CHAaAPTER-— III

ASYMPTOTIC PROPERTIES AND KFFICIENCY
OF CONSISTENT ESTIMATORS
3.1 INTRODUCTION

The first section of this chapter deals with definitions
of some terms which are useful for further discussion.

The second section refers to the discussion of some
asymptotic properties of consistent estimators, mainly the
consistent asymptotical normal estimators.

The third section deals with the discussion on the
contribution by Bahadur (1960) in the area of efficiency of
the consistent estimators. It also includes the discussion
on the concepts viz. Concentration probability and
Asymptotic Relative Efficiency considered by Bahadur for
comparision of efficiency of two consistent estimators.

The last section deals with the discussion on the
consistency of testing procedures and related theorem.

For ready references we state the following definitions:

3.1.1 : Asymptotic Normal estimator
A sequence Tn, n 2 1 of estimators is said to be

asymptotically normal for 8 if there exist a sequence bn, nzo

of nonfnegative numbers as n —— o such that

b, (T, — ©) —D 5 2*  yhere Z¥ ~~ N(O,v(8))

n
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3.1.2 : Consistent Asymptotically Normal (CAN):

Let Tn be a sequence of estimators for g(8). Then Tn is
said to be CAN for g(8) if

bn{Tn - g(e)} —Dy z¥ for every 6 € 6,
3.1.3 : Rate of convergence : op(.) and Op(.) are called
rate of convergence in probability where Xn = op(Yn) an
n— o if X, /Y, —F 0 and X, = 0,(Y,> if there
exist a constant K, 0<K<w such that

lim plix /v 1 ¢ K] = 1.

3.2 Asymptotic properties of consistent estimators :

In this section we discuss some asymptotic properties of

consistent estimators.

3.2.1 Lemma: Let b, T « and bv\(Th—G) —— z* and Z¥ is a.s.
(Almost sure) bounded. Then Tn——E—+ 8,

Proof: Consider for € given

P{I1Ta-981>¢e}="p{ ib(T, —6)l > bye }

Let 2e” € € and P(12¥%1 > C) < &’

and n, is such that b,e > C for every n > n,. So

P[ 1 ba(Ty =€) | >by € ] < P[ 1by(T, — &)1 > C ]

SARH. BALASAHLY
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< P[ 1z¥1 > ¢ ] + €’ for every n 2 n,

. < 2¢€’

< € for every n > max(n,,n,).
This implies that T, is consistent for 9.
Example : 3.2.1 : Let X,,X,,...,X, be i.i.d b(1, &) 0<e<l
and T, = X.

Thus O (T, — 8) = B (X — 8)

[

—1 . — 8
e i§; (X3 = @)

ey, e [

Ry BTTEY L 2
By using CLT where £ ~~~» N(O, 1).

That is ~ 8 (T, — @) ~~B~ z¥, where z* ~~> N(0,9(1-9))

and we know that i is consistent estimator of 6.

3.2.2 1If {Tn} is asymptotically normal for g(9) and bnTb < @

then Tn is not consistent. This can be verified as

. . P
below, suppose that Tn is consistent for 8 then (Tn—a) —9 5 0

implies that (T,-9) —D 8, that is degenerate distribution.

So (T,=8) = —I= by (T,—6) —— L2
n
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but % Z ~~3 N(O,1/c%) which is not degenerate distribution.
Hence controdiction to assumption, so T, is not consistent.

Example 3.2.2: Let X,,X,,...,X, be i.i.d. N(6,1), g(e) = 8,

We define T, = igl W;X; / iglwi is weighted mean and W; > O.
Consider b, = A/ .2W;
i=1
® WX,
- = jzy 11 -
So b, (T,—9) b, 1 E - e

pos 1
= lﬁlw [iglwl (X; — )]
i¥1 1
- 7 W (Xy ~ 8) ~vnd ——L 2%
N g N EW

By using CLT whers 2* ~~~~> N(O, B Wi). S0 by(T,~ 6) has

normal distribution. This implies that T, is asymptotically

normal. Consistenéy of Tn depends on nature of Wi‘ Here
—— .2 - 2___ 2 '2. -
If Wi = 1/1° for every i then bn = L 1/1i% is
i=1

z
convergent. This implies that bn + constant that is bnT

constant so bn ——3 ®w. Hence estimator Tn is not consistent.
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z
While Wi = —%- for every i then b, is divergent and so bn is

divergent. Hence Tn is CAN.
3.2.3 - Tn is consistent for g(8) but need not be

asymptotically normal. This can be varified by the following
example.

