
CHAPTER : II
METHODS. QE..OBTAINING CONSISTEKT-ESTIMAIQBS

*
2_L IN1BQDUCTIQH

In the first section of this chapter we state definitions 
of some terms which are useful for further discussion.

In the second section we discuss mathods of obtaining 
consistent estimators. Consistent estimators can be obtained 
by satisfying necessary and sufficient conditions, by weak 
law of large numbers, via order statistics, with the help of 
maximum likelihood estimators. Further we discuss 
inconsistency of maximum likelihood estimators.

In the third section we define order of consistency and 
discuss lemma on it.

For ready references the following terms are defined. 
2.1.1 : Bias of an estimator :
T(Xt,X2, . . .Xjj) is said to be biased for 9 if E0(T) f4 0 for 
some 9 c e. The quantity b(T,0) «* E0 T(Xt, Xz, . . ., X^ - 9 is 
called the bias of T
2... 1.-2 : The mean square error (MSE) of an estimator.

The MSE of T is defined to be
MSEe(T) - E0[ T(Xt, X2, . . ., Xq) - 9 ]*
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2.1.3 : Chebyshev’s Inequality :

Suppose that EX* < oo and EX = m, Var<X) =* <r*, 0«r*«».

Then for every e > 0, P[ I X - E(X) I > e ] <

2.1.4 : Probability Integral Transformation :

If X is a random variable with continuous cumulative 
distribution function F%(x), then U = F^(x) is uniformly

distributed over the interval (0,1). U is called the 
probability integral transformation to X further if U is

uniformly distributed over the interval (0,1) then X = Fj^dJ) 

has cumulative distribution function F^(■).

2.1.5 : Complex function :

A real valued function f is said to be complex if inequality 

f( X>zXz " ) * [ f(xt) + f(xz) ] holds for all values of

x x and xz.

2.1.6 : The Jensen’s Inequality :

If g(X) is a convex function of X and E { I g(X) I } < a> then

E { g(X) } > g { E(X) } .

2.1.7 : Absolute Continuous Measure :

Let (9S, 0, P) and (3S, 0, Q) are probability measure. If 
P(A) ** 0 whenever Q(A) “ 0 then P is said to be absolute 
continuous measure with respect to Q and denoted by P<<Q.
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2.1.8 : Radon — Nikodyn Derivative :
Let P and Q be defined on (*, 0) and P<<Q.
Then there exist a function f such that

P(A) = f f(X)dQ(x) , ^ As©.AJ

f is said to be R.N. derivative of P with respect to Q and is
denoted by ( 4^--).dQ
2.1.9 : Strong law of large number :
We say that the sequence {Xn> obyes the strong law of large
numbers (SLLN) with respect to the norming constant, {Bn> if
*

there exist a sequence of (centring) constants {An> such that

{Sn — Ajj) • > 0 as n --- > co. Here Bn > 0 and Bn--- > co
as n ----- > co.
2^2 METHODS OF .DBIAIHING.-CQMSISTEH1- ESTIMATORS :

In this section we discuss the various methods of 
obtaining consistent estimators.
2.2.1 : Let Tn be an estimator of a parametric function g(6)
such that it’s bias and variance tends to zero as n ---- > co,
then Tn is consistent estimator of Q. The proof is direct
consequence of Chebyshev’s inequality and fact that 

MSE(Tn) - E(Tn - 6)z ---- » 0, as n ---- » co.
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ExamBlfi : 2,2,1 : Let X,, Xz, . . ., ^ be i.i.d.r.v.’s with 

U <0, 0) 0 e (0, ®) define T, - x(n)* We sha11 show that 

X^nj is consistent for 0. Note that

fTi<t, 0) - , 0<t<® , nil.

