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ASYMPTOTIC- PBQPEBT.IES AND EFFICIENCY
OF... CONS ISTEMT, ESTIMATORS 

2-1 INTRODUCTION :
The first section of this chapter deals with definitions 

of some terms which are useful for further discussion.
The second section refers to the discussion of some 

asymptotic properties of consistent estimators, mainly the 
consistent asymptotical normal estimators.

The third section deals with the discussion on the 
contribution by Bahadur (1960) in the area of efficiency of 
the consistent estimators. It also includes the discussion 
on the concepts viz. Concentration probability and 
Asymptotic Relative Efficiency considered by Bahadur for 
comparision of efficiency of two consistent estimators.

The last section deals with the discussion on the 
consistency of testing procedures and related theorem.

For ready references we state the following definitions: 
3.1.1 : Asymptotic Normal estimator :

A sequence Tn, n l 1 of estimators is said to be 
asymptotically normal for 0 if there exist a sequence bn, n*0

of non—negative numbers as n --- > co such that
bn(Tn “ Q) —^ z* where Z* —» N(O,v(0>)
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3.1.2 : Consistent Asymptotically Normal (CAN):
Let Tn be a sequence of estimators for g(9). Then Tn is 

said to be CAN for g(9) if
bn{Tn “ *<®>} ' D > Z* for every 9 e e.

3.1.3 : Rate of convergence : op(.) and 0p<.> are called 
rate of convergence in probability where — op(Yn) ab

n ---- > cd if Xjj/Yjj —> 0 and Xjj = 0p<Yn> if there
exist a constant K, 0<K«o such that

p[ix„/V s k] - l.
3.2 Asymptotic properties of consistent estimators :

In this section we discuss some asymptotic properties of 
consistent estimators.
2L3L.1 Lemma: Let b t oo and b (T - 9) ---» Z* and Z* is a.s.n ^

(Almost sure) bounded. Then Tn—> 9.
Proof: Consider for e given
P { l Tn - e i > s } - p { ibn<Tn -eji > bn» }

Let 2s' < € and P(\Z*\ > C) < e’
and n* is such that bne > C for every n > nt. So

P[ I bn(Tn - 8) I >b„ « ] < P[ lbn(T„ - 8)1 > C ]



-52-

<p[|Z*l > C ] +e’ for every n l nz

< 2e'
< e for every n > max(nj,nz).

This implies that Tn is consistent for 0.
Example : : Let Xt, X*, . . . , be i.i.d b(l, 0) O<0<1

and Tn = X.

Thus T (Tn - ©) = a/T (X - 0)

V 0(1-07 . zi
By using CLT where Z N(0, 1).
That is */n" (Tn — 0) z*, where Z* N(0,0(1—0))

and we know that X is consistent estimator of 0.
3.2.2 If {Tn> is asymptotically normal for g<0) and bnTb < co
then Tn is not consistent. This can be verified as

Pebelow,suppose that Tn is consistent for 0 then (Tn~0) —E—> 0 

implies that (Tn—0) —> $Q that is degenerate distribution.

n
2
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bub Z N(0, l/<sz) which is not degenerate distribution.

Hence controdiction to assumption, so Tn is not consistent. 

Example 3.2.2: Let Xx, Xz, . . ., Xjj be i.i.d. N(0,1), g(6) = ®•

We define T~ = 2 W-sX* / 2 W.: is weighted mean and W^ > 0
*' i=l i = l

By using CLT where Z* » N<0, 2 wj). So bn(Tn~ 9) has

normal distribution. This implies that Tn is asymptotically 

normal. Consistency of Tn depends on nature of W^. Here

bn = i~i^i' ^ Wi = l/iz for every i then bn = ,2^1/iz is

zconvergent. This implies that bn f constant that is bnf 

constant so bn--—> a>. Hence estimator Tn is not consistent.
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1 zWhile W^ = —for every i then bn is divergent and so bn is 

divergent. Hence Tn is CAN.

3.2.3 : Tn is consistent for g(0) but need not be

asymptotically normal. This can be varified by the following 

example.