Example : 3.2.3 : Let X,;,X,,...,X, be i.i.d. U(0, 8) and

T

n ™ X(n) is consistent for g(8) = 8, but Tn is not

asymptotically normal.

Suppose Tn be the asymptotically normal estimator for
g(8)y = 8, There exist a sequence bn of positive real numbers.
Such that bn(x(n) - 8) —>» Z where £ ~~% N(O, v(8)). Note

that 0<X(,)<®
so Pg [X(n) -6 > O] =0
or
Po [by(X(n) — &) < 0] = 1.
This implies that Py [Z, < 0] = 1.

This does not implies that Zn converdes to O normal random

variable in distribution. Agdain consider Sn = 2X is

asymptotically normal for & when X,,X,,...,X, be i.i.d.
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U(0, 8) because

~E (S, — 8) = 0 (2X — )

_ o 1 X; — 672 D, o
Rve ol pve-—iit {e/m“ } 2. ¢

where Z ~~~3» N(O, 1).
So ~ B (S, — 8) —B= Z ~ N(O, 62/3).
This implies that S, is consistent for 6.
3.2.4 : A consistent estimator need not be even asymptotically

unbiased estimator.

Example : 3.2.4 : Consider here X,X;,...,X, be i.i.d. N(&,1).
- Let {an} be a positive sequence such that

a

n
f el et 2 gy o= L
ars n+1
~ap

Note that a, —3 Q0 as n —3 ®,
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We define an estimator Tn by

i X, — X
. l’——ﬁ-}-z— igsxi + n if -"-'é:;—/"::2_::3"-~ € ["' an, an]
n= )
[ —%— iglxl otherwise.

{Tn} is consistent but not unbiased. We shall see first
consistency of Tn' Consider

Pe[lTn"fegzi]

X,~ X
=P [ Bxgen-0 12 St e (-ay, 8] 4
- X,- X,
P['xn-e‘ze’ 1"/_2__2_ ?"r(_an: an)]'
X, ~ X
5 I - ig3xi +tn=0 12 S—=foc (- ay a,)] ¢

PliXx,-e612c¢].
sp [ 5ij5;%é c(~ay a)] +P [ 1 X, —812c¢]

= s +P [ 1 X, -012¢]
But we know that as n — o, in — 8 so0

Pl1X,-812ec]—0, asn— a
This implies that Tn is consistent estimator of 6.

Now we see

X, - X,

E(Ty) = P[22 € (= oy, o)) Efgds (£ X5 + 0]

2

1:

s

X, - X
+ P[—ji;fz-& £ (— a,, an)}- E["%“ 1g1xi]



~57—

= mhr mir (2)9 + gy + (1 - gl B

i

8 _ 8
arT Y 4T * @ T m¥r

= @ 4 C— 8 o+ 1 as n —¥ o,

-
Hence T, is consistent estimator but not unbiased.

3.2.5 : Let {Tn} be CAN for 8 with rate bn then g(Tn) is CAN
for g(8) with rate bn if g is differentiable and g (8) # O

for every 9 &€ O,

Proof : Since Tn is given to be CAN for & we have [I] T, is

P
consistent for 9 that is Tn —t g, Y ageo

[II1 b, (T, — 8) —2— N(0O, v(8)), Y o 6,

Let 8, € © in particular I & II holds for 8,. Define a

[ g(8) ~ &(%9,) _ o (8,) if 8 # 8,
function h{(8) = l 8 — 8, (3.2.5)

0 otherwise

Note that h is continuous function at &, and h(8) — 0

if 8 — o,.

