CHAPTER : 1

PRELIMINARIES

1.1 INTRODUCTION :

One of the desirable properties of a good estimator is that as the number of observations increases the estimator should come closer and closer in some sense, to the true value of the unknown parameter.

A sequence of estimators $\{T_n\}$ for a parametric function $g(\theta)$ is "Consistent" if T_n converges to $g(\theta)$ in some appropriate sense. As T_n is a random variable, one of the possible way to explain the above property of a sequence of estimators is as $n \longrightarrow \infty$, $|T_n - \theta| \longrightarrow 0$ in some mode of If this mode of convergence is in probability convergence. then T_n is said to be weak consistent, that is let $X_1, X_2, \ldots X_n$ be a random sample from a distribution $F(\cdot,\theta)$, $\theta \in \Theta$ (θ un-known) then an estimator $T_n = T(X_1, X_2, \dots, X_n)$ of θ is called consistent if for every \in > 0, $\lim_{n \to \infty} P_{\theta, n} \left\{ |T_n - \theta| \ge \varepsilon \right\} = 0, \ \forall \ \theta \in \Theta$ (1.1.1)Example : 1.1.1 : Let X_1, X_2, \ldots, X_n be independent identicaly distributed (i.i.d.) random variables from normal mean θ and variance one, $T_n = \overline{X}_n$.

Note that $\overline{X} \longrightarrow N(\theta, \frac{1}{n})$ hence

$$P_{\theta,n}\left[\mid \overline{X}_{n} - \theta \mid \ge \varepsilon \right] = P_{\theta,n}\left[\mid \frac{\overline{X}_{n} - \theta}{1/\sqrt{n}} \mid \ge \sqrt{n} \varepsilon \right]$$
$$= 2\left[1 - \operatorname{F}\left(\sqrt{n} \in \right) \right] \longrightarrow 0$$

as $n \longrightarrow \infty$. Hence T_n is consistent estimator for θ . Example : <u>1.1.2</u> : Let X_1, X_2, \ldots, X_n be i.i.d. r.v.'s with uniform distribution on $(0, \theta)$. We shall see consistency of T_n where $T_n = \max(X_1, X_2, \ldots, X_n)$. We know here that the probability density function (p.d.f.) of T_n is

$$f_{n}(t) = \frac{n!}{(n-i)!(n-n)!} (t/\theta)^{n-i} (1 - t/\theta)^{n-n} \times f_{n}(t) \frac{1}{\theta}$$
$$= \frac{n t^{n-i}}{\theta^{n}}, \quad 0 < t < \theta.$$

Consider P $\begin{bmatrix} | T_n - \theta | \ge \epsilon \end{bmatrix} = P_{\theta} \begin{bmatrix} T_n < \theta - \epsilon \end{bmatrix}$ = $P_{\theta} \begin{bmatrix} X_{(n)} < \theta - \epsilon \end{bmatrix} = 0$, if $\epsilon > \theta$.

For $\epsilon \leq \theta$; $P_{\theta} \left[X_{(n)} < \theta - \epsilon \right]$ $= \int_{0}^{\theta - \epsilon} \frac{t^{n-1}}{\theta^{n}} dt$ $= \frac{n}{\theta^{n}} \left[\frac{t}{n} \right]_{0}^{\theta - \epsilon}$ $= (1 - \frac{\epsilon}{\theta})^{n} \longrightarrow 0, \quad \text{as } n \longrightarrow \infty.$

Thus T_n is consistent for θ .

-5-

Example : <u>1.1.3</u> : Let $\{X_1, X_2, \ldots, X_n\}$ be a sequence of random variable with marginal distribution function $F(x, \theta)$ and P $[X_i = X_i] = 1$, $\forall i = 1, 2, 3, \ldots$. In this case note that for any sample point (X_1, X_2, \ldots, X_n) , $T_n (X_1, X_2, \ldots, X_n) = S(X_1)$ then as we know that

$$P_{\theta} \left[\mid T_{n} - \theta \mid \geq \epsilon \right]$$
$$= P_{\theta} \left[\mid S(X_{i}) - \theta \mid \geq \epsilon \right] \longrightarrow 0,$$
$$as \ n \longrightarrow \omega \ \forall \ \theta \in \theta$$

provided $S(X_i)$ is not equal to zero with probability one. Thus $T_n = S(X_i)$ is not consistent estimator for θ .

