1.1 INTRODUCTION :

One of the desirable properties of a good estimator is
that as the number of observations increases the estimator
should come closer and closer in some sense, to the true
value of the unknown parameter.

A sequence of estimators {Tn} for a parametric function
g(8) is "Consistent" if Tn converges to g(8) in some
appropriate sense. As Tn is a random variable, one of the

possible way to explain the above property of a sequence of

estimators is as n —> o , IT, — 8l — 0 in some mode of

convergence. If this mode of convergence is in probability

then T, is said to be weak consistent, that is let X,,X,,...X,

be a random sample from a distribution F(-,8), 6 € ©

(6 un-known) then an estimator T, = T(X,,X,,...,X,) of 6 is
called consistent if for every € > O,

8Py, {IT,—61 2 e} =0,vece (1.1.1)
Example : 1.1.1 : Let x,,xz,...,xn be independent identicaly

distributed (i.i.d.) random variables from normal mean 6 and

e

variance one, Tn = Xn .

Note that i —> N(G,—%—) hence



- X o
Pe’n[lxn-elze]=l?9,n[|—-ﬂ-imlz ST e ]

=2[1-8(~meE)] —0
as n —> o, Hence T, is consistent estimator for 6.
‘Example : 1.1.2 : Let X, ,X;,...,X, be i.i.d. r.v.’s with
uniform distribution on (0,8). We shall see consistency of
T,, where T, = max (X,,X,,...,X,). We know here that the

probability density function (p.d.f.) of T, is

= nl n-1 — n-n 1
f,(t) (h=1) ! (mn) ! (t/e) (1 t/6) X £,(%) 5

n-—
= —n t- 0<t<8.

Consider P [ T, —@ 1| 2 « ] = Pg [ T, <6 — ¢ ]

= Pg [ K(ny <8 — = ] =0,
if € > &,

For =

1~
@

PQ[X(n)‘(e"S]

8-¢ n-t
m![_n_é_rt;__._.dt

o~
= gn[rti]oe

)n

~N
o
-

; as n — ©.

Thus Tn is consistent for 6.
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Example @ 1.1.3 : Let {x,,xz,...,xn} be a sequence of random
variable with marginal distribution function F(x,8) and
PlX=X]=1, v i=123,.....

In this case note that for any sample point (x,,xz,...,xn) ,

n (x‘:xza'--:xn)

S(X,) then as we know that
P [ 1 T, —©@ 1 2 ¢]

=Pg [I S(X,) —6 1 2] ——0,
as n —2 oY 6 € 6,
provided S(X,) is not equal to zero with probability one. Thus
T, = S(X,) is not consistent estimator for 6.

1.2 PROPERTIES OF CONSISTENT ESTIMATORS

In the following we discuss some properties of consistent

estimators

1.2.1 : Consistent estimator need not be unique. Note that if

Tn is consistent for g(8) then Th+—%— is also consistent for

g€(8).
Examglg : 2.1 : Let X,,X,,...,X, be i.i.d. r.v's with

t

U (0,8) , 6 € (0,w). We define T, = X(,) and T, = Zim where

Xm = median, are consistent for 6.
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By using stirling’s approximation we have
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= ol 2N 1 (1_ 1 )n 1
s - 2on n ~n
= j 25 __E%__,E_ (1.2.2)

from (1.2.1) and (1.2.2) we have

n-1

Y - 0 — ¢ 2.e% _ % z
Po [12Xy-01>¢] (855 Lo 1 < VI
—3 0, as n — .
Hence Pg [ 12 im -6 | > € ] -3 0, as n —F o,

Thus 2 im is consistent for 8, similarly from example 1.1.2.
T, = X(n) is consistent for 6.

1.2.2 : Unbiased estimator need not be consistent and
viceversa.

Example : 1.2.2 : Let X,,X,,...,X, be i.i.d. r.v’.s with
N(&,1). Define T, = X,, ¥ n.

Here Eg(T,) = Eg(X,) =6, Y86 €8

Consider Pg [ | T, @8 1 2 e | =Pg [ 1 X, -0 12¢] —>0
This implies that T, is not consistent.

Example : 1.2.3 : Let x,,xz,...,xn be i.i.d. r.v’s with

1u(0, 8). Here we know that Th = X(n) is consistent

estimator for @ but Eg(T,) = —gB+ 6.