Since h(T,) —2—= 0 and b, (T, — 9) —> N(0, v(8))

BY slutsky theorem (Bhat (1986)) it is clear that

Pg
by (T, — 84). h(T,) —%= 0
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Thus from (3.2.5) we have

ba(Ty = 85). h(T,) = by(&(T,) — &(8,)) ~ by(T, — 8;)

Pg
g (8,) —2—> 0 (3.2.6)
Note that 11 also implies that
by(T, — 85) & (95) —L— N{0, (& (8,))2 v(8,)] if & (8,) # O

consider from (3.2.8)

2(Ty) ~ &%) § _y, (g
n

Py
by [ FECN - 6,] —=> 0

since g (&,) # O.

— g(eo)] D

T
This implies that bn[ &l n)g’(e ) ¥ N(O, v(8,)
[s)

so g (6,). b

g(Ty) — &(84) D
[ g (8y) ]

> N[0, (& (80))* v(8,)]
This implies that

by [2(Ty) — @(8)] —B— N[0, (& (95))% v(8)]
Hence g(T,) is CAN for g(®) with rate b, .

Example : 3.2.5 : Suppose x,,xz,...,xn be i.i.d. N(&, 1).

We know here X is CAN for 6.

[I] Let g(8) = &°.

since g (8) = e® # 0, Y 6 € 6. This implies that eX is

CAN for ee.
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{II] Let g(®) = 8%

28 if 8 # 0

2] =
Note that g (8) { 0 if 6 =0

-— z
Hence /1 (&(X) — g(8,)) ~~R~> N(O, 46,) for 8, # O

and 7 [g(X) - g(0)] = ~ & X which X distribution.

That is X is not CAN for 9%.

Example : 3.2.6 : Let X, X,,...,X, be i.i.d. N(8, 1),

g2(8) = maximum (8, 0) = 2% lze -0l . _® : 18 |

Maximum function is continuous and g(i) is consistent for
€(8). But 18! is not differentiable at 0. This implies that
g is not differentiable at & = 0 and if for 8 < O all
derivative vanishes and theorem is not appiicable for 8 = 0.

If 8 > O then in this case

~a [g(X) - g(e)] —2— N(o, 1)
~1 [max (X, 0) — B2 (0, &)] ~Bv N(O, 1).

3.2.6 : Lemma : If X,,X,,...,X, be i.i.d. with

86X
f(x, 6) —&éZ(%)——, x=0,1,2,....

X 1is CAN for -2 (8) g

Then T
n g(o)
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«© X «
. = a(x)- = 8 ] _gX—t
Proof : Here Eg(X) ig% = T x;% X. 8(x)
=_-g:_£§_). N
g(9)
£ [x(x = 1) + x].a(x).0%,
Eg(X?) = —1=0
g(9)
= 2(8) g2 , g'(6) g
g(9) g€(8)
- & (8) g, &8 gz _ [_£(8) g]*
S0 Varg(X) 2(9) + g(8) g(98) ]
- L (0) o [1 - £L8) g] 4 £O) g2
g(9) g(9) g(9)
= Kg (say).

But we know that

~0 (T, — 8) ~~~> 2% = N[0, v(8)]. Implies that

X
[ E el A= -]

8 (x; -
- [

S0 Tn = X is CAN for —gé%§% .

3.2.7 : Lemma : If X.,X,,...,X, be i.i.d. with

f(x, ) = C(8).h(x).e°%X. Then T. = X is CAN for -C {(8)

n c(e) °
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L (8)
C(®)

z 2
{c<e).0"<e) - [c ()] }

[cor]”
=4
Var [ o— log fg(x) ]

Proof : Here Eg(X)

and Varg(X) =

[c8)]" — cor.c (o)

[ccer]”
= Kg (say).
But we know that
ZX;
SEAT8) = Mo [ 5 - ,C'C(Lg)l

1 (o)
=[5 TOR

T(X{) — _C(89)

1 c(8e) vy . R X
waalll e i B I

= ,/Re .

Hence X is CAN for -G A{(9)
C(9)
3.3 EFFICIENCY OF CONSISTENT ESTIMATORS :

3.3.1 : In this section we discuss the efficiency of
consistent estimators.

