(.) is defined on 

parameter space can be considered as a 

vector (gp g2» ...» g^) in the set A. Let g.^ = gtu^) for 

i s 1,2, ,..k« We will use this convention in the proof.

Here, experiment Y is sufficient for experiments.

Then, there exists a non-negative function h on the space 

Sj£ X Sy Which satisfies the conditions (3.1. 6), (3.1.7) and 

(3.1.8). For every x €. we shall define the function 

'Y(WjVx) f°r every point of -A- as follows :

'pUjjx) * Cg/ h(x*y) fy^^) dU(y)] / J h(x Y)du(y)

Y (3.1.15)

for i a* 1,2,.*. k

Fr cm equation (3.1.14) and 0(x) is the posterior distribution.

It can be shown that the following relation must be satisfied. 
t
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E(H[0(X)3) = S v CfxCx|w1)3 dll (x). (3.1.16)
sx

From the equations (3.1.6) and (3.1.15)

H (H[0(X)]) ■ i 'f'(wi\x)3 F J h(x,y) du(y)] du(x)
C "* C v*

* (3.1.17)’

In equation (3.1.17) we used the fact that 

v(aa) ■* qv(a), o>/ 0 fpr all vectors a € A.

For every point x 6 S^, let 4 (y!x) denote the p.d.f, on 

the sample Sy defined as follows i

f*(Ylx) = h(x;ly) / [ J h(xiy)dix(y)] for y e ^ (3.1.18)
Sy

From equation (3.1.15) i = l,2,...,k we can say that 

4'(«^\x) nothing but the expection of fytylu^) when the 

random variable Y has p.d.f. f (y|x). By Lemma 3.1.1 v is 

a concave function on set A. Therefore, using Jensen’s 

inequality for a concace function of a k dimentional 

random vector, we get following :

V [ + <«ilx> ] $ f vtfy (yl«i)]f*(ylx) du(y) (3.1.19)
SY

Integrating both sides of equation (3.1.19) and using 

equation (3.1.17),

r
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With respect to X, we get

f x)].[ J h(x,y) du(y)] dM(x)
^ SY

> J / vCfy(yl wi>3^( x^y) • j h( x^y))du(y)/[ / h( x^y)du(y)] 
>x *y SY SY

i * 0 #

E (H[0(X)] >, f f v[4Y(YK)]h(x,Y) du(x)cfc(y) (3.1,20) 
SX SY

Reversing the order of integration, we get,

E (H[0(X)] >, J f vCfYCYjwJXx.y) du(x) du(y)
Sy Sx

E (H[0(X)]) >. fv [4Y(y|«i)l <*<y) si h(x{y) dw(x)
Sy X

By equation (3.1.7) we get,

E §H[0(X)])^E (H [0(Y)]) ' (3.1.21)

Hence proof :

The final result, vihich says that performing n 

replications of a sufficient experiment must be an optimal 

procedure.

Corollary 3,1.1 :

f
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Corollary 3.1.1 i Suppose that there exists a random 

variable X fif which is sufficient for any other random 

variable X G f. Then, for any uncertainty function H onl. 

for any prior distribution S X.» and for any positive 

inteqer n, the sequential procedure that minimizes the 

expected terminal uncertainty

E^H T (X^, X2, Xn) is to take all n observations

on the random variable X*.

f