Example : 1L-2-..3 : Let XitXz, . . . .X^ be i.i.d. U(0, 9) and 

Tn *■ is consistent for g(9) = 9, but Tn is nob

asymptotically normal.

Suppose Tn be the asymptotically normal estimator for 

g(9) = 6. There exist a sequence bn of positive real numbers.

Such that t>n(X(n) ~ 9) ---- > Z where Z N(0, v{0)). Note

that 0<X{n)<8

50 pe [x(n) - « > o] = o
or

pe [bn<x(n> - e> < o] - 1.

This implies that P0 [zn < o] — 1.

This does not implies that ZQ converges to 0 normal random

variable in distribution. Again consider Sn = 2X is 

asymptotically normal for 9 when X1,Xz,...,Xn be i.i.d.
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U(0, 0) because

*/~tT(Sn - 0) - a^F" (2X - 0)

-y-S" -g- £
i = l

(X. 0

.-2-. V5 (x- - -S-
a/it iti <Xl 2

0
a/TsT {• 0/2

a/ n i=l 0/ a/ n
JL 4 2. 0

/,/TI

where Z N(0, 1).

So a/1T (Sn - 0) —Z a,^ N(0, 0z/3).

This implies that Sn is consistent for 0.

3-2.4 : A consistent estimator need not be even asymptotically 

unbiased estimator.
Example : 3.2.4 : Consider here Xi,Xz,...,Xn be i.i.d. N(0,1). 

Let {ajj} be a positive sequence such that

J■®n JL ■tz/z
a/ 2.TT dt _Ln+i

Note that ajj 4 0 as n 4 oo.
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We define an estimator Tn by

ln
h-z i=3Xi + n
1 § Y.
n i=l 1

if ,y~%

otherwise.
an' an

{Tn} is consistent but not unbiased. We shall see first

consistency of Tn. Consider

s/ z

f (“ an* an^]•

c {- an, an)] +

Pfl [ I Tn - 0 I > e ]

- p [ i ah J3Xi + n - 9 i >- «, x" Xl 

P t 1 *n ~ 9 1 » *■

5 P [ I nir J3X1 + n - 8 I i X‘ * <- an. a„)]
a/ "z

P [ I xn - e i > e ].

S P [ X‘ >^ 6 <- an- »n)] + P [ I *n - 9 I ! a ]

” nir + P [ I Xn - 9 I » s ]

But we know that as n --- » 00, Xn --- > 6 so

P[lXn — ©lie] --- > 0, as n --- > 00

This implies that Tn is consistent estimator of 0.

Now we see

E(Tn, = e (- &r)], .|jXi ♦ n]

p[ lrr~ * * <_ “»■ *H,1' Et~n~ ilxXi]
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“ nil (n~2>e + f^r + U ~ “n®

= nfl + n?T + 0 “ nTT

= 0 + |^Y --- > 0 + 1 as n --- > a>.

Hence Tn is consistent estimator but not unbiased.
3.2.5 : Let {Tn} be CAN for 0 with rate bn then g(Tn) is CAN 
for g(0) with rate bn if g is differentiable and g' (0) 9* 0 
for every 0 ® 0.
Proof : Since Tn is given to be CAN for 0 we have [I] Tn is

consistent for 0 that is Tn -» 0, y 0 e e.

[II] bn<Tn - 0) —N(0, v(0)), y 0 e ©.
Let 0O e 0 in particular I & II holds for 0O. Define a

«(©) “ tf(®0)
function h{0) 0-0 g (0O) if 0 * 0,

(3.2.5)
otherwise

Note that h is continuous function at 0O and h(0) ---> 0

if 0 ----» e0.

Since h(Tn) —0 and bn(Tn - 0) --- > N(0, v(0))
BY slutsky theorem (Bhat (1986)) it is clear that

bn<Tn-®o>- h(Tn) —> 0

tr
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Thus f rom (3.2.5) we have

bn<Tn ~ 9o>- h(Tn) - bn(g(Tn) - g(0o)> - bn(Tn - 60)

PQ
r (®o> ---- 0 (3.2.6)

Note that II also implies that

bn(Tn “ ©o> * <«o> —1^ N{0, (g' <0O))* v(0o)] if # (eo) * 0

consider from (3.2.6)

bn[ «<V - «(a°> ■] - bn[Tn - •.] 0

r (®q)
since g' (0O) 7s 0.