The definition of efficiency by Bahadur(1960) is based on the
coverage probability ¥,(8) of consistent estimators. It

provides an estimate of the rate of approaching coverage

probabilities to one.
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If T and Un are consistent estimators the problem is Lo

n
choose one of these two. To choose the good consistent
estimator with the help of variance and concentration of

probabilities. Consider here

Po { ! T, —a(®) | € e} = Pg{l To — 800) lf’?r}

= Pg {121

(7.9
»im
[ S

= F( g/2) — F (— €/2)

= 2 % g/%) -1

= .06, T,, €)
This implies that ¢n(6, Tn’ g) = 2 F(e/2) - 1 (3.3.1)
and ?n(a, Tn, €) is called coverage probability of ¢.
(3.3.1) implies that

1 + ‘Pn(ai Tn’ E)

= F '
2 5 (/%)
. -1 - Pn(8, T, €) .
that o 2k 1 n n = o !
acv 1s € { > + 5 }
- ¢.(8, T, —1
so a=¢{ & é o - 2 13 (3.3.2)

Here A= 1g(Tn, g, 6) is effective standard deviation and it
is decreasing function of ?n the concentration probability.
If T,—g(e) = Op(l) as n — @ then

A (T €, 8) —> 0 as n —F w,

g( n’
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For some n , £ and ¢g(9) if Tn and Un are two consistent
estimators and if ?n(g(e),Tn,s)<*n(g(9),Un,e) then

ig(Tn’ €, 9) > mg(Un’ €, 8). So Un is efficient consistent

estimator than Tn'
kxample : 3.3.1 : Let X,,X,,...,X, be i.i.d. N(&, 1)

[

T, = X, and S, = -——IL; :
- X — @ ;
So ‘Pn = Pg { | Xn -8 | <= } = Pe { l 1? = < 17 AE/—E }

=2 % (A n. €) —1
Here 2 = —1

~~ 0
and 4y =P { | Tm 0] cx}
Xo

=2 F (A~ n/z €)
Here % = A z/n
He __..l__
nce = < ~"2/n

So Xn is more efficient consistent estimator than —¥§~ .
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Example : 3.3.2 : Let X.,X;,...,X, be i.i.d. WO, 8),

X

T, = X(p) and Uy =2 X,.
We know that Pg { | X(n) —© | <= } =2 &e/m) — 1

that is (1 — €/8)B = 2 #B(e/2) — 1

This implies that 2 = € [ F1 { 1, 1 (e;s)n } ]

2 X

similarly for Un n

e e
26
Hence by comparing 2 for X(n) and 2 X, , X(n) is more
efficient consistent estimator than 2 in'
3.3.2 1 Comparison of different two consistent estimators

can be done by following method also. Let {Un} and {Tn} be

consistent estimators for g(8).

The upper asymptotic efficiency of T, relative to U, is

3 3 ')‘2 (U , €, 6)
= %$8 lim _’"g n

nTe g (T,, & 8)

eg(Tn, Un,

where Tg(Un, €, 8) 1is effective standard deviation of Un

which is solution of

P { 1 Uy —g(8) 1 > e p=2[1-%e/) ] (3.3.2)
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Example : 3.3.3 : Let x,,xz,...,xn be i.i.d. U(0, €} and
Tn=X(n), Un”"X(s) +X(n).

Consider for T Pe [ 1T, -0 1> c¢]

-

n

]

Pg[ Tn<9—E]

= (1-e/8)".

From (3.3.2) (1 - e/6)% = 2 [ 1 - F(e/n) ]
This implies that  —f- = #'[1- -1 (1 - ¢/6)" ]

so %2(T

, €, 8) = £ (3.3.3)
° {1~ 4(1-e/6)"}

Now consider Pg { | X(y) + X(ny —© | > € } = P(A).

Here P(A) = P(A,) + P(A,)

Xin)

p

U""VV:&._C.

|
' 1
]
) !
s € § xX0i)
2 2
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P(A,) = J £(U, V) du.dv.
Al

8-
z ©U~—~eg—-u

= [ [Joas v-0"" av ] au
) u

8—¢
z O-g-2u

- _nLngg_l—Oj [ g £ " dt ] du.