1.2 PROPERTIES OF CONSISTENT ESTIMATORS :

In the following we discuss some properties of consistent estimators

<u>1.2.1</u>: Consistent estimator need not be unique. Note that if T_n is consistent for $g(\theta)$ then $T_n + \frac{1}{n}$ is also consistent for $g(\theta)$.

Example : 1.2.1 : Let X_1, X_2, \ldots, X_n be i.i.d. r.v's with $U(0,\theta)$, $\theta \in (0,\infty)$. We define $T_1 = X_{(n)}$ and $T_2 = 2\tilde{X}_m$ where \tilde{X}_m = median, are consistent for θ .

-7-

consider

$$P_{\theta}\left[\left| + T_{2} - \theta + \right\rangle \varepsilon\right] = P_{\theta}\left[\left| + 2\tilde{X}_{m} - \theta + \right\rangle \varepsilon\right]$$

$$= 1 - P_{\theta}\left[\left|\frac{\theta - \varepsilon}{2}\right| \leq \tilde{X}_{m} \leq \frac{\theta + \varepsilon}{2}\right]$$

$$= 1 - \int_{0}^{\frac{\theta + \varepsilon}{2}} \frac{n!}{(\frac{n-1}{2})! (\frac{n-1}{2})!} - \frac{1}{\theta^{n}} (X)^{\frac{n-1}{2}} (x-\theta)^{\frac{n-1}{2}} dx$$

$$= 2 \int_{0}^{\frac{\theta - \varepsilon}{2}} \frac{1}{\theta^{(\frac{n+1}{2}, \frac{n+1}{2})}} - \frac{1}{\theta^{n}} x^{\frac{n-1}{2}} (x-\theta)^{\frac{n-1}{2}} dx.$$

$$\leq \frac{2}{\theta^{n}} \left(\frac{\theta - \varepsilon}{2}\right) \left(\frac{\theta - \varepsilon}{2}\right)^{\frac{n-1}{2}} \left(\frac{\theta + \varepsilon}{2}\right)^{\frac{n-1}{2}} \frac{1}{\theta^{(\frac{n+1}{2}, \frac{n+1}{2})}}$$

$$= \left(\frac{\theta - \varepsilon}{\theta}\right) \left(\frac{1}{2}\right)^{n-1} \left(\frac{\theta^{2} - \varepsilon^{2}}{\theta^{2}}\right)^{\frac{n-1}{2}} \frac{1}{\theta^{(\frac{n+1}{2}, \frac{n+1}{2})}} (1.2.1)$$

Now consider β $(\frac{n+1}{2}, \frac{n+1}{2}) = \frac{\frac{|n+1|}{2} + \frac{|n+1|}{2}}{|n+1|}$ $= \frac{(\frac{n-1}{2})!(\frac{n-1}{2})!}{n!}$

By using stirling's approximation we have

$$\beta\left(\begin{array}{c}\frac{n+1}{2} \\ \frac{n+1}{2} \end{array}\right) = \frac{e^{-(n-1)} \left[\left(\frac{n-1}{2}\right)^{\frac{n-1}{2}} + \frac{1}{2}\right]^2}{e^{-n} n^{n+1/2}}$$
$$= \frac{\sqrt{2\pi}}{e} \left(\frac{n-1}{2}\right)^n \frac{1}{n^{n+1/2}}$$
$$= \frac{\sqrt{2\pi}}{e} \cdot \frac{1}{2^n} \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{1}{\sqrt{n}}$$