0e
Here E0(Tt) - t. fT (t, 0)dt - .glfc- &0J 1

r0
E0(T*) - t*. fT <t, 0)dt = -fftr- e*

0j 1

So Bias in Tj = E^Tj — 0) *= ( .H 0

*= « --- >■ 0 as n --- > a>

and MSECT*) = E (Tt - 0)*

- ‘ -nSl" + 1 - -nl9- >

= ®2 < TTi7n + 1 “ TT?7n > ---► °> as n ---> °>
Hence Tj = X(nj is consistent for 0.

2.2.2 : Necessary conditions for consistency of estimators. 

(P.22 Akahira Takeuehi (1981)).

For any two points 0t and 0Z in 0 there exist c finite measure

j*n such that P0 and P0 are absolutely continuous with u i, n 2., n
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respect to Then for any two points 9t and 9Z in 0 we

define

dn<ei' **>
dPe 1, n,

dP0^» El
d*tn djin

d>»n.
n

= 2 BS“Pe(n> I (2.2.2)

for every n, dn is metric on 9 which is independent of ^n. 
2.2.3 : Theorem
If there exist a consistent estimator then for any two 
disjoint points 9t and 9Z in 9

AiS dn ( 9* > - 2.

Proof : If we denote a consistent estimator by Tn, then for

every € > 0, JJ® P0#n { II Tn - Q II > c } - 0

Let e = II II / 2 , then for any S > 0 there exist a
nQ such that, every n l nQ

pe1<n { « Tn - e, it s . } i i - -jj- 

pe, { I' Tn - e£ ll s * } i l • _s_
4

Then put A ~ { II Tn - et II < II Tn - 9Z II }

and Ac = { II Tn - || < 11 Tn — 01 II }

p01>n { H Tn - e, II 1 II Tn - 0t II } » 1 - . ThiiSO
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implies that P0 <A) l 1 — —~i,n 4 (2.2.3)

Similarly P© <AC) i 1 i, n
X
4

From (2.2.2) and (2.2.3) we can obtain

dn <ei> 0z> “ f I 
xn

dP,0 dPe *.,.n
dnn cU*n

dtpn‘

p dP0 r ur0 p ur0o p ur0---- 1 > P dj*n+ ---- Zj_q_ ^ _ ---- 2x0... (ju — ---- *xll tjuJ d^n « J diin n AJ d^n . n JdP©

p dPg a ur0 aI --- * * P cLh„ + ---- *»n. dj*„ -J dMn n J dnn n JAc n Ac

dP0

dP©9 p dP0
_„ n JA n A n

dP©
I a Q H U

dPrn

-I

A°

dP0
dPr ^n'n

= 1 ~ 2 P9 (A) + 1 - 2 P0 (Ac)z,n i,n

- 2 - 2 Pe (Ac) - 2 P0 (A).i,n 2,n
> 2 - £.

letting S ----» 0 we have d^©^ 0Z) l 2

But from (2.2.2) we have

TimA4S dn(0t> 02) < 2

Hence n-^m dn(91, &z) 2.
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Example : Z. If X^X*,, -*n

f 0 • e"-0xwith f(x. 0) - l 0

then lira d n-roo un 0z> = 2 >

We know Un- dFoo an <«i. 0*>

x i o, e > o 
otherwise.

r dPe dPe
ss I | .........  11 D — .......... ^..jt O. | HuJ 1 dMn dMn 1 n'
xn n n

-Ex ^= J | e 1 — 2n. e

= J °
xn

-Ex:
1 - 2n.

•*Ex.

-EX;

dx

dx.

-Ex s= Ey V V I 1 - 2n. e 1 I
A1 , A2, . . . , An

where i.i.d.

exponential with e“x x > 0.

