
CHAPTER.1-1
PRELIMINARIES

1^1 INTRODUCTION :
One of the desirable properties of a good estimator is 

that as the number of observations increases the estimator 
should come closer and closer in some sense, to the true 
value of the unknown parameter.

A sequence of estimators {Tn> for a parametric function
g<9) is "Consistent" if Tn converges to g(S) in some 
appropriate sense. As Tn is a random variable, one of the
possible way to explain the above property of a sequence of 
estimators is as n —> a> , ITn — ©I —» 0 in some mode of
convergence. If this mode of convergence is in probability 
then Tn is said to be weak consistent, that is let X1,Xi,...Xn
be a random sample from a distribution F(-,6), 9 e ©
(9 un-known) then an estimator Tn =* T(X,, X^,. . ., Xn) of 9 is
called consistent if for every e > 0,
niS P©,n {1 Tn “ © I 2 *} - 0, V 0 « © (1.1.1)

Example 1.1.1: Let X^X^,...,)^ be independent identicaly 
distributed (i.i.d.) random variables from normal mean 9 and

4.

variance one, Tn ** Xn .

Note that X —» N(©,—) hence
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Pe,n [ l Xn - e l i * ] = pe,0 [ I I >- *]

= 2 [ 1 - 5 { VE * ) ] --» 0

as n —* ®. Hence Tn is consistent estimator for 0.

Example : 1,1,2 : Let be i.i.d. r.v.’s with

uniform distribution on (0,0). We shall see consistency of 

Tn where Tn = max (Xi,X.i, . . .,Xn). We know here that the 

probability density function (p.d.f.) of Tn is

fn(t) “ 7--- TT <t/®)n_i (1 “ t/0)n"n x fn(t)-4-
n (n~i)!(n-n)! n 0

U-ifT1
Qtl > O<t<0.

Consider P [ I Tn - 0 I > e ] “ Pe [ Tn < 0 - e ]

" P0 [ X(n) < © “ * ] - 0,

if e > e.

For e < 0 P0 t X(n) < e “ e ]

n tn-ien dt

n_ ] 0-e0

= ( 1---f- )n ---- » 0, as n —» ®.

Thus Tn is consistent for 0.
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Example : 1, 1,.,3 : Let {xx, X*,..., Xn} be a sequence of random 

variable with marginal distribution function F(x,0) and 

p £ = Xt ] *** 1 , V i an 1,2,3,......

In this case note that for any sample point (Xt,Xz,...,Xn) ,

Tn (Xj^Xj., . . . ,Xn) = S(Xj) then as we know that

Pa [ l Tn - « I » * ]

« P0 [l S(Xt) - 0 I > e ]  /■■■-» 0,

as n -- > oo V 0 e 0 ,
provided S(X1) is not equal to zero with probability one. Thus

Tn = 5(Xt) is not consistent estimator for 0.

l^Z PROPERTIES 01.... CONSISTENT. ESTIMATORS :

In the following we discuss some properties of consistent 
estimators
1.2.1 : Consistent estimator need not be unique. Note that if 

Tn is consistent for g(0) then Tn> 1 is also consistent for

g(0).
Example : 1.2.1 : Let Xt,X*,...,^ be i.i.d. r.v’s with

(

II (0,0) , 0 e (0,oo). We define * X^nj and Tj, = 2Xm where 

Xm = median, are consistent for 0.
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eonsider
P© [ I T* - 9 I > e ] - Pe [ I 2Xm - & I > e ]

- 1- Pe[ 6 i.-g- 1 Xm <

I
8+g
z _DJ(IlrA) I (n^X) I ©n

a-* a-a 
(X) z (x~8) z dx

8-g
z

6-g .P i . n-1 ECU.
2 J -Jb- - 1 <* - 9> * dx-
< 2 ,8 - 6 \ /ijU^V /8 4-
j ( z ) ( z f ' 2. ' p(n±i,n±A)

<^> <-i-)n~1<0Z ©I -e-)afl —1^(SnuQiXj' t1-2-1)

}n+* IntiNow consider P (**■■■£f—M °* --- z.  : z-—
In+t

= (Dj1)!(Di1)i
n!

By using Stirling's approximation we have
_ nrii + —L_P( at A n±JL) m e~^n~^ Z

2. > z * e-n nn+i/2 v/~jn ,

a/"** (II~l.)n ______ J.n+I/2

_ />/ £ne 2n
• ^)n-

a/ n
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_ a/ ZIT 
0 a/.a.