$$= \frac{\sqrt{2\pi}}{9} \cdot \frac{1}{2^{n}} \cdot (1 - \frac{1}{n})^{n} \cdot \frac{1}{\sqrt{n}}$$
$$= \frac{\sqrt{2\pi}}{1} \frac{1}{2^{n} \sqrt{n}} \quad (1.2.2)$$

from (1.2.1) and (1.2.2) we have

$$P_{\theta} \left[|2 \tilde{X}_{m} - \theta| > \varepsilon \right] \leq \left(\frac{\theta - \varepsilon}{\theta} \right) \xrightarrow{2 \cdot \theta^{2}} \left(1 - \frac{\varepsilon^{2}}{\theta^{2}} \right)^{\frac{n-1}{2}} \sqrt{n}$$
$$\longrightarrow 0, \text{ as } n \longrightarrow \infty.$$

Hence $P_{\theta} \left[12 \tilde{X}_m - \theta \mid > \epsilon \right] \longrightarrow 0$, as $n \longrightarrow \infty$. Thus 2 \tilde{X}_m is consistent for θ , similarly from example 1.1.2. $T_i = X_{(n)}$ is consistent for θ .

<u>1.2.2</u>: Unbiased estimator need not be consistent and viceversa.

Example : <u>1.2.2</u> : Let $X_1, X_2, ..., X_n$ be i.i.d. r.v'.s with $N(\theta, 1)$. Define $T_n = X_1$, $\forall n$. Here $E_{\theta}(T_n) = E_{\theta}(X_1) = \theta$, $\forall \theta \in \Theta$ Consider $P_{\theta} \left[\mid T_n - \theta \mid \ge \varepsilon \right] = P_{\theta} \left[\mid X_1 - \theta \mid \ge \varepsilon \right] \longrightarrow 0$ This implies that T_n is not consistent. **Example** : <u>1.2.3</u> : Let $X_1, X_2, ..., X_n$ be i.i.d. r.v's with $lu(0, \theta)$. Here we know that $T_n = X_{(n)}$ is consistent estimator for θ but $E_{\theta}(T_n) = -\frac{n}{n+1} - \theta$. Thus T_n is not unbiased. Hence consistent estimator need not be unbiased. 1.2.3 : Sample mean is consistent for population mean.
For reference we define weak law of large numbers (WLLN)
(Bhat (1985) P.193)

Let X_n be a sequence of random variables and let

$$\begin{split} S_n &= \sum_{k=1}^n X_k \ ; \quad n = 1,2,\ldots , \ \text{we say that } \{X_n\} \text{ obyes the WLLN} \\ \text{with respect to the sequence of constants } \{B_n\} \ ; \ B_n > 0, \\ B_n \uparrow \infty \ , \text{ if there exist a sequence of real constants } A_n \text{ such that} \end{split}$$

$$B_n^{-1}$$
 $(S_n - A_n) \xrightarrow{P} 0$, as $n \longrightarrow \infty$

 A_n is called centring constants and B_n is norming constants. Let X_1, X_2, \ldots, X_n be a randam sample from $f(\cdot)$.

If
$$S_n = \sum_{i=1}^n X_i$$
, $A_n = ES_n = nEX_i$ and $B_n = n$ then by WLLN
 $n^{-1}(S_n - nE(X_i)) \xrightarrow{P} 0$, as $n \xrightarrow{} \infty$.

This can be proved by Theorem 1 (pp 257 Rohatgi(1986)).

Thus $\frac{S_n}{n} \xrightarrow{P} E(X_1)$, that is sample mean is consistent for population mean.

<u>1.2.4</u>: If T_{in} is consistent for $g_i(\theta)$ and T_{2n} is consistent for $g_2(\theta)$ then,

a)
$$(T_{1n} \pm T_{2n})$$
 is consistent for $(g_1(\theta) \pm g_2(\theta))$

b) $(T_{1n} T_{2n})$ is consistent for $(g_1(\theta) g_2(\theta))$

c)
$$\frac{T_{1n}}{T_{2n}}$$
 is consistent for $\frac{g_1(\theta)}{g_2(\theta)}$ provided that

 T_{2n} is not zero for every n and $g_2(\theta)$ is also not zero.