This implies that bn—0-4 N(0, v(0o)
& V “o '

so f{60). bn[-g-(-^ 6q)] n[o, (r(eo)>Z v(0o)]

This implies that

bn[g(Tn) - g(©0)] ~•D-» **[<>, (0O))2 v(0o)]
Hence g(Tn) is CAN for g(0) with rate bn.

Example : 3.2.5 : Suppose X^X^-.^Xj^ be i.i.d. N(0, 1).

We know here X is CAN for 0.

[I] Let g(0) = e9.

since g' (0) = e9 ^ 0, y 0 e e. This implies that e* is 

CAN for e9.
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[II] Let g(0) = &z

2 0 if 9 ^ 0
Note that g' (9) 0 if 6 = 0

Hence a/ n (g(X) — g(9Q)) N{0, 49Q) for 9Q ^ 0

and [g(X) - g(0)] __  —z 1
a/ n X which X distribution.

That is X is not CAN for 0Z.

Example : 3 a 2..6 : Let X.t, Kz, . . . , Xn be i.i.d. N(0, 1)

g(0) = maximum (9, 0) = 8+101

Maximum function is continuous and g{X) is consistent for 

6(8). But 101 is not differentiable at 0. This implies that 

6 is not differentiable at 0 = 0 and if for 0 < 0 all 

derivative vanishes and theorem is not applicable for 0=0.

If 0 > 0 then in this case

«/~*T [g(X> - g(0)] —^ N(0, 1)

a/TT" [max (X, 0) - (0, 0)] N(0, 1).

jL.2^-6 : Lemma : If Xj, Xz, . . . , be i.i.d. with

T = X is CAN for 9.n g(0)Then
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oo 00Ecaof : Here E0<X) = C = ",f ;. C x. ai=0 g(8) g(0) x=0

* (0.) &
0(0) ' '

(x) ,0x-

E0<X*)
.E ,Jx(x - 1) + xl.a(x).ex. 
i=0 L________ J__________

0(0)

so

&"(9) Q 2- | 0 ’ { 0 ) Q
0(d) " ' 0(0)

ft (9) e , 0"(9) ez _ r ft (9)
0(0) ” ' 0(0) ” L 0(0)

it (9) 0 n _ & (9) 0-| . a” (9)
0(0) L g(Q) ‘ J 0(0)

e:

=* K© (say).

But we know that
V n (Tn — 0) Z* = n[o, v(8)]. Implies that

^ M t &<*! - •) ]

*■/ K0 —_ r ,gi<xi-«>
-/n" [ VT^T

✓./ FC0 . z *

so n X is CAN for -& . 9.
0(0)

*L2»7 : Lemma : If X4> X*, . . . , xn be i.i.d. with
f(x, 9) = C{e).h{x).e8x. Then Tn = X is CAN for

n C (9)
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Proof : Here E0(X) = -C1I£1

C(0)

and Var0(X)

c<0).cM(0) - fcr (&)]z
[c<0)]&_________

Var [ log f0(x) 1

[cr (0>]z - c(0).c"{0) 
[c(0)]z

= K0 (say).

But we know that

~^T<Tn-e> = */~cT [ ----- ]

a/ n
ci m. ]C(0) J

~ a/ Ka . ^0 a/it
^_E(Xi> - .SLJJLL-

J "Kg . z*

Hence X is CAN for  &,(0.)—C<0)
2^2 EFFICIENCY OF CONSISTENT ESTIMATORS :

3.3.1 : In this section we discuss the efficiency of

consistent estimators.
The definition of efficiency by Bahadur(1960) is based on the 
coverage probability Tn(8) of consistent estimators. Ib

provides an estimate of the rate of approaching coverage 
probabilities to one.
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If Tn and Un are consistent estimators the problem is to

choose one of these two. To choose the good consistent 

estimator with the help of variance and concentration of 

probabilities. Consider here

P8 { I Tn - g<6) 1 i « } - Pe { | T" ~ g<9> | i f }

- Pe { i z ' * « }
= 5 { E/%) - W (- s/a)

= 2 S( sA) - 1
- V0* V O

This implies that Tn(0, Tn, s) = 2 W(e/%) — 1 (3.3.1)

and ^(0, Tn, e) is called coverage probability of 9.