= a/ zn ___ 1_____2n ^/_ (1.2.2)

from (1.2.1) and 

?e [ 12 Xm - 0 I

(1.2.2) we have
a « i z n=JL> £ ] < (£_=_§) ..2;..s.--- (i - —1^_) *

J 0 a/ z. n 0i

■> 0, as n ----- > «o.
Hence P0 [ 12 Xm - 6 I >e] ----- > 0, as n ----- > <».

Thus 2 Xm is consistent for 0, similarly from example 1.1.2. 

Tt = X{n) is consistent for &.

1.2.2 : Unbiased estimator need not be consistent and 

viceversa.
Example : 1.2.2 : Let X1>X2., . . . jXjj be i.i.d. r.v’ .s with 

N(0,1). Define Tn - X,, « n.

Here E0(Tn) - E0(X1) = &, V & e e

Consider Pe [ I Tn - 0 I l « ] = P0 [ I X, - 0 I >. £ ] —» 0 

This implies that Tn is not consistent.

Example : 1.2.3 : Let X^X^-.^Xj^ be i.i.d. r.v's with 

lu(0, 0). Here we know that Tn “ X^nj is consistenb

estimator for 0 but E0(Tn) = —rr?T~ &-

Thus Tn is not unbiased. Hence consistent estimator need not

be unbiased.
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1.2.3 : Sample mean is consistent for population mean.
For reference we define weak law of large numbers (WLLN) 
( Bhat (1985) P.193 )
Let ^ be a sequence of random variables and let

n ™ L
k=l

1,2,.... we say that {Xjj} obyes the WLLN

with respect to the sequence of constants {Bn> ; Bn > 0,
Bn t «. , if there exist a sequence of real constants such 
that

Bn <Sn " A,,) 0, as n “> 00

An is called centring constants and Bn is norming constants. 
Let Xt, Xj., . . . , Xn be a randam sample from f (*).

If S - E Xi ,n ,(-* > An = ESn “ nEXt and Bn = n then by WLLN

n — nE(Xj)) --> 0 , as n --------» oo.
This can be proved by Theorem 1 (pp 257 Rohatgi(1986)).

Thus P * «■* E <Xt) , that is sample mean is consistentn • “ '“i
for population mean.
UL4 : If T,n is consistent for gt(e) and Tin is consistent 
for gz(&) then,

a) (Tln ± Tj.n) is consistent for (gt(e) ± gz(&))
b) (Tln T2n) is consistent for (gj(e) gz(&))
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c) 'S-11. is consistent for .—provided that
T*n

T2n is not zero for every n and gz(9) is also not zero.

Above properties of two consistent estimators can be 
proved by Theorem 6.1 (P.108 Bhat (1985)).
1.2.5 : For reference the definition of central limit theorem

is given below. (P.69 Zacks (1981)).
If {Xn> is a sequence of i.i.d. random variables having

a finite variance cr*, 0<cr2<co and if
E(X) = n then,
n$S p[*Arir (3^ - iO 5c. «] - *(e) x

where Xn - —fc Xt .
i=l

1■2.6 : Consistency is preserved under continuous

transformation or function, that is let Tn be consistent

estimator for © and if g is continuous function on 6, then 
g(Tjj) is consistent for g(0).

Proof for this property will be as following.
Fix 0 say 0 = 0O and g is continuous at 0O, then V e > o there 

exist a S > 0 such that
I g(0) - g(0o) I < e whenever I © — 0OI < 8.

So for every e > 0 there exist a S > 0 such that
[ I © - 90 I < 8 ] c [ | g(0) - g(©0) I < £ ] (1.2.5)
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We know that Tn is consistent for 0, then for every 

r > 0, P{ I Tn — 9Q I > r } ----- > 0, as n ----- > co

or PeQ { I Tn - eo | < r } ----- > 1, as n ----- » oo. (1.2.6)

Then from (1.2.5) and (1.2.6) we get for every e > 0, 
p8„ { I S<Tn) - g(80) l!=}!P,t{lTn-Vir)

----- > 1, as n ----- > oo.
+ 4Jjg P© { lg<Tn) - g(90) I < e } l 1.

Thus 1 > P9q{ i g(Tn) - g(0o) I S £ } > 1 Hence g(Tn) is 

consistent for g(0o).
Example : JL..2.,.5 : Let X^X*, . . . ,3^ be i.i.d. random
variables with density

fx<x,0) 0
0

e-x/0 x > 0, 0 > 0
otherwise.

Consider g(0) = | 1 if 0 > 2l 0 otherwise.

Here g is not continuous at 0 = 2 and let Tn = X wh -?h is
consistent estimator for 0. We shall examine the consistency 
of g(Tn) for g(0).
Let 0O > 0 be fixed.
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Case I : Suppose that 90 >2, then g(9) is continuous at 90.