It
|
-y
«

n [}

Z = _1_ - n
Similarly P(A,) = — (1 - /)"
Hence P(A) = P(A,) + P(A,) = (1 — =/6)".

That is Pg [I X(y) + X(p) — 8 | > €] = (1 — e/8)", if € < ®

....(3.3.4)
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Hence from (3.3.3}) and (3.3.4)

m(Tn, €, 9) = (Un, €, ) Y n, 0<ed, a > 0.

This implies that eg (T,, U,, ©) = 1.

So Tn and Un are equally efficient consistent estimators.

3.4 SUPER EFFICIENCY OF CAN :

3.4.1 : When an sample size grows to infinity estimators
which are<€§§ff}cien§ may converge in distribution to
estimators with”aé;mptotic variances which attains the Cramer
rao bound or even become smaller than that, such estimators
are called super efficient. (Zack 1970)_

Example : 3.4.1 : A CAN estimator which is super efficient.
Let x,,xz,...,xn be a sequence of i.i.d. random variable

having an N(8, 1) distribution, —-w<8<®w. Then define a

estimator
X 3 X logn
—Enw if 1X1| ¢
T, = ~ (3.4.1)
in otherwise

Here X, — N(9, )

®
SO E(Tn) = f Tn f(t) dt
—G0
-logn
N logn/v n a/z (t 6)2 ~n
o= .t_ﬁ__" - - " — s E
R dt‘+J L5
-
v



- D(+-9Y*% 0 - Rtt-9)2
o = apy [eadm o 2 gy
logn
~a
B L - 1
—o 2n P 2n
~ 0
logn
~n

o - n(t_s)z
* J‘% ~/ N © ‘ de
-0

=logn
© ~n
= £ J ¥ f(e)at + f% f(t)dt
logn ®

~n
This implies that E(Tn) # 8,

We have to find Cramer-Rao bound that is

z

6%

Var(T,) 2 ¢’ (8)/E(- logl).

Let here E(Tn) = ¥(8)., So from (3.4.2)

-logn
\ ?/—5 -
P(g) = _92. + .]2- J:p- f(t)dt + % J -t f£(t)dt
_Jo Lo
~n
—logn
~ 0 0
-8.,1 f‘t ~ 0) f(t)dt + j (t — 8) £(t)dt
1]

logn
~ 0

-68-—

(3.4.2)
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=logn
~H ©
+ @ j eerae + ¢ [ (e,
—e logn
/\/—ﬁ
:A/—r_x ' D48 2 © _ n(t—e)z
=8 , 1 (t—e)ﬁ.eﬁz(~)dt+‘f(t-9)ez dt
z z Az
Q0 I“gn
~ 0
:l/%_&ﬂ
7 N _n _ z fee] _n -8 z
+§.j_¢£c_e 2(t-9) dt+gj_@._e 2(t-9) .
z ~ N
— logn
~ 0
put t — 8 =y and %r-cn
~C,-8 e o v .
So?(9)=%+%{I%ye 2dy+J%ye dy}
- cn-e
—Cn-9 2 © ) z
] oA g A
vz { f Iy dy + f ~2h dy }
Lo Cp-
j_ -C. -8 _ n§2 o ) 22
=8 ., 1 =0 T
z+z[fy me dy+j mye dy}
- Cn__e
+ 8 {1 -7 [(c, - 9).Vfﬁ]}+ 9 {5 [-(-c, - 6).Vfﬁ]}

2
; - - B(-C,-98)
Thus ¢ (8) = Jz- + -lz- { TA“/_;E:L— ( _.Cn — 9) 2 F3 n
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z
- B(C.-9)
Y4 Ei — 2( n
v S S }

+
P

[1-2(c,~9)~E + 8- v, —8) ]
+ 2 {#(c, —8) T — ®(—C, — 8)} (3.4.3)

Hence T, does not attain C.R. lower bound.

&

Consider A, = { (X,,X,,...,X,) : | X, | ¢ lgﬁg }
Here lﬁé% —3 0 as n —* o, (By using hospitals

rule). So A, is a decreasing to zero.