(3.3.1) implies that

2

that is

so % = s { 1[ —+ —2
Here % = *g(Tn, e, 9) is 

is decreasing function of <P 

If Tn-g(S) - Op(l) as n 

^g(Tn, e, ©) --- > 0 as

-D-e> ~P* - *(cA)

Tw> c) •x -*

Tn> £) ] } (3.3.2)

effective standard deviation and it 

n the concentration probability.

--- > co then

n --- * co.



For some n , e and g{0) if Tn and (Jn are two consistent 

estimators and if E)<‘f>n(g(0),On, e) then

^g(Tn, e, 0) > *g(Un, €’ e)- So ^n is efficient consistent 

estimator than Tn.

trample '• 3.3.1 : Let be i.i.d. N(0, 1)
l

^n = anc* ~~ ^ '

So <P,n “ { I Xn - 9 I < * } - Pe { 32. 0

Here %

1/ a/IS 
2 1 ( */ii . c) 

_L

1/ a/ n

A APT

<“>d " P8 { I .EL • I < « 1

“ pe { I
Xn

- 0
a/ i/n a/ z/n ■

2 S ( a/ h/i e)
Here

Hence

^ = V z/n

a/ n < a/ 2,/h

So ln is more efficient consistent estimator than — 2
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Example : 3,3.2 : Let X,,X*,...,Xn be i.i.d. U(0, 0),

Tn “ x(n) “d Un “ 2 Xn-

We know that P©{ I x(n) ~ 9 * < s } “ 2 *(^A) l 

that is (1 - e/0)n = 2 *(«A) “ 1

This implies that x = e [ S_1 { L1- + -1- <£^)n } ] 2 2 0 f J

similarly for Un = 2 Xn

x - s
V?(«=*)• } ]20 J J

-1

Hence by comparing * for %(n) anc* 2 Xn , x(n) more

efficient consistent estimator than 2 Xn.

3.3.2 : Comparison of different two consistent estimators

can be done by following method also. Let {Un} and {Tn} be

consistent estimators for g(0).
The upper asymptotic efficiency of Tn relative to Un is

I(T U 0) = H© -_.g-  f.ln* Un* } ^0 %z ^ e> Q)

where Tg(Un, e, 0) is effective standard deviation of Un 

which is solution of
pe { I Un “ g(«) I > £ } * 2 [ 1 - 5(s/x) ] (3.3.2)
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Example : 3...2,.3 : Let X4, Xz, . . ., Xn be i.i.d. U(0,.0) and

Tn “ x(n)> °n “ x(i) + x{n)

Consider for Tn • Pe [ I Tn - e I > s ]

“ Pe [ Tn < e - * ]
0-E

0
n- (l - «/e)

From (3.3.2) <1 - e/0)n = 2 [ 1 ~ S(s/a) ]

This implies that —f—

MTn, e, 0)

s-i [ i - _1_ (1 _ e/0)n ]

so Ki-€/0)n} (3.3

Now consider P0 { I X(,j + X(n) - 0 I > s } = P(A). 

Here P(A) = P(AX) + P(A2)

. 3)
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Similarly

Hence

P(At) f f(U, V) du.dv.
A*

8-g
2 &-E-U

f [ J IlISrI 2 <v ~ u)n_i dv ] du.
0J u

e-g
2 0-E-2U

J[Ux^n-L- J [ ^ Z dt ] du.