So g<e+) - g(eo + h) - 1
h-»0

g(9°} m ||§ g(e° ~ h) " 1 

Note that 9Q — h satisfies inequality
2 < 0o - h < 90 ,

So g<e< h)

if h < 0O - 2

eo “ 2

Consider now

f 1 if h <
[ 0 otherwise

P® { I g(Tn) - g<0> I < s }

Pe { I g(Tn) - 1 I < « }

P9 { T„ > 2 }

P® { (Xn — 0) V n > (2 — 0) */ n }

-> 1, as n -> oo.

Thus g{Tn) p9 g<eo>
Case II : Suppose 9Q < 2, g is again continuous at 9a and

9g(Tn) ---g(eo)

Case III : 90 = 2 Consider

P* [ I 8<Tn> “ g<2) I > e ] 

= P2 [ I g(Tn) - 0 I > « ]

= P* [ g(X) > £ ]
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Let e > 1, then P4 [ g(X) > s ] * P (?) - 0.

Let 0<e<l, then

P* [ g(X) > e ] * Pi [ g(X) = 1 ]

- [ -k- £ *i > 2 ]
1 = 1

- P* [ ~k- fc <*i - 2) > 0]
i=l

- P* [ fc (Xi - 2) > 0 ]
i=l

Hence Pz [ Jl) (Xj_ - 2) > 0 ] will be by dividing both
i=l

sides by 2. */ h

p* t £ (Xi - 2> > o ]

= jig p, [ ^i= fc (ii-=-2 > > o ] -
By applying central limit theorem (1.2.5).
Hence g(Tn) is consistent for g(&) at all continuity points

of g but not at discrete points.
: JOINT AND MARGINAL.CONSISTENCY

1.3. 1 : If we are interested in real valued parametric

function g(0), then definition (1.1.1) will be
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iis Pe,n [ ' Tn - SO) I i C ] - 0 (1.3.1)

Example : 1.3.1 : Let be i.i.d. r.v.’s with

N(0,1) where 0 = { - 1, 1 }.

Define

Note that for « > 2, P0 [ I Tn(C> - 0 I > s ] - 0 

But for e l 2, we have

p0 [ I Tn<C> “ e l - 6 ]

- P0 [lTn(C) - 0/ >e, X < C ] + P0 [lTn(C) - © / l Sj X > C]

(1.3.2)

Let 0 - + 1 so (1.3.2) will bo

P, [ I — 1 - 1 I 1 X < C ] + P,[l 1 — 1 I 1 «, X > c]
= P, [ 2 > X < C ] ♦ P, [ 0 > «, X > C ]
“ P, [ 2 1 «, X < C ]
= P, [ X < C ]

1 if C > 1
= * ( a/TT ( C - 1)) ^ 0.5 if C « 1 (1.3.3)

0 if C < 1
as n
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Similar ly 9 = — 1

pe [ l Tn <C> - e l i « ]
0 if C >-l

o.5 if C - - 1 (1.3.4)
1 if C < - 1

as n --- > <o.
Hence Tn(C) is consistent for 9 = —1 if C > — 1 and for

0=1 if C < 1
1.3.2 : If we are interested in veetor valued parameter that 

is £ * ( ••■>ek) then a veetor valued statistic is

given by
Tn = ( Tnl, Tnz, . . . , Tnjj.). The sequence {Tn} is said to be 

marginally consistent for 0 if the i^*1 component of Tn, that 

is Tni is consistent for the i^ component of

0 (i.e. ©i) y i = 1,2,.. . ,K.

Example : 1.3.2 : Let Xt,Xz, ....Xjj be i.i.d. r.v's with 

N(jt, cr2) Here both parameter p and c2 are unknown,

0 “ <

He know that X ----- > p in probability,
s* = _1_ Z - X )2 ----- > cr2 in probability so the statistic

Tn = ( X, s2) is marginally consistent for

9 - ( p, cr2)
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1.3.3 : For any two points U = ( Ut, U*, . . ., CJ^) and

V — ( V4, Vj., . . . »Vjc) in the juclidian distance between 0 and

V is given by

II D - V II - a/ £ < Uk - Vk)*

consider K - 1, then II U - V II - I U4 — V4 I

A sequence of Tn is said to be jointly consistent for 0

if II Tn — 0 II ----- > 0 in probability for every 0 e 0, that

is for every e > 0,

P0 [ 11 Tn “ 9 11 - £ ] ---- * 0, as n ---- » co, V 0 e e (1.3.5)

Example : 1.3.3 : Let be i.i.d. r.v.’s with

N{ <yz) both unknown, that is 0 = ( j*, <r2). Here

Tn “ { X, s2) is jointly consistent for 0.