Above properties of two consistent estimators can be proved by Theorem 6.1 (P.108 Bhat (1985)).

<u>1.2.5</u>: For reference the definition of central limit theorem is given below. (P.69 Zacks (1981)).

If $\{X_n\}$ is a sequence of i.i.d. random variables having a finite variance σ^2 , $0 < \sigma^2 < \infty$ and if $E(X) = \mu$ then,

$$\lim_{n \to \infty} \mathbb{P}\left[\sqrt{n} \quad (\bar{X}_n - \mu) \leq \sigma \cdot \epsilon\right] = \Phi(\epsilon)$$

where

$$\overline{X}_n = -\frac{1}{n} \sum_{i=1}^n X_i .$$

1.2.6: Consistency is preserved under continuous transformation or function, that is let T_n be consistent estimator for θ and if g is continuous function on θ , then $g(T_n)$ is consistent for $g(\theta)$. Proof for this property will be as following.

Fix θ say $\theta = \theta_0$ and g is continuous at θ_0 , then $\forall \in > 0$ there exist a $\delta > 0$ such that

 $|g(\theta) - g(\theta_0)| < \varepsilon$ whenever $|\theta - \theta_0| < \varepsilon$. So for every $\varepsilon > 0$ there exist a $\varepsilon > 0$ such that

$$\begin{bmatrix} | \theta - \theta_0 | < \$ \end{bmatrix} \subset \begin{bmatrix} | g(\theta) - g(\theta_0) | < \varepsilon \end{bmatrix}$$
(1.2.5)

×...

We know that T_n is consistent for θ , then for every r > 0, $P_{\theta_0} \left\{ + T_n - \theta_0 + > r \right\} \longrightarrow 0$, as $n \longrightarrow \infty$ or $P_{\theta_0} \left\{ + T_n - \theta_0 + \leq r \right\} \longrightarrow 1$, as $n \longrightarrow \infty$. (1.2.6) Then from (1.2.5) and (1.2.6) we get for every $\epsilon > 0$, $P_{\theta_0} \left\{ + g(T_n) - g(\theta_0) + \leq \epsilon \right\} \ge P_{\theta_0} \left\{ + T_n - \theta_0 + \leq r \right\}$ $\longrightarrow 1$, as $n \longrightarrow \infty$. $\Rightarrow \lim_{n \to \infty} P_{\theta} \left\{ + g(T_n) - g(\theta_0) + \leq \epsilon \right\} \ge 1$. Thus $1 \ge \lim_{n \to \infty} P_{\theta_0} \left\{ + g(T_n) - g(\theta_0) + \leq \epsilon \right\} \ge 1$. Thus $1 \ge \lim_{n \to \infty} P_{\theta_0} \left\{ + g(T_n) - g(\theta_0) + \leq \epsilon \right\} \ge 1$. Example : 1.2.5 : Let X_1, X_2, \dots, X_n be i.i.d. random variables with density

$$\mathbf{f}_{\mathbf{X}}(\mathbf{x},\theta) = \begin{cases} \frac{1}{\theta} e^{-\mathbf{x}/\theta} & \mathbf{x} \ge 0, \ \theta > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Consider $g(\theta) = \begin{cases} 1 & \text{if } \theta > 2 \\ 0 & \text{otherwise.} \end{cases}$

Here g is not continuous at $\theta = 2$ and let $T_n = \overline{X}$ which is consistent estimator for θ . We shall examine the consistency of $g(T_n)$ for $g(\theta)$.

Let $\theta_0 > 0$ be fixed.