9-g2.•> n-1n(n - 1) (6-g-2y), duen J (n-1)0
9-g
2

J [e-g - 2u ] du._Q_e«

_n0n e-g

1 n r 7n 1° _ _JL2 en L n -U-e 2 (1 - €/e) n

P(Ai)

P(A)

(1 - €/0) n

nP( At) + P( Aj,) = (1 - g/e) .

if e < eThat is pe [* x(o + ~ 0 i > s] = (1 - £/e)n,

---(3.3.4)
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Hence f rom (3.3.3) and (3.3.4)
MTn, e, 0) = % (Un, e, 6) y n, O<£<0, 0 > 0.

This implies that e© (Tn, Un, 0) = 1.

So Tn and Un are equally efficient consistent estimators. 

3.4 SUPER.EFFI.CIENCY..QF.CAM :
3.4.1 : When an sample size grows to infinity estimators cwhich are may converge in distribution to
estimators with asymptotic variances which attains the Cramer 
rao bound or even become smaller than that, such estimators 
are called super efficient. (Zack 1970)
Example : 3.4.1 : A CAN estimator which is super efficient. 

Let Xj,Xz,...,Xn be a sequence of i.i.d. random variable

having an N(0, 1) distribution, -oo<0«». Then define a 
estimator

2 if IXI <
T,n (3.4. 1)

X,n otherwise

Here

co
so

00

-logn
lognA/~n z
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- i(t-9) f®dt + J t. 
logn //Ti dt.

-JV
—co

" -a- a- “(t-S)' dt ♦ r“l ^ a- ?<t-e)
J A/1 Of^i li^

//a
a/ 2.TT dt

logn

-co

0z
p® p+ J I f(t)dt + J $ f(t)dt

lognA/“n

-/n

—co
(3.4.2)

This implies that E(Tn) 0.
We have to find Cramer-Rao bound that is

Var(Tn) > <P’(&)/E(- ^ log D .

Let here E(Tn) = ¥(0). So from (3.4.2)

CD
-logn

a/"H

<?(&) = | + 1 f + f(t)dt +4 f t f(t)dt
logn
a/^Q

-co

nlQgn
a/ n= | + | J(t - 0) f(t)dt + J (t - 0) f(t)dt

—oo lognlogn
a/~E
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-lQgn
«€~A/fo m

| | f(t)dt + | J i
-co lflgjjlflga

a/ n
..XmQ^O

0,1 l^-e)
J a/ 2.JTTz T 2

-oo

dt ♦ jit - 0,
lot?n
a/U

dt

..lQfcCQ
a/H „ £I r -y~n~ S(t-0>I

—oo

00

a/ 2JT
dt + | f-AfBU e"

, J a/2TT logn
s/~n

dt

put t — 6 ~ y and l£ga = Cn.
a/h 11

-C -9 
So - *+ * {J y-1

L —co

nv2 CO ox“ dy + f -^=y.e 1 dy
C -0 J

♦ f
^n-0 _ nvz oo

I -'^E. e dy + f ■ 'ifE. „I a/ zn j a/ incn-e

nv2

r -cn-e- fi + 1 f f V 
* * . y*

-cn-e _ ny2
_ f y e *2 [ J y A^2i?

dy
.n-0

® - ny i
y. v e dy + y. e dy

a/ 2JT J a/ 2 it-oo Cn~© J

I fi|i - * [<cn - s) vh] U | j* t-(-cn - e> v~s]

Thus V (0) - i i f ( -Cn - 0) o' ?(-Cn-0)
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+ -^= (C_ - 0) e
a/ 2.JT 11

ntri' ^n '

+ i [ 1 - 5 <Cn - 9) a/^H + *(- vjn -S) ]
+ | {<f<Cn - 0) a^S - <P(- Cn - 0)} (3.4.3)

Hence Tn does not attain C.R. lower bound.
* _Consider ^ - { (X,,Xz,...,Xn) : I Xn I < jv n

Here lagn
sSn o as n co, (By using hospitals

rule). So An is a decreasing to zero. 

Here -

So

» N(0, 1/n) and Cn = l&n

PofAn) = P [l X„ I 5 Cn]

Cni% na/JL.
a/ iJT

■'n

_ nti dt put +/~n t = u

logn
//in 2 du.