= J I 1 — 2n.e y I fn{y)dy
oJ

where fn(y) is the density of Y.

j 1 .00

( 2n.e y - 1 ) fn(y)dy +
n

( 1 - 2n.e“y ) fn(y)dy. 
og z
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nlog t oo2 j (2n. e“y - 1) fn(y)dy + J (1 - 2n.e~y) fn(y)dy.

nlog 2 
2 I' 2n. e~y.

nlog 2
a/ n

jdr - dy - 2 J fn(y)dy.

nlog 2 nlog 22 dy -J fn(y) dy ]

L inlog 2 , nlog 4 -|f 2n. e~u - J fn(y) dy ]
o a/ n 4 0

*nlog 2. nlog 2 = 2 [ X fn(y)dy -J fn(y)dy J 
0 0

inlog i= 2 [ Ifn(y)dy ]nlog i
= 2 PXj.Xjt, . . . ,Xn ( nl°^2 < X < 2n log2 )

= 2 Pv v v ( nlog2 - n <.£A X; - 1 ) <2 nlog2
Ai» Ai»•••»An i=l 1

n X *= 2 Pv v y ( log2 — 1 < £ ( -i.1 ) < 2 log2Ai > Ai»••*• An i=l n
=2 [ Gn (2 log2 - 1 ) - Gn (log2 - 1) ]

where Gn is c.d.f of E ( ^ ), Here by WLLN

0 if x < 0

n>

1 )

Gn(x) {
1 if x > 0 

Hence j^g dn< 8,, 8*) = 2.
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2.2.4 : Theorem
The following theorem shows that a necessary condition for 
the existance of consistent estimator is that the limit of 
the Kull-back leibler information is infinite.
Let for each n { Xn : dP0>n / cLu > 0 } does not depend on

0. If there exist a consistent estimator then the fallowing 
holds for any two disjoint points 04 and 02

n-l® ^n^0i' “ ®-

where
*

dP0
.. .*-P log (

U) n

dP,0,i.,P. \ (ijidPe }
n

dP0
Proof : Let 0<S<l/2 and putting yn =n dP0 aLux,

i, n
we have for sufficiently large n

Eq ( | y - i | ) = i,n “
dP0| .---*«P--- 1 | dP

tn) “i,ndP0

dPe

e i, n

*(n)

- dn(0t, 0Z) > 2 - 2 S. 

putting y+ = max { yn - 1, 0 } and 

y- - max { 1 - yn, 0 }

dP« | d>tn .
dMn
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ft

E© i,n ( 4 ) ®.,n ' y« ' “ ( y* “ yn >- E« ( y" ) = E, 

- E0 *» n ( yn - 1 )

, <*P0/ __  *,D
*■*{n) n

dP0
dMn

= 0

For sufficiently large n, E0 ( ) + E0 ( y~ )i, n “ i, n u
— Eq n ( ic 1 1 ) * 2 CM1 S.

that is e0 ( ) = Ee
^ in L1 11 ^ i n ( l yn - l i ) * 2 - 2 S.
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Hence for sufficiently large n we obtain

E0 ( y+ ) = Ee ( y' ) U - S. i, n “ i, n n

Since OSy“il and above equation holds for sufficiently large n

1 - *1 >

“ I dPe1>n <^n> + | Vn dP8>jn <*,>
ynii-zS y~<i-zS

5 pe.,. n (yn > 1 - 28) + (1 '- 2S)P0i , n (y - '•'n 1 - 28)«

= IV, n (y„ > 1 - 28) + <1 ~ 2S){P8i
»n (y~ * 1 - 28)

+ pe., n (yn > 1 - 28) - Pe, ni, n (y n ' 1 - 28)}

= pel;, n
{yn > 1 - 28} + (1 '- 28) - (1 - 28).