Here X, — N(0O, 1/n)  and C, = lcdn

n ~
So Po(ay) =P [1 X, 1 ¢ ]
C z
= f 22:5; e n% dt put ~ o t = u
...Cn
11‘_31 - u?
- 2
ZOJ W du
=2 [ # (logn) - £ ]
= 2 [ 1 - % ] as n —> ©
=1
Hence P, (A,) — 1, as n —> ® when 68 = 0

L e
il o0t U T
VA Ubivio, T, skt
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Now 6 =86,#0
= X ¢
P, (An) = Po, { 1 Fo 1 £ Cy }
C
\ D - D(t-6_)"
= /0 e 2(t-%) dt
A 2N
~C,
put ~ n(t — 8,) = u
logn- ~/n 8, u?
- = o * . du
-logn- ~'n 8,

= F (logn —~ 0 6,) — & (— logn — ~n 8,)
(a) If &, > 0 and rate of convergence of ~n 8, > logn
hence logn — ~ n 8, — — ®
(b) If &5,< 0
logh —~n 8, —3 ®

Hence for (a) and (b) both cases

ch (Ag) — O as n —>
j 1 if 8 =0
50 P (&) — (3.4.4)
| o if 8% 0

If X,,X;,...,X, are independent and E(X) < ®, we obtain from
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weak law of large numbers

[1 if 181 ¢c
Pofl T, @ | € €/ (X, %, ....X,) € A} —9
lo if1e1>c¢

as n —¥ o,
S0 from definition of Tn, An and the limits we hav-
Pg{ | T,—9 | ¢ e }—> 1 for every & e(— », @)  (3.4.5)
But we know that

Pg{IT, — © 1< €} = Pg{iT, — 0 1¢ e, A }+ Pg{IT, — @1

1Y
m
.
o)
[

from {(3.4.5) Tn is consistent estimator for & and T

written as T, = B~ T, (X,) + X, Ip,’(X,) we know the CAN
estimator as
638 Po [~T (Tg - @) ¢ x ]

© HE {Fowa[ . T ¢ x AJe Poso[ T T,

1
X
>
=
| —
et

but Pg_o[ ~ T T,

"~
#
g

5-

-

I
O

Po [~ B 22 ¢ x, &]

]

Po [~ X, ¢2x A =%(2x (3.4.6)

when 6=6,#0

Po, [~B (T, —65) ¢ x ]

= Peo[»«’_ﬁ (-—én—e) ¢ x, A, + Peo[A/_n Xy — ©) € x, Ay
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= 0 + Pg_ [~B (X~ 8o) ¢ x 4] = &x) (3.4.7)

Hence from (3.4.6) and (3.4.7).

. fi(x) if @ # 0
}133 Pe[«/—!i (T, — &) ¢ X] = (3.4.8)

| s2xy ife=o0
where #(x) and ¥(2x) are standard normal integrals.

Hence the asymptotic variance of Tn is % if 8 # 0 and

pu]

3%~ if 8 = 0. The Cranef Rao lower bound for each n is
Thus T, is asymptotically super efficient at © = 0.

3.5 CQNSlSIENCX_QE.IES:ING_QEﬁﬁiEQIHESIS :

3.5.1 : Introduction : Id this section we discuss the
consistency of testing of hypothesis. Wé can Jjudge the
correctness of a null hypothesis of the parameter of a set of
probability measures with increasing reliability with
increasing sample size. We discuss here important concept
based on "infinitely large sample size" one never rejects the
’true’ null hypothesis and never accepts the ’false’ one.
Some definitions which are usefull for further discussion.
3.5.2 : Test of hypothesis : The mapping ¥ (one and zero) is
said to be a test of hypothesis H, : & € 8, against the

alternative H; : & € 8, with error probability « if

Eg #(X) ¢ « Y 0 €0,
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In short ¥ 1is a test for the problem («, €,, ©,/) let us
write Be (9) = Eg (X} we find test ¥ for a given «,
Oftx$1 such that