2 [ * (logn) - -1 ]

* [ 1-i] as n -> oo

Hence P0 (An) --- > 1, as n --- > oo when 0

gjiiVAJi “a‘
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Now 0 = &o * 0

P0O <V Ps„ { ' ' s cn }
'n

"O' dtf ~-~H ; ?<t-eo)J <STn~ -e
~Cn

put A/"n(t — 0O)

= 1
logn- */~n 0 ,_ iiX

a/ i n 
logn- a/Ti 0o

du.

1 (logn — a/H 0O) — 1 (— logn

(a) If 0O > 0 and rate of convergence of a/H <

hence logn — a/"H 0o

(b) If eQ < 0

logn — A/~n 0O —

co

-> co

Hence for (a) and (b) both cases
as n --- > co

so

P0O <An) --- > 0

P (An) --- >
1
0

if 0 = 0 
if 0 ¥ 0

a/H 0o) 

0 > logn

(3.4.4)

If Xt, Xz, . . ., Xn are independent and E(X) < co, we obtain from
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weak law of large numbers

1 if I 0 I < t
----

0 if I 0 I > s 

as n --- oo.

So from definition of Tn, An and the limits we hav-*

P0 { I Tq " ® I ■ £ } --- * 1 for every 0 s(— co, oo) (3.4.5)

But we know that

Pe{lTn - 0 l< - P0{lTn - 0 l< £,An}+ Pe{lTn - 0i < e, A'n} 

from (3.4.5) Tn is consistent estimator for 0 and Tn can be

7L. - - -

written as Tri = —lAn^^n^ + Xn *An ^n^ we know the CAN 

estimator as

l|g Pe [^n (Tn - 0) < x ]

— n-^5 {^0=o [ A'"rH. Tn 1 x, An]+ Pe=0[''/”n Tn i x,

but P0=o[-/n Tn < x, An"] = 0

- Po [ vTi -V 1 x, An]

= PQ [ a/1i 3^ < 2 x, An] = 5 (2 x) (3.4.6)

when 0 = 0O 0

P0o [-/n ( Tn - 0O) < x ]

= Pqo[^5 (-^ - 0) < x, A„] + Pqo[ (Xh - 0) < x, An']

P0{l Tn -0 I < £ / (X1,X2,.. . , Xn) e An}
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0 + Pe [ V5 <Xn - 0O) < x, An'] = 5(x) (3.4.7)

Hence from (3.4.6) and (3.4.7).

Ais <Tn -«>**] S(x)
S(2x)

if 0 7s 0 
if 0 = 0

(3.4.8)

where 5(x) and 5(2x) are standard normal integrals. 
Hence the asymptotic variance of Tn is ^ if 0 7s 0 and

4n if 0 = 0. The Craner Rao lower bound for each n is 1n
Thus Tn is asymptotically super efficient at 0=0.

CONSISTENCY.OF-TESTING OF HYPOTHESIS :

2LSul : Introduction : Id this section we discuss the

consistency of testing of hypothesis. We can judge the 
correctness of a null hypothesis of the parameter of a set of 
probability measures with increasing reliability with 
increasing sample size. We discuss here important concept 
based on "infinitely large sample size" one never rejects the 
'true' null hypothesis and never accepts the 'false' one.
Some definitions which are usefull for further discussion.
3.5..2 : Test of hypothesis : The mapping *P (one and zero) is

said to be a test of hypothesis H0 : 0 e eo against the 

alternative H^ : 0 e with error probability « if 

Ee T(X) < « V 0 e eo.
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In short <P is a test for the problem («, ©Q, ©t) let us 

write P<p (0) = Eg ^(X) we find test for a given «,

Olocl 1 such that

|iio Pep (0) < ec .

1..H.S. is the size of the test *P .
3.5.3 : Power function .Of the test : Let t be a test function

for the problem («, ©Q, ©a) for every 0 e © define

P<p(0> - Ee <P(X) - Pe { Reject H0 }.