Consider Pq [ II Tn - 0 II > c J

= P [ II ( X, s2) - ( jt. o-2) H > c ]

- P [ 1 a/(X - j02+(s2 -- **>* 11.]

= P [ 1 (X - »)z + <s2 -- <r*>* i ]

s P [ (X - »)z > or - T*) l-£]

= P [ { (X - m)2 i —"f u { ul - **)* >. -£ } ]
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S P [ (X - JO* 8 -£ ] + P [ <s* - °V » ]

-P [(»-') »^%] *p tc*-'1) *^?f]
—> 0, as n ----> oo

As we know that X is consistent for j* and s* is consistent

for <r* . Hence (X, s*) is consistent for <^,o-z).
1.3,4 : Joint consistency implies marginal consistency and

vice-versa.
This property can be proved as follows:
Suppose that {Tn> is jointly consistent for 9. That is

y e > 0, and fixed 9Q es © we have

P©0 { 11 Tn “ eo 11 - £ } ---- >0, as n ---- > 00 (1.3.6)

Note that I Tni - ©oil < II Tn - eo II V i = 1,2, . . .,K

Hence P8o{ I Tni - 8oi)| i e } < Pe<) { II Tn - 90 II 2 s } —» 0,

as n ---- » oo from (1.3.6)
Thus Tn^ ---- » in probability for i = 1,2,...,K.

Hence joint consistency implies marginal consistency.
Similarly suppose that {Tn^} is marginaly consistent for 9^

then for Pei { I Tni - 9i I > c } ---> 0,

as n ----> oo i = 1,2, . . . , K.
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Note that P [ll Tn - 0 II > «] < C Pei {' Tni “ ei - “Jr}
i=l

—> 0, as n —> ®. Hence the result.
1•4 UNIFORMLY CONSISTENT ESTIMATOR
1.4.1 : The consistency of Tn for 0 implies that, agiven e > 0 
and S > 0 there exist no(e,£,0) such that

P0 { I Tn - 0 I < s } > 1 - S, y n > nQ

Let flgJI n0 { s, = N0 . If Tn converges uniformly to 0

then based on a sample of size N0 < ® it is possible to
estimate 0 so that the probability that the error is at most 
c is at leat 1 - S.
Let Xj, be i.i.d. r.v.'s with N(0,1) distribution and define 

Tn m X. Here observe that for

n > { IT1 (1 - -§-) }Z 

P0={lTn-0|<e}>l~S, y 0ee. That is

N0 “ { “€~ S_1 (1 ” —§-) } + 1 (say)

For e = 0.001 and £ = 0.01 N0 - (3330)* + 1.
Similarly consider Xi be i.i.d. r.v.'s with B(1,0> *

distribution and define Tn = Xn.



-19-

«
By using Normal approximation for large n we observe that for 

n i { 5-* (1--- !-) }*

pe 1 1c
IXt 

i

0 1 < € ] l 1 - s, y 0 e e.

That is N0 * 1

*■4

«41m s
Z - ) ] +1 (say)

For e = 0.001 and s - 0.01
N0 = 66410 + 1.

1^. : ALTERNATIVE DEFINITIONS OF WEAK CONSISTENCY 

1.5.1 : If 0p(noe) is a random variable Zn such that,

S > 0 Jj: p [ n-« IZnl > S ] = 0 

Tn is said to be weakly consistent for 0, if Tn = 0 + 0p(l)

where 0p(l) is a random variable Z such that p{lZI>s} = 0 

Example : 1.5.1 : Let Xi,X2,...,Xn be i.i.d. r.v.'s with

N(0,1). Here is consistent estimator for 0 and we can

write Xn = 0 + (Xn - 0)

since Pe { I Xn~ 0 I > S } * 0

we have Xjj = 0+Op(l). Hence Xn is consistent estimator for 0. 

1,.5..2 : Let Tn be a statistic based on n i.i.d. observations 

adrawn from the F(x,0). The estimate Tn has the form 

Tn = t(Fn(x)), where Fn(x) be the empirical distribution
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function and let t(F(x,0)) = 0. Then Tn is said to be Fisher 
consistent for 0. (pp.287 Cox and Hinkley <1979))
Example : 1.5.2 : Sample mean Xq is Fisher consistent for 
population mean. Let 0 be the mean of the distribution, then

provided estimator 0 *■ J xdF{x). Let X^’s be i.i.d. from F{*).
00

Further t(Fn(x)) = J x. dFn(x) = Xn.
—oo

We know that from WLLN Xn ---*—■» 0.