P0.:. n (yn > 1 - 28) ,

= 28 P0 (y- > 1 - 28) + ( 1 - 25). 
t, n 11

that is

1 - 8 < 2 8 Pe (y~ > 1 - 28) + ( 1 - 28). i, n u

This implies that 5 < 2 £ P0 (y~ l 1 — 28).i, n 11

So ~t 5 pe,,n <y" J 1~2S)- 
But for sufficiently large n from above 

(«,, ez) = E0 - (- log yn)
* > Cl



From picture we have yn = <1 + y+) (1 - y~)

So In i — Eq *,n <- log yn)

= Eq »,n
[- log {(1 + yjj) d - ^>}]

= Ee i»n
[- log (1 + y+)] - Ee log*,n

Consider firstly E«.,n t-- log (1 + yj)] >

secondly B = {x : 1 -- Xn 1 2s)

A “ { X : > 1 }, Ac = ■[ x : y„ < 1

then * > n
{ log (i - y^) }

" J log (1 - yn) ft(x)dx. 
AUAC

= J log (1 - yn) fj(x)dx.
Ac

“ Jl°6 (l-y^) f t (x)dx + J'log (1- yn) 
AC.B AC.BC

- J log <1 - y~) fjCxJdx
AC.BC

- log 2 S. [ J fj(x)dx ]
Ac. Bc

(1 - yn>

and

}■

fi(x)dx.
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< 2 log 2 S.

And E(yJ) = J yj ft(x)dx = J (1 - y£ - 1) f^xjdx.

dP0<= f ( ---J dPe l > dP0
i, n i, n

- f ( dPa - dPg ) dx < 1.
,J *,n i,nA

Hence In<©4, &z) = E0 [- log <1 + y^)] - Ee log (1
^ i n i > ci

(yj)

- yn)

* - K6 ‘.n --- log 2 S.

> - 1--- log s.2

= oo. as S -----> 0.

Example : 2.2.4 : We shall show that Kullback leibler 

information for exponential distribution at 0, = 1 and 02 = 2 

is infinity.
Let Xj,Xj., . . .,Xjj be i.i.d. random variable with

-0.x

Here

0) - l

f (xis «t>

n<0i> 0z>

x > 0, 0 > 0
otherwise.

.ft f(xif 0t> = e ZXi and .ft f(Xi, 04> = 2°. e *ZXi
1 = 1 x 1 1Z1 1 X

- J f(Xl. 8.) log •?>?- dx
3£<n>

ffx^ 0j.)
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-Ex, , e 1 log {
-Ex,

3g(n) tn. 0-*=*i )dx

-T!y •| e 1 (- EXj^ + 2 Ex^ - nlog 2)dx
3g<n)

-Ex,= J e 1 ( Ex£ - nlog 2)dx 
3g(n)

I= | e Ex^ dx —
*<«>

, _ -Ex,nlog 2 . e 1 dx.
*<*>

r-q pro p00 -Ex, J p® f®, 0 -Ex, .
). .. . x, e 1 dx — ... log 2 e 1 dx

i = l 0J 0J 0J 0J

= YZ 12 — log 2 = n — log 2 -*-^co , as n --- * <».
i = l

2.2.5 : Another method of obtaining consistent estimator is by

the use of weak law of large numbers (WLLN).
Let us consider a suitable function U(X), such that

Eq[U(X)] =* g(0) is such that g 1 is continuous function. Then 

WLLN is applied to U(Xj_) i ** 1,2,...,n gives

Tn “ "n" ^ U(Xi> ~E_* 
i=l

since g~1 is continuous it follows that g-1(Tn) is consistent 

for g“1[g(6)] - ©.
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Example : 2.2. 5. : Lst/ X | p ...,Xn be distributed according

0. X0- 1 if o<x<1, 0 > 0to f (x, 0)
0 otherwise

Here E0(X) 0 and by WLLN0+i

x„ - -a- £ Xi -E-» -5^- - «(8).
1 = 1

This implies that g_i(y) “ ■ t^y. , 0<y<l.,
which is continuous.

Hence g'*(Xn) = ---- —E—> g“1fg{0)] = 0.
1 " *n

Example : 2.2.6 :
If X^ be i.i.d. with U(0, 0) then U(X^) = — log X^ 

i * 1,2, ...,n are i.i.d. exponential with mean .