As a function of 0, P<p(0) is called the power function of 

the test ^ . For any 0 e ©J} P<p(0) is called ^e power

of against the alternative 0.
3.5.4 : Let be the class of all tests for the problem

(«, ©Q, ©t)). A test *P0 s ^ is said to be a most powerful 

(m.p) test against an alternative 0 e ©t if

P<Po<0) * P<p(0), V V £ .

3.5.5 : Neyman-pearson lemma (N.p. lemma) An test ‘P of the 

form
1 if ft(x) > K fQ(X)

if f j. (x) » K f0(X) 
if fj(x) < K fQ(X)

*P(X) « r(x) 
0

for some K l 0 and 0 1 r(x) 11 is most powerful of it's 

size for testing H0 : 0 = 0O against : 0 = ©t given «,
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01«<1 such that Eq^X) = <*. is the N.P. lemma, 

and if K = <» then

T(X)
1 if f0(x) = 0
0 if fQ(x) > 0

is most powerful of size zero for testing H0 Vs .
3.5.6 : Consistency of test can be explained as below. As
increasing sample sizes in tesjbting procedures we define test 
for such sample size, so we have sequence of tests. For these 
sequence of tests type one and type two errors approaches to 
zero as sample size increases infinitely large. This property 
of test is called consistency and it can be defined as below : 
A sequence of tests ^(x) is cail©d a consistent sequence of
tests for the test problem (*o, e■»>
if ilS SetV - o . for 0 e eo

and Ee(V - l for 0 e el
This implies that for every 0 e #o the type one error
converges to zero and for every © e power converges to
one (That is type two error converges to zero) as the sample 
size increases infinitely large.
*LJL,.? : Lemma : Let Pt and P2 be arbitarary p bahility 
measures overs ( {? , y ). Let ft and f2 be the corresponding
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Radon Nikodym (R.N) densities and let

P(Pt, P4) = V ftf2' . dH then Oip<Plf P4) 1 1.RJ

P(Pt, Pj.) = 1 if P,-Pt and p(Plf Pt) =0 if Pt and
P2 are orthogonal measures (Schmetterer (1974)).
3>5.9 : ,Theorem : Let Pa and Pe be two probabilityo 1
measures over ((Rj, ©t). Consider the sequence of samples 

spaces ■[ (f?n, ©n) } and on them the product measures

P«?^ — .ft Pa. . with Pa. . 11 jin i = 0, 1
in ij i * * * v i j

Then there always exists a consistent sequence of tests for 
the problem [ {eo}, {©4} ]

Proof : Let ^ be a probability measure dominating Pa ando
Pa . Denote the R.N. densities of Pa. w.r.t. by fai i x
i — 0, 1 . Then the R.N. density of Pa*^ w.r.t. ft ^ :

1 J— i J

with = M, 11 jin is given by

(Xt,X4, . . .,Xn) --- > f6. (xj).

Hence P(Pe”* ) “ J[.8t feQ<xj> dU^x*). . . dj*<xn)i/z

®n

d^(xj).
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, ,„(n) „(n)4 , ^ n
and so P(?e , Pe ) = (P (Pq Ve )) .0 1 w Q v i

since P9* P^ we have from above lemma

_ iTi(n) D(n)P(P0 P0 ) ------» 0o 1 as n ------> co.

Now we choose a sequence of real numbers {Kn> and real 

numbers Cj, Cz with CKCjSCj. such that for n = 1.2,...

0<C1<K„<Cz 

for nil let

(X i, X j., . . . )Xn) =

.ft (f0 (xj))l/Z 
1 if ------Li---- :L_

.B (fa (xj))
j ; 1 J

i/z >

0
o J ‘

otherwise.

Then Eg <“('„)= J Vxi■x*'■ • • • V A fs (XjldMx,). . .dPCx,,)
Hn J“‘ °

I Ml. f®o<X fa^Xj)] d^Cxj). . .d^(xn)
^n pJ ‘‘J-1 

Rn

1 p ,p<n> p<nKic7 p <Peo P®1 )

- P (Pg ^ Pg ^) ------ * 0 as n ------ > co
o i

-VL-



-78-

similarly

E0i(l - <Pn)
1 /£(Xj)] d>(x1). . . dLuC^)

...... ^(n) _<nh „ „i Cz P (P0q P0^ ) --- > 0 as n --- » <».