Thus Tn’is not unbiased. Hence consistent estimator need not

be unbiased.



1.2.3 : Sample mean is consistent for population mean.

For reference we define weak law of large numbers (WLLN)
{ Bhat (1985) P.193 )

Let Xn be a sequence of random variables and let

S, = k§; Xy n=1,2,..... we say that {Xn} obyes the WLLN

with respect to the sequence of constants {B,} ; B, > O,
Bn + o, if there exist a sequence of real constants An such
that
Bi' (S, —A) —E—> 0, asn — o
A, is called centring constants and B, is norming constants.

Let X,,X,,...,X, be a randam sample from f(-).

If 5, = iz% X; » A, =ES, = nEX, and B, = n then by WLLN

n" (S, — nE(X,)) —F> 0, as n —— «.

This can be proved by Theorem 1 (pp 257 Rohatgi(1986)).

Thus —2& Py E (X,) , that is sample mean is consistent
for prulation mean.

1.2.4 : If T,, is consistent for ¢,(8) and T,, is consistent
for g,(9) then,

a) (Tyn, * T,,) is consistent for (g,(8) * g,(9))

b) (Tm T,n) is consistent for (g,(0) g,(8))
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8
c) ~zln- is consistent for —gii—l provided that
Tzn gz(e)

T,n is not zero for every n and g£,(f) is also not zero.

Above properties of two consistent estimators can be
proved by Theorem 6.1 (P.108 Bhat (1885)).
1.2.5 : For reference the definition of central limit theorem
is given below. (P.69 Zacks (1981)).

If {X,} is a sequence of i.i.d. random variables having

a finite variance o%, 0<c%<w and if

E(X) = » then,

im plv/w (X, —») £ 0. €] = F(e) s
where in = —~%~— E: X; .
i=1

1.2.8 : Consistency is preserved under continuous
transformation or function, that is let Tn be consistent

estimator for @ and if g is continuous function on €, then

g€(T,) is consistent for g(6).

Proof for this property will be as following.
Fix 6 say 8 = 8, and g is continuous at &_,, then Y € > 0 there
exist a £ > 0 such that

I g(8) — g(68,) | < € whenever | 8 — 8,1 < ¢,

So for every € > O there exist a £ > 0 such that

[te-o, 1 ¢s]c[1a@e -a®1<c] (1.2.5)
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We know that Tn is consistent for 6, then for every

r> o0, Pg_ {11, -8, 1 >r }——0, asn — o

or Pg {1 Tp-6,1¢r}——1, asn— o (1.2.6)
Then from (1.2.5) and (1.2.6) we get for every € > O,
Po, { 1 @(Ty) —&(8,) 1 $ e } 2Py {1 T,-6,0 ¢}

—3 1, as n —% o,

% 13 pg { 1&(Ty) —&(8g) 1 ¢ € } 2 1.

v

Thus 1 2 J3B Py { | @(Ty) — &(6,) | € €} 2 1 Hence g&(Ty,) is

consistent for g(8,).
Example : 1.2.5 : Let X.,X,,...,X, be i.i.d. random

variables with density

v
o

= - 6
£.(x,0) { -—é—ex/ x20, ©

0 otherwise.

Consider g(8) = { 1 if e > 2
0 otherwise.

Here ¢ ié not continuous at 8@ = 2 and let Tn = i wh ~h is

consistent estimator for 8. We shall examine the consistency

of g(Tn) for g(8).

lLet 6, > 0 be fixed.
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Case 1 : Suppose that &, > 2, then g(8) is continucus at 6,.
So g(e}) = 1.'}§ g(6, + h) =1
-}

g(eg) = lim g6, - h) = 1
o R§§ =]

Note that &, — h satisfies inequality

2 <6,—h<8,, if h < 6, — 2
1if h < 6, — 2
6, — h) = °
So g(8o = h) { 0 otherwise
Consider now Po { | &(T,) —&(8) | < e}

= Pp { | &(Ty) =11 <c¢e}
= Pg{T,>2}
= Pg{ (X, -8)~T > (2-8)T1 }
—3 1, as n —> o,
Pg
Thus &(T,) —< &(6,)