Thus

so

-4" {- log X;> —4“ = *<6>
i=l 0

-- z_a-----E—> 0.Z log X^
r2.2.6 : Assume that E(X^) = Mr> exists then

^ xi —Efor r - 0,1, 2, ... ,K. 
i = l

If follows from marginal and joint consistency for g 
continuous, g(mt’, ,...,m^') is consistent for
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Pz’, • • • >) • This method of obtaining consistent 
estimator is called method of moments.
For example Xt, Xz, . . ., Xjj be i.i.d. with N(^, ffZ). Here 

X = m/ —E—> P and m*’ —+ <*z■

Thus (a) mz’ - (mi')* = H (Xt - X)* **

(b) X + Ka/s£~  P > p + K.o-

(c) 3? ( a ~ x ^ —E—^ §> ( .. a )/ol O’a/ sn
7.1.1 : Consistent estimators can be obtained by using the 

order statistics.
For 0<*<1 , let denote the percentile that is a 
solution of the equation F(x, 0) = *. We assume that F is 
continuous and strictly increasing, so that $^{0) = F_i(*) is
uniquely defined for each fixed 0 e e. This would be the 
case for example in Cauchy, Laplace, Weibul and other 
continuous distribution.
Let r = [n^] + 1 then we define X(r) as the corrsponding
sample aquantile. By using the probability integral 
transformation for each fixed See, F(X^rj) = U(r) has the

same distribution as the r^h order statistics of a sample of
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size n from U(0, 1). Note that E(U(r)) *= nft. and

E(U{r)) - __r(r+i)
(n+i)(n+a) Then we can check that

K[°(r) ~ ----- * °* as n ----- » co.

Thus > x from which it follows that

F~1(U < r)) ■*
C.Example : Z.Z.7 : Let us check above criteria for Cauchy

distribution, f(x) = —£- l+(x-0) -co<x«»

then F( x) “ —J _L
-co l+(t~9)z dt.

= -4- [ tan'1 (x - 8) * -f-] 

so P[x S «»] - a - F<t*, 8) - 4- [tan-1 <«» - 8) +

This implies that n (x — 1/2) = tan-1 (- 0).

So, ($* - 0) = tan n (x - 1/2) = F-i(*).

is the sample quantile where r = [n^] + 1.

Xj, Xj., . . . , Xn ------> f(x, 0) i.e. Cauchy

fX/ ><x) - t-- rr^----— [F(x)]r_1 [l - F(x)]n'r f(x)
A(r) (r-l)!(n-r)I L J L J

" --- 7T1?-*----— [~i- tan-1 (x -0) + -J- ]r x(r-1)!(n-r)! L n 2 J
[_1--- _X_ tan"1 (x - 0)] -4 1l+(x~0)z
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By using probability integral transformation for every 0 ® 0 
fixed F(X{r)) = U(r) has the same distribution of r*'*1 otrder 

statistics of a sample of size n from U{0, 1) so

F<X(r)> - U(r)

JUgU(r)(x) <r-t>!<n-r)i

I n+i

,r~*

,r-i

(1 - x) n-r

_ v\n-r
Tr In—r+i

- x1-1 M—x.)n~c
B (r, n-r+O

(1 - x)

Hence E(U(r)) = —and E(Ufr)) - y XAxtn.
n+i vr' (n+i)(n+2.)

so Var (U/ _\) - --rixtll--- ;-X2 -----> 0, as n
(n+i)(n+z) (n+i)2

This implies that □

that is

Hence

U

(r)

(r)

-* %

-> F(?a, 6)

F-1<u(r)>

-> CD.

Example '• 2.2.8 : For C(m, 1) the median = p and thus

X( C—§—3 + 1) the sample median is consistent for j*.

Here r = [—§—] + 1 that is median order

F(X(r)> - U(r) ■* «(0, 1)
so E(U(r)) - ~w$t- and E(Ufr) = -.r(rtl)

v 1 n 'r' (n+i)(n+s:)
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consider P [1 u(r) - «l/t 1 > .