This implies that type one and two error approaches to zero 
as n increases infinitely large.
From the above theorem (3.5.8) we can say that N.P. test is 
consistent. Following is an example that establishes the 
consistency of N.P. test.
Example : 3^ 5..S '■ Let X1,X4,...,Xn be i.i.d. with density

-x/6function f(x, ®)=^.e x 2 0, 0 > 0

we have to test H0 : 0O = 1 Vis H1:01>1.

1
<P(X) = <

O'
if Ex^ > Cn
otherwise.

where Cn is such that P [ Ex^ > Cn = oc = 0. 05 (say)

Under H0 : T = Ext G (n).

Now E0 ^(X) = Pe o o t T > cn ]
dt.

-x n-1
S.___X.

a/U dx.
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Here Cn is such that (t) dt = « = 0.05 (3.5.8)

and power P(0) p®J f0i(t) dt
cn/e

(3.5.9)

Let 0, = 1.5 and n = 2. Then from the equation (3.5.9) 

Cn = 3.4 and

3.4/1.5
?(&) = 1 - [ f0 (t) dt 

0J 1

.2.2
= 1 - [ fe (t) dt - 1 - 0.8169 - 0.1831.

0J ‘

(Karl-pearson F.R.I. (1965))
Similarly we can obtain power as n increases as given in 
following table. 9Q = 1, 9^ — 1.5, « = 0.05



-80

n e<e>

2 3.4 0.1831
3 3.7 ‘ 0.1936
4 3.9 0.2381
5 4. 1 0.2801

10 5.0 0.4028
20 6.3 0.4592
30 7.2 0.7408
40 8.1 0.8213
50 CDCD 0.8839
50* 61.60 0.9090
100* 111.64 0.9962

For * values normal approximation is used as
f 1 if Ex4 > Cn<P(Xn) = {~n 0 otherwise

0.05 [ ^xi > ^n 1 Cn ~ ne 1 
A// n 0Z

- P, [ z Cn _
V n
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Cn — nThis implies that —Q-
'■S~n

1.64

so Cn */~n 1.64 + n

let n = 50 then Cn = 61.60

r C-, —■ n0 ithen [ Z > —J
''/n0z

but &t = 1.5

= p f z > 61.6,0. - 15 Iin 1^ J10. 13

- P..S C Z > - 1-340 ]

= 0.90901.
In this way power of N.P. test approches to one as n 
increases.
Similarly we shall see size of the test approaches to zero as 
n increases given below :

1 if > K„ - 0.5
v<*n> f© (*..) ' ^o ^

0 otherwise.

So fe0<*n>
[-=“]“9, J exp [ <5^- - 5^> ]

consider 0O = 1 = 1.5

This implies that
Zx^ > 3/2 nlog(3/2)
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so test will be

0

1 if Exi > | nlog( | ) 

otherwise.

Eeo¥(X)
pOC.J fao(x)dx
?2 nlog3/2

= 1
3/2 nlog 3/2
_al*.xn.li dx

We calculate « for different values of n as

n — 2, ot 1

1

3/2,21Og( 3 / 2 ). r ..a.I_.-.atSZ.1-
qJ */~~n

1.5 X 2(0. 405

. f
qJ A/~n

dx

«')

dx

x. 2
= 1-1 -BLil.-g1?-1 dx = 1 - 0.5058397 

qJ a/ n
= 0.6941603.

Similarly we can obtain oc as n increases as given 
following tables :

in
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For Kn = 0.5 eQ = 1 and &z = 1.5

n oc

2 0.6941603

3 0.3973457

4 0.2942299

5 0.2013125

10 0.0075165

20 0

Kn - 1 0O = 1 and i

n OC

2 0.1475118

3 0.046033

4 0.0119601

5 0.0023514

10 0

...0o*o0...