Case I1 : OSuppose 8, < 2, g is again continuous at 6, and
Pg :
8(Ty) — 2 g(8,)
Case JI1I : 68, = 2 Consider

P, [ 1 &(Ty) —a(2) 1 > ¢ ]

p

[ 1aT) —01 > €]

N

P, [ &(X) > e ]
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Let €21, then P, [ g(X) > e | =P (%) =0.
Let 0<e<1, then

P, [ &(X) > ¢] [ex) =1]

i
o
»

-n [ Exosel]

n
s

(X; — 2) > 0]
i=1

=P, [ ”%“
=P, [ .E% (X; —2) > 0 ]
i=

Hence }i% P, [ .2% (X; — 2) > 0 ] will be by dividing both
i=

sides by 2. /' n

B e [y Lm0 50]

: X; —
= i35 P, [ 1;%§= ig; ( _1_5*2 ) > 0 ] = 1/2

By applying central limit theorem (1.2.5).

Hence g(T,) is consistent for g(8) at all continuity points
of g but not at discrete points.

1.3 : JOINT AND MARGINAL CONSISTENCY

1.3.1 : If we are interested in real valued parametric

function g(6), then definition (1.1.1) will be
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P 1T, -a@y 1 2] =0 (1.3.1)
that is T, —FPo, g6y, voco.
Example : 1.3.1 : Let X,,X,,...,X, be i.i.d. r.v.’s with

N(6,1) where 0 ={ -1, 1 }.

b

>l M
v A

~1 C
- Define To(C) = 1 if c
Note that for € > 2, Pg [ | To(C) —6 | 2 ¢ | =0
But for € 2 2, we have

Pg [ 1 To(C) — 0 |

v

]

=Pg [ITo(C) —8 /726, X<C] +Pg [ITg(C) ~0 /2 ¢, X2 ]

...... (1.3.2)
Let 6 = + 1 so (1.3.2) will be
P, [1-1-112¢ X<c]+Pi1-112¢ X>C]
=P, [22¢ X<c]+pP, [02e X>cC]
=P, [22¢ X<cC]
=P, [X<c]
1 if C> 1
=F(~T (C-1)) ——> {05 if C=1 (1.3.3)

0 if C < 1
as n —> o '
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Similarly 8 =—1
0 if C >-1
Pg [ 1 T (C) -6 12e] —— 305 ifC=-1  (1.3.4)
' 1 ifC<—1
as n —> ®,
Hence Tn(C) is consistent for & = —1 ifC»>»—-1 and for

6 =1 if C <1

1.3.2 : If we are interested in veetor valued parameter that

is 6 = ( 91’62’°"’9k) then a veetor valued statistic is
given by
T, = ( Tnx’Tnz’°"'Tnk)' The sequence {Tn} is said to be

marginally consistent for 8 if the ith component of Tn; that
is T,; is consistent for the jth component of
® (i.e. 8;) ¥i=1,2,...,K.
Example : 1.3.2 : Let Xi,Xz,...,Xn be i.i.d. r.v’s with
N(#, ¢*) Here both parameter » and &? are unknown,
8 = ( n,c%),
We know that X —— »  in probability,
s* = —L- £ X{ = X )* — o? in probability so the statistic

T, = ( X, s?) is marginally consistent for

e = (n o
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1.3.3 : For any two points U = ( U,,U,,...,Uy) and

V={(V,V,,...,¥) in Rk the uclidian distance between U and

V is given by

o =-vu= »v/’iél( U — V)~
consider K=1, then it U-Vi=1T0U, — VI

A sequence of T, is said éo be jointly consistent for 8
ifH T, -8l —— 0 in probability for every 6 € €, that
is for every € > O,
Pg [0 T,-01l2e] —>0 asn—> o, Y606 (1.3.5)

Example : 1.3.3 : Let x,,xz,...,xn be 1i.i.d. r.v.’s with
N( 1, o?) both unknown, that is 8 = ( », c?). Here
T, = ( X, s*) is jointly consistent for 6.