§EB_ Pe (8) ¢ «
1.H.8. is the size of the test ¢ .
3.5.3 : Power function of the test : Let ¥ be a test function

for the problem («x, 6,, ©,) for every 8 € 6 define

Pe(9) = Eg #(X) = Pg { Reject H, }.
As a function of &, #¢(8) is called the power function of
the test ¢ . For any 8 € 8,, $4p(8) is called "e power

of ¥ against the alternative 6,

3.5.4 : Let ¥, be the class of all tests for the problem
(<, ©,, ©,)). A test ¢, € ¥, 1is said to be a most powerful
(m.p) test adainst an alternative & = &, if

5(90(9) 2 Pp(8), ¥ ¥ e ‘Poc

3.5.5 : Neyman-pearson lemma (N.p.lemma) An test ¥ of the

form
1 if £,(x) > K £,(X)
P(X) = r(x) if £,(x) = K £,(X)
1 0 if £,(x) < K £4,(X)

for some K 2 0 and O ¢ r(x) ¢ 1 is most powerful of it’s

size for testing H, : & = 8, against H; : & =6, given «,
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0fx¢1 such that  Eg®(X) = «. is the N.P. lemma.
and if K = « then

j 1 if £,(x) = 0
?(X) =
| o if f£4(x) > 0

is most powerful of size zero for testing H, Vs H,

3.5.86 : Consistency of test can be explained as below. As
increasing sample sizes in tesFting procedures we define test
for such sample size, so we have sequence of tests. For these
sequence of tests type one and type two errors approéches to
zero as sample size increases infinitely large. This property
of test is called consistency and it can be defined as below :

A sequence of tests ?n(x) is called a consistent sequence of

tests for the test problem (8,, ©,)

if im go(e ) =0, for 6 € @,
and fli‘;g Ea((Pn) = 1 for ©6 = 61

This implies that for every © € 8, the type one error
converges to zero and for every 9 € &, power converges Lo

one (That is type two error converdes to zero) as the sample
size increases infinitely large.

3.5.7 : Lemma : Let P, and P, be arbitarary p babhility

measures overs ( R , ¥ ). Let f, and £, be the corresponding
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Radon Nikodym (R.N) densities and let

P(Py, Pp) = J-V T;fz . du then 0¢p(P,, P,) ¢ 1.
R

p(P,, P,) =1 if P, =P, and p(P,, P,) =0 if P, and
P, are orthogonal measures (Schmetterer (1974)).

3.5.8 : Theorem : Let Peo and Pe1 be two probability
measures over (R,, 8,). Consider the sequence of sample

spaces { (Rn, Bn) } and on them the product measures

(n) . . .
P, = ft p with P 1€5¢n i =0, 1
8 i=1 05 8i; J
Then there always exists a consistent sequence of tests for

the problem [ {8,}, {9,} ]

Proof : Let » be a probability measure dominating Peo and

P9l . Denote the R.N. densities of Pg, w.r.t. » by fg.
i i

i=0, 1. Then the R.N. density of P5") w.r.t. R sy
i j=1

with By =4, 1£j¢n is given by

(X4, Xgs oo, Xy) — f fo, (x3).

(n) _(n) t/z
Hence P(Pg_ Péx Tt (x5) fo (x5)]  dr(x,)...du(xy)

= [
Rn
=5§’ j ~ To (x5) fg (xj) . dn(xj).

Ry



A=

and so P(Pé:), Pé?)) = (r (Pe0 P91))n .

since Peo 7 Pg‘ we have from above lemma

P(Pén) Pén)) — 0 as n —F ®,
(] 1

Now we choose a sequence of real numbers {Kn} and real
numbers C,, C, with O0<C,3C, such that for n = 1.2,.
0<C‘$Kn£C2
for n 2 1 let
1 /2
B ge (x5m
1 if 438 1 7T Kn
¢ (K Ky oo, Xy) = { R (fe_x5)) |

0 otherwise.