<u>Case I</u> : Suppose that $\theta_0 > 2$, then $g(\theta)$ is continuous at θ_0 . $g(\theta_0^+) = \lim_{\substack{h \to 0 \\ h \to 0}} g(\theta_0^- + h) = 1$ So $g(\theta_0) = \lim_{h \to 0} g(\theta_0 - h) = 1$ Note that $\theta_0 - h$ satisfies inequality $2 < \theta_{o} - h < \theta_{o}$, if $h < \theta_0 - 2$ $g(\theta_{o} - h) = \begin{cases} 1 \text{ if } h < \theta_{o} - 2 \\ 0 \text{ otherwise} \end{cases}$ So $P_{\theta} \left\{ i g(T_n) - g(\theta) \mid \langle \varepsilon \right\}$ Consider now $= P_{\theta} \left\{ \mid g(T_n) - 1 \mid < \epsilon \right\}$ = $P_{\theta} \{ T_n > 2 \}$ = $P_{\theta} \left\{ (\overline{X}_n - \theta) \sqrt{n} > (2 - \theta) \sqrt{n} \right\}$ \longrightarrow 1, as n $\longrightarrow \infty$. Thus $g(T_n) \xrightarrow{P_{\theta_0}} g(\theta_0)$ <u>Case II</u>: Suppose $\theta_0 < 2$, g is again continuous at θ_0 and $g(T_n) \xrightarrow{P_{\theta_0}} g(\theta_0)$ <u>Case III</u> : $\theta_0 = 2$ Consider

 $P_{2} \left[i g(T_{n}) - g(2) | > \varepsilon \right]$ $= P_{2} \left[i g(T_{n}) - 0 | > \varepsilon \right]$ $= P_{2} \left[g(\overline{X}) > \varepsilon \right]$

-12-

Let $\epsilon \ge 1$, then $P_2\left[g(\overline{X}) > \epsilon\right] = P(\varphi) = 0$. Let $0 < \epsilon < 1$, then

$$P_{2} \left[g(\overline{X}) > \varepsilon \right] = P_{2} \left[g(X) = 1 \right]$$
$$= P_{2} \left[\frac{1}{n} \sum_{i=1}^{n} X_{i} > 2 \right]$$
$$= P_{2} \left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - 2) > 0 \right]$$
$$= P_{2} \left[\sum_{i=1}^{n} (X_{i} - 2) > 0 \right]$$

Hence $\lim_{n \to \infty} P_2 \left[\sum_{i=1}^n (X_i - 2) > 0 \right]$ will be by dividing both sides by 2. \sqrt{n}

$$\lim_{n \to \infty} P_2 \left[\frac{1}{2 \cdot \sqrt{n}} \sum_{i=1}^n (X_i - 2) > 0 \right]$$

$$= \lim_{n \to \infty} P_2 \left[\frac{1}{\sqrt{n}} \sum_{i=1}^n (\frac{X_i - 2}{2}) > 0 \right] = \frac{1}{2}$$

By applying central limit theorem (1.2.5). Hence $g(T_n)$ is consistent for $g(\theta)$ at all continuity points of g but not at discrete points.

1.3 : JOINT AND MARGINAL CONSISTENCY

<u>1.3.1</u>: If we are interested in real valued parametric function $g(\theta)$, then definition (1.1.1) will be

as n $\longrightarrow \infty$

Similarly $\theta = -1$ $P_{\theta} \left[+ T_{n}(C) - \theta + 2 \epsilon \right] \longrightarrow \begin{cases} 0 & \text{if } C > -1 \\ 0.5 & \text{if } C = -1 \\ 1 & \text{if } C < -1 \end{cases}$ as $n \longrightarrow \infty$. Hence $T_{n}(C)$ is consistent for $\theta = -1$ if C > -1 and for $\theta = 1$ if C < 1

<u>1.3.2</u> : If we are interested in vector valued parameter that is $\underline{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ then a vector valued statistic is given by

 $T_n = (T_{n1}, T_{n2}, \dots, T_{nk})$. The sequence $\{T_n\}$ is said to be marginally consistent for $\underline{\theta}$ if the ith component of T_n , that is T_{n1} is consistent for the ith component of

 θ (i.e. θ_i) \forall i = 1,2,...,K.