= P [' u(r) - 1 > ']

< M. S.E U(r) /

< Var (D(r))
€Z

_r.(.r...A..11..... cl--
** —Q—f-Q—±—1-1—--- —i—U. ------- > o, as n ------^ ©

— Z

This implies that U(r) — 

so F“‘(U(r)) —*-> F~‘<—Z-)

that is X(r) —> P 

Hence X ^^ p.
<HH+o

2.2.8 : In the following method,maximum likelihood estimatorA,
is used to obtain the consistent esatimator.

Assume that X is either discrete with probability mass 

function f(x, 0) or it's absolutely continuous with respect 

to lebesgue measure with probability density function f(x, 0). 

We define the likelihood of the sample (Xt, Xz, . . ., X,^) as the

function 1(0 I x ) =.fl f(x^, 9) where (Xj,Xt,... ,Xn) are

fixed and 9 varies over 0. The method of maximum likelihood 

estimation consists of choosing (as an estimator of 0) a



-40-

«<**value 0(Xt, Xz,...,Xn) that maximizes 1(0 I x) as a function 
of 0 for given X.

Under certain regularity conditions it can be shown that 
maximum likelihood estimator (mle) is consistent.

For redy reference we state the following regularity
/'v

conditions (Zacks(1981)).
I) For almost all X in an interval 0 of 0 including the 

true value 0O, the derivatives

9 9Zlog fe(x), 7^7 log f0(x) and -—- ■ log f0(x) exists.

II) log f©(x), ^7 log fe(x) and [— log f0(x)] are 

dominated by integrable functions.

Ill) For every 0 ® 0, 99
9Z7 log f0 (x) < H(x)

and Eq [h<x>] < K, where K is independent of 0 and is 
positive.
Under these regularity conditions any consistent

solution of the likeliihood equation E ——• log fj(x,0) = 0,

provides a maximum of the likelihood with probability tending 
to unity as the sample size tends to infinity.
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2.2.9 : The consistency of maximum likelihood est gators.

Consider n independent observations from a distribution 
f(xie) and for each n we choose the maximum likelihood

estinmator 9 so that

log L(xie) > log L(xl6) (2.2.9)
We denote the true value of 9 by 0O. Consider the random

variable 1ffi . By Jensen's inequality (2.1.6) for
L(xieo)

9* * 9,

108 L(xUxia*) fis—i— v < log E0 < ldxl£-Liec) J 9o [ L(xie0)

Hence

(2.2.10)

E«o { 108

This implies that
E0Q { log L(xl0*) - log L(xieo) } < 0.

So E&o {-£- log L(xl0*)} < E0q {-£- log L(xl0o)} (2.2.11)

Provided that the expectation on the R.H.S. exists. Now for 
any value of 9,

log L(xl0) = -4— log f(Xi19) is the mean of a
i = ln

set of n independent identical random variables with 
expectation.

E0 [ log f(xie) ] = E0 [ -Jp log L(xl0) ]

865^
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By SLLN log L(xl0) converges with probability unity to

it's expectation as n increases. Thus for large n we have 
from (2.2.11) with probability one.
—log L(xlS*) < —log L(x|0o)

Or
Prob.{ log L(xl0*) < log L(xl0o) } = 1 (2.2.12)

On the other hand equation (2.2.9) with & = &0 given

log L(xl0) > log L(xi0o) (2.2.13)

Since (2.2.12) and (2.2.13) are contradiction, it follows
that as n ----- > oo, 0 does not converges to 0* / 0O but it

convonverges to 0O in probability. This establishes the 

consistency of the maximum likelihood estimators.