Then Eg  (%5) = | @n(x,,xz,...,xn)jﬁx fo_(x3)dr(x,). . .dr(xy)

n
1 R R /2
. K, I [j:‘ feo(xj)j:; fe‘(xj)] dr(x,)...d,(x,)
Rn
- 1 (n) _(n)
Kn P (Pgo Pg ')
1 (n) _(n)
$ C F (Pg Pg ') —> 0 as n—3 o
1

.—pL..
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similarly

i~

1/2
Eg (1 = %y) ¢ Ky J[J_{jx feo(xj)ﬂ1 fo (xi)]  dulx,)...du(x,)

C, P (Péz) Pé?)) —> 0 as n — o

1~

This implies that type one and two error approaches to zero
as n increases infinitely large.

From the above theorem (3.5.8) we can say that N.P. test is
consistent. Following is an example that establishes the

consistency of N.P. test.
Example : 3.5.8 : Let X,,X,,...,X, be i.i.d. with density

~-x/8
function f(x, 8) = é . e x/ x 20, 8 >0

we have to test H, : 8, =1 Vis H, : 8, > 1.

1 if Tx: > C
m)={ i > Cq

o otherwise.

where Cn is such that P [ Exi > Cn ]

« = 0.05 (say)

Under Hy @ T = Ex; ~~~* G(n).
Now  Eg ¥(X) =Pg [T >cC, ]

A0

j fo_(t) dt.

I

c
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Les]
Here C, 1is such that J f, (t) dt = « = 0.05 (3.5.8)
Cn
-0
and power B(8) = J fo () dt (3.5.9)
Crye

Let 8, = 1.5 and n = 2. Then from the equation (3.5.9)

1

C, = 3.4 and

3.4/1.5
B(8) = 1 — j £o (L) db
0 1

2.2
=1- J fo (t) dt = 1~ 0.8169 = 0.1831.
0

(Karl-pearson F.R.I. (1965))

Similarly we can obtain power as n 1increases as given in

following table. 8, = 1, 8; = 1.5, « = 0.05



For

n n 8(9)
2 3.4 0.1831
3 3.7 0.1936
4 3.9 0.2381
5 4.1 0.2801

10 5.0 0.4028

20 6.3 0.4592

30 7.2 0.7408

40 8.1 0.8213

50 8.8 0.8839

50¥  61.60 0.9090

100%¥  111.64 0.9962

¥ values normal approximation is used as

#(%)

{ 1 if Exy > G,

0 otherwise
PBO [Exi>Cn]=P90[z>

=p, [2>

C

i
v

=

Cn"ne ]
W aarca

n

—-80-—
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C —
This implies that —B " = 1.4
NFE
50 Cn = A/’n 1.64 + n

lJlet n= 50 then Cn = 61.60

then #(08) =Py [ 2> —B ] but @, = 1.5

I

61.60 — 75
Pis [ 2> 10.13 ]

P, ¢ [ 2>— 1.340 ]

= 0.90901.
In this way power of N.P. test approches to one as n
increases.
Similarly we shall see size of the test approaches to zero as

n  increases given below :

fg (x,)
, 1 if L xn > Kn = 0.5
P(Xy) = fg (%)
O otherwise.
fg (xp) g .n
f9°(§n) [ 9‘ ] P [ 1 (90 9& ) ]

consider 6, =1 98,6 = 1.5

This implies that

Ix; > 3/2 nlog(3/2)



30 test will be

1 if Tx; > 3 nlog( 2 )
P(Xy) =
~0 0 otherwise.
1]
Eg #(X) = f fo_(x)dx

2/z2 nlog=z=/2

We calculate «

[

Similarly we can

1=
0

z/2 nlog 2/2

e X -1

= dx

for different values of

3/2.210g(=2/2)

3 - -
gxxnt

1 —01. -'v/—‘.'_l dx
1.8 X 2(0,a0549)
P -X n-1
N v
1.2
3 -X n-1
! 'Oj oa o x=

obtain « as n

following tables :

as

1 — 0.5058387

= 0.6941603.

increases

as given in
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For K, = 0.5 8, =1 and 6, = 1.5
n o
2 0.6941603
3 0.3973457
4 0.2942299
5 0.2013125
10 0.0075165
20 0
For K, =1 6,=1 and 6, = 1.5
n o
2 0.1475118
3 0.046033
4 0.0118601
5 0.0023514
10 0

.. .Do%o0, .,