Example : 1.3.2 : Let $X_1, X_2, ..., X_n$ be i.i.d. r.v's with $N(\mu, \sigma^2)$ Here both parameter μ and σ^2 are unknown, $\theta = (\mu, \sigma^2)$. We know that $\overline{X} \longrightarrow \mu$ in probability, $s^2 = \frac{1}{n} \Sigma X_1 - \overline{X})^2 \longrightarrow \sigma^2$ in probability so the statistic $T_n = (\overline{X}, s^2)$ is marginally consistent for $\theta = (\mu, \sigma^2)$. <u>1.3.3</u>: For any two points $U = (U_1, U_2, ..., U_k)$ and $V = (V_1, V_2, ..., V_k)$ in \mathbb{R}^k the juclidian distance between U and V is given by

$$\| U - V \| = \sqrt{\sum_{i=1}^{k} (U_k - V_k)^2}$$

consider K = 1, then $|| U - V || = |U_i - V_i|$

A sequence of T_n is said to be jointly consistent for θ if $\| T_n - \theta \| \longrightarrow 0$ in probability for every $\theta \in \theta$, that is for every $\varepsilon > 0$, $P_{\theta} \left[\| T_n - \theta \| \ge \varepsilon \right] \longrightarrow 0$, as $n \longrightarrow \infty$, $\forall \theta \in \theta$ (1.3.5) Example : 1.3.3 : Let X_1, X_2, \dots, X_n be i.i.d. r.v.'s with $N(\mu, \sigma^2)$ both unknown, that is $\theta = (\mu, \sigma^2)$. Here $T_n = (\overline{X}, s^2)$ is jointly consistent for θ . Consider $P_{\theta} \left[\| T_n - \theta \| \ge \varepsilon \right]$ $= P \left[\| (\overline{X}, s^2) - (\mu, \sigma^2) \| \ge \varepsilon \right]$ $= P \left[\| (\overline{X} - \mu)^2 + (s^2 - \sigma^2)^2 | \ge \varepsilon^2 \right]$ $\leq P \left[(\overline{X} - \mu)^2 \ge -\frac{\varepsilon^2}{2} \text{ or } (s^2 - \sigma^2)^2 \ge -\frac{\varepsilon^2}{2} \right]$ $= P \left[\{ (\overline{X} - \mu)^2 \ge -\frac{\varepsilon^2}{2} \} \cup \{ (s^2 - \sigma^2)^2 \ge -\frac{\varepsilon^2}{2} \} \right]$

As we know that \overline{X} is consistent for μ and s^2 is consistent for σ^2 . Hence (\overline{X}, s^2) is consistent for (μ, σ^2) . <u>1.3.4</u>: Joint consistency implies marginal consistency and vice-versa.

This property can be proved as follows: Suppose that $\{T_n\}$ is jointly consistent for θ . That is $\forall \epsilon > 0$, and fixed $\theta_o \in \Theta$ we have

Note that $P\left[\| T_n - \theta \| \ge \varepsilon \right] \le \sum_{i=1}^{k} P_{\theta i} \left\{ \| T_{ni} - \theta_i \|^2 \ge \frac{\varepsilon^2}{k} \right\}$ $\longrightarrow 0$, as $n \longrightarrow \infty$. Hence the result.

1.4 : UNIFORMLY CONSISTENT ESTIMATOR

<u>1.4.1</u>: The consistency of T_n for θ implies that, agiven $\varepsilon > 0$ and $\varepsilon > 0$ there exist $n_o(\varepsilon, \varepsilon, \theta)$ such that

$$P_{\theta} \left\{ \mid T_{n} - \theta \mid \langle \varepsilon \right\} \geq 1 - \varepsilon, \forall n \geq n_{0}$$

Let $\sup_{\theta \in \Theta} n_0 \{ \varepsilon, \varepsilon, \theta \} = N_0$. If T_n converges uniformly to θ then based on a sample of size $N_0 < \infty$ it is possible to estimate θ so that the probability that the error is at most ε is at leat $1 - \delta$.