For example in N(0, or*) we can show that the mle(9, &z) is

(X, —Similarly for f(x, p, cr) = exp {l - (x-p) / cr}

the m. l.e of (^, c) is (x/.v, .E? -l ^---^lJ.1 X.
<- w; i=l rv~ i J

However consider the Laplace or double exponential 
distribution with unknown location p and cr = 1. This has
probability density function f(x, cr) = —exp {— I x — Ml},

log 1(>* I x) = ~ nlog 2 - )l! I xj - p I.
i=l



-43-

If n = 2 m + 1 then log 1(j* i x) is maximized at .n = X(m+1)

but if n = 2 m then log 1(j* lx) is maximized for any value

of ^ e (^(m)> ^(m+i)^ an<^ * *s not defined uniquely. By 

convention we can define ^ - X,r n n xthe sample median.

Similarly if we consider b(l, 0) model with 0 e'O,1) = 9 
then for x = (0,0, . . ., 0) or x * (1,1,...,1) the maximum of
1(0 / x) = 0^*X* (1 — 0)n ^X* occurs at 8 = 0 and 9=1

respectively and the 8 belogs to the clouser of 9 and it does 

not belong to 9. If we consider 9 = [o, l] then this problem 

does not occur.
2.2.10 : Maximum likelihood estimator need not be consistent 

< Basu (1957))
Let Xt,Xa, ...,Xn be i.i.d b[l, P(®)] where

P(0)
8

1-8

if 0 is rational 
if 8 is irrational

O<0<1.

We shall prove ( I) X is m.l.e. of 8

(II) X —^ E^Xi) - P(0)
Ex- n-7x■Let here 1(0 I xn) = P(0) 1 (1 - P(0)) x

®nx (1 — e)n(t-x) if e is rational.
(i — 0)nx en(i-x) if 0 is irrational.
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This implies 0 = x is m.l.e. and since X^’s are

i.i.d. 5^ —£-> E(Xt) from WLLN.

i.e. Xn —P{0)

and since P(0) ¥ 0 V/ 0.

Xn is not consistent so m.l.e. need not be consistent.

9..?.. 11 : Inconsistency of maximum likelihood estimator 

( Ferguson (1982)):
Let 0n denote a maximum likelihood estimator of 0 b sed on

sample of size n if 8(0) ---- > 0 sufficiently fast as 0 --- > 1
with probability one as n ---- > a> whatever be the true value
of 0 c[ 0, 1]
Proof : The following densities on [-1, 1] provide a

continuous parameteriazation between the triangular 
distribution (when 0=0) and the uniform distribution when 
0=1 with parameter space 0 = [0, 1].

f(x l - (l - 0)^ [1 - IA<*> * -§- If. .!<*>

...(2.2.14)
where A represents the interval [0 - 8(8), 0 + 8(0)], 8(0) is 
a continuous decreasing function of 0 with 8(0) = 1 and 
0<S(0) <1—8, for 0<8<1. It is assumed that X1,X4,... are

i.i.d. observations available from one of these distributions. 
Above set up satisfies the following conditions.
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(a) The parameter space © is a compact interval on the real 
line.

(b) The obsevations are independent identically distributed 
accurating to a distribution F(x I 0) for some 0^8,

<c) Densities f<x I 0) with respect to some cr -finite
measure (Lebesgue measure in above example) exists and 
are continuous in 0 for all x.

(d) If & t* ©’ then F(x I 0) is not identical to F(x I 0’)
(Identifiability).

Then consider 0Q the value of 0 which maximizes the log
likelihood function. That is

ln(0) = log.fi f(xi I 0) - log t(xL I 0) (2.2.15)1=1 i_i

Since 0 < 1 then from <2.2.14) grap[h of density will be
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f(x I 0) i e , 8 (2.2.16)

1(8) = -- 1- -  + —1— < co.n nV ' S (oc) 2

S (0) 2 S(8) 2
for each fixed positive number « < 1

o

Since S(0) is decreasing we have whatever be value of 0,

~n~ ^n^®^ -----00 with probability one.
Provided S(0) ----- » 0 sufficiently fast as 0 ----- > 1

aSince 0R will be greater than « for preassigned « < 1.