Consider Pg [ 1 T, -6 Il 2 « ]

Pl (X s%) - (x» o5l

™
m
—

i
")

[ 1~(X = 1)24(s* = 6®)% | 2 ¢ ]

=P[!(2_»)2+(sz_62)2

[
"
L
-

-
)

[ (X — p)2 2 Ez or (s? — ¢%) 2 £ ]

cr [{E-mr £ )u @t £ }]

2
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sP[X-m22E£]+p [(s2-0o)" 2 £]

Y £ 2 _ .2 €

=P [(X-m2—]+pP[(s*-0c"2 ]
— 0, as n —?% ®

As we know that i is consistent for » and s? is consistent

2

for o Hence (X,s?) is consistent for (»,cZ?).

1.3.4 : Joint consistency implies marginal consistency and

vice-versa.
This property can be proved as follows:

Suppose that {Tn} is jointly consistent for 8. That is

Y e > 0, and fixed 6, € & we have

Po, { Ty =00 2e }——0, asn — o (1.3.6)
Note that | Ty; — 0031 € I T, — 6, 0l ¥ i=1,2,...,K

Hence Pg { | Ty; — 85)1 2 } £ Pg {1 Ty -0, 02} —>0,

as n —_— from (1.3.8)

Thus Tni EE— 8,; in Peo probability for i = 1,2,...,K.

Hence joint consistency implies marginal consistency.

Similarly suppose that {Tni} is marginaly consistent for ai
then for Pg; { | Ty; —0i | 2 ¢ } — 0,

as n — owo i=1,2,...,K.
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Note that P [" Tn -8 |l 2 €] b t Pei {l Tni - ei | 2 -—E——}
i=1

— 0, as n — ®. Hence the result.

1.4 : HNIEQRMLXmQQNSlSIENI“ESIIMAIQR

1.4.1 : The consistency of Tn for 68 implies that, agiven € > O

and &8 > O there exist ny(e,%,0) such that
Pg { 1 T, - @ 1 <& }21-5 V¥ n2n,

Let 3% n, { 8,8,9} = N, . If T, converges uniformly to &
then based on a sample of size N, < @ it is possible to

estimate © so that the probability that the error is at most

€ is at leat 1 — 8§,

Let X; be i.i.d. r.v.’s with N(8,1) distribution and define

Tn = ¥  Here observe that for

{+= a--54 )

2
v

Po={1T,~61<e}21-5 VY 6co That is
- 2
Ne={ -+ #* 1--359)} +1 (say)

For € = 0.001 and & = 0.01 Ngo = (3330)% + 1.

Similarly consider Xi be i.i.d. r.v.’s with B(1,8) ¢

distribution and define Tn = Xn.



-19-

By using Normal approximation for large n we observe that for

n 2 { AMCEI%:EI F1 (1 - =) }2

2

Pe [ 1 X, -0 1 <es]21—-5 VY 6ceo,
z
That is Ng = [ 2L80FL s (1 - £ ) ] +1 (say)

For € =0.001 and § = 0.01
N, = 66410 + 1.

1.5 : ALIEBNAIl!E_DEEINJIHIH%&JHLJEM&L&ENEISIENQX
1.56.1: 1If Op(n“) is a random variable Z, such that,

$>0 Hqmp [n>iz,1 >8] =0
T, is said to be weakly consistent for 6, if T, = 6 + Op(1)
where Op(1) is a random variable Z such that égg P{IZI>8} =0
Example : 1.5.1 : Let x,,iz,...,xn be i.i.d. r.v.’s with
N(8,1). Here in is consistent estimator for 8 and we can
write X, =9 + (X, — )
since %ig Po { ! in— 81 >8 } =0
we have in = 6+0,(1). Hence Rn is consistent estimator for 6.
1.5.2 : Let T, be a statistic based on n i.i.d. observations

adrawn from the F(x,8). The estimate Tn has the form

Tn = t(Fn(x)), where Fn(x) be the empirical distribution
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function and let t(F(x,8)} = 8. Then Th is said to be Fisher
consistent for 8. (pp.287 Cox and Hinkley (1979))
Example : 1.5.2 : Sample mean Rn is Fisher consistent for

population mean. Let & be the mean of the distribution, then

provided estimator 8 = j xdF(x). Let X;’s be i.i.d. from F(*).

Lo 1]
Further t(F,(x)) = I x. dF (x) = X,.

-

We know that from WLLN X, —F— 6.