Let X_i be i.i.d. r.v.'s with N(θ , 1) distribution and define

$$\begin{split} T_n &= \overline{X}. & \text{Here observe that for} \\ n &\geq \left\{ \begin{array}{c} \frac{1}{\varepsilon} \quad \overline{\mathbf{y}}^{-1} & (1 - \frac{\varepsilon}{2}) \end{array} \right\}^2 \\ P_\theta &= \left\{ + T_n - \theta + \langle \varepsilon \rangle \right\} \geq 1 - \varepsilon, \ \forall \ \theta \in \Theta. & \text{That is} \\ N_o &= \left\{ \begin{array}{c} \frac{1}{\varepsilon} \quad \overline{\mathbf{y}}^{-1} & (1 - \frac{\varepsilon}{2}) \end{array} \right\}^2 + 1 & (\text{say}) \\ \end{array} \end{split}$$
For $\varepsilon = 0.001$ and $\varepsilon = 0.01$ $N_o = (3330)^2 + 1.$
Similarly consider X_i be i.i.d. r.v.'s with $B(1, \theta)$ • distribution and define $T_n = \overline{X}_n$.

By using Normal approximation for large n we observe that for $n \geq \left\{ \frac{\sqrt{\theta(1-\theta)}}{\epsilon} \, \overline{F}^{-1} \left(1 - \frac{\delta}{2}\right) \right\}^{2}$ $P_{\theta} \left[+ \overline{X}_{n} - \theta + \langle \epsilon \right] \geq 1 - \delta, \forall \theta \epsilon \theta.$ That is $N_{0} = \left[\frac{\sqrt{\theta(1-\theta)}}{\epsilon} \, \overline{F}^{-1} \left(1 - \frac{\delta}{2}\right) \right]^{2} + 1$ (say) For $\epsilon = 0.001$ and $\delta = 0.01$ $N_{0} = 66410 + 1.$

1.5 : ALTERNATIVE DEFINITIONS OF WEAK CONSISTENCY

<u>1.5.1</u> : If $0_p(n^{\infty})$ is a random variable Z_n such that,

 $\delta > 0$ $\lim_{n \to \infty} P\left[n^{-\infty} |Z_n| > \delta \right] = 0$

 $T_{n} \text{ is said to be weakly consistent for } \theta, \text{ if } T_{n} = \theta + 0_{p}(1)$ where $0_{p}(1)$ is a random variable Z such that $\lim_{n \to \infty} P\{|Z| > \$\} = 0$ Example : 1.5.1 : Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v.'s with $N(\theta, 1). \text{ Here } \overline{X}_{n} \text{ is consistent estimator for } \theta \text{ and we can}$ write $\overline{X}_{n} = \theta + (\overline{X}_{n} - \theta)$ since $\lim_{n \to \infty} P_{\theta} \{ | \overline{X}_{n} - \theta | > \$ \} = 0$ we have $\overline{X}_{n} = \theta + 0_{p}(1)$. Hence \overline{X}_{n} is consistent estimator for θ .
1.5.2 : Let T_{n} be a statistic based on n i.i.d. observations

 $T_n = t(F_n(x))$, where $F_n(x)$ be the empirical distribution

adrawn from the $F(x, \theta)$. The estimate T_n has the form

function and let $t(F(x,\theta)) = \theta$. Then T_n is said to be Fisher consistent for θ . (pp.287 Cox and Hinkley (1979))

Example : <u>1.5.2</u> : Sample mean \overline{X}_n is Fisher consistent for population mean. Let θ be the mean of the distribution, then

provided estimator $\theta = \int x dF(x)$. Let X_i 's be i.i.d. from $F(\cdot)$.

Further $t(F_n(x)) = \int_{-\infty}^{\infty} x. dF_n(x) = \overline{X}_n.$

We know that from WLLN $\overline{X}_n \xrightarrow{P} \theta$.