Let Mjj = max {Xj.X^,. ...Xjj}. Then Mn --- > 1 with probability

one whatever be the true value of 0.

o<£<i 1n<0> “ 2 i<* f(*i I 0)
l £ log f(xt I Mn)

* (n - 1) log ik_ + log [J_zJn + Jk.12 * L SCMn) 2 J

i (n - 1) log + log —---^
(Mn)

This implies that

V0> log j.I **
S(Mn) (2.2.17)

So with probability one

niS inf 0?8fl -i- l„<e> J log -1- + Inf 4- log

Whatever be the value of 0, Mri converges to 1 at a certain 

rate, the slowest rate being for the triangular (0=0).

]•
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Since this distribution has smaller mass than any of the 
others in sufficiently small neighbourhoods of one. Thus we

can shoose S(0) --- > 0 so fast as 9 --- > 1 that

—log [(1 — Mpj) I S(Mn)] converges to infinity with 

probability one for the triangular and hence for all other 

possible true values of 9. This shows that ©n is m.l.e bub

not consistent for 9.
2LJL ORDER OF CONSISTENCY :

2.3.1 : Consistent estimator with order (Cn) (Akahira Takeuehi 

(1981)).
For any increasing sequence of positive numbers {Cn}

<Cn --- > co) an estimator Tn is called consistent with order

{Cn} if for every e > 0 and 9 of 9 there exist a S

sufficiently large number and sufficiently small positive 
number L satisfying the condition

PS B: lll-^ll <S P8,n K H Ta - 9 II • L} < €.

2.3.2 • Lemma : If Tn is a {Cn> consistent estimator then Tn 

is consistent estimator. That is if

SIS d: lll-SlKS Pe,n {Cn H Tn - © II > l} < e (2.3.2)

Then we have to prove

n4S f0,n {llTn—©111e’} = 0 for s’ any positive number. (2.3.3)



(2.3.2) implies that

iUS P«,n { " Tn - * 11 > } < ' <2'3'4)

As L is finite and as n --- * <», €n --- > <& let n0 be such that

—k— < e', n l nQ.C °

From (2.3.4) we get

4̂
_i
.

83 PS,n 1 II Tn - * II > €' \ < £

Now by letting e > 0 we get

lim
n-><» n { II Tn - * II > e» } = 0

Hence

limn-too Pe.n { II Tn - e II > e' } " 0

2.,..3-,.3 : Lemma : If Tn is {Cn> consistent and

n-^oo [ . ] - K, (0<K«») then Tn is dn consistent.
cn

Enaof : Consider e:|i§-I||<s Pe,n {'* Tn - 0 || >
un

= i4s 8:lli“*ll<S pe,n K II Tn - 8 II L}
un

s JiS 8: lll-^IKS Pe,n K H T„ - 8 || > JS—.L}

since -p- i 0 (2.3.5)

Since {Tn> is {Cn> consistent there exist L' such that
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e.nl-Sll<s p8,n {Cn II Tn - 8 II > L'} < c

Now choose L such that

—L > L’ with this choice the R.H.S. of (2.

less than the L.H.S. of (2.3.6).

Hence the result.

It is obvious that if dn i Cn and Tn is {Cn> 

then Tn is {dn> consistent.

Example : 2,-3,.3 : Let X^X*, . . . ,xn be i. i.d. U(0, 

Tn = X^nj. We know that

p0 { I Tn - e I >€' } (1 > n
6

0

if « 

if «

Hence pg 0H^§||<s Pa.n {Cn » Tn - 0 II > l}

9 < [l
Cn($+S)

n

[i- --- L--- _Q-
(S+S).n C

-]n

n

_ _L_
e i0+S where

'n
< €

Hence {Tn> is n consistent whenever

L > - -IP. + S).log eSi

(2.3.6)

3.5) is

consistent

0) and

' < e

' > 0.


