Chapter Ne., 2

GALOIS FIELD AND FINITE GEOMETRIES

In this chapter . we discuss about the BGalois Field and fin-
ite Geometries. In the section 2.1 « Wwe give some definitions
and eiementry properties of Galoies field. In the section 2.2
we discuss about the finite projective Geometry and in section
2,3 we discuss sbout finite Euclidean Geometry along with compar
ison of it with PG(m,%);

Fisher during his visit to India, in the Seminar'held under
the auspices of the Indian statistical Institute, made a quess
that it should be possible to caonstruct experimental designs
by using properties of Galois field.

Rose (1938) has shown that his guess was correct. In the con-

o struction of factorial designs the properties of Galois field are
veky useful. We will discuss about the construction of factorial
deéigns by using the properties of Galois field later on. First

we discuss about Galois field.

2.1 Definitions And Elementary Froperities of Galois Field
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fialais field is a @éwﬁiﬁmlgw typs of field, s0 it is worth-
while to define first, 'field of numbers °.
Definition 2.1.1 : Field --
~~~~~ C;Z*;;;;;;;;;;;;;—;;m;:;wy ﬁair of elements a, b EF .
there exist two unique determined elements & + b , called the
addition of elements and a.b ., called ﬁhe multiplication of ele-

ments in F , then the system F is called a “field "~if the

addition and multiplication satisfy the following postulates.



I. a+b=D>b+ a3, a . b==0t.a
ITI. {a+ b)) +c=a+ [ b+ c ), (ab) c = a (bc) .
111, There exist two elements O and 1 in F such that

a+0=a and a . 1 = a for every ‘a’ in F .

IV. To every a =/= 0 , there exists an element ( —-a ) and

-1 ) ' -1
an element & such that =t a + ( —a ) =0 and a . a = 1 .
The element ' — a ' is called an additive inverse of

-1
‘a ’ and ' a ’ is called multiplicative inverse or

simply inverse of a .
V. c (a+ b)) =>ca + b .
Far example, set of all rational numbers ,.set of all

complex numbers, residue mocdulo p 3 where p is primer or
power of prime are fields.
Definition 2.1.2 : Galois field 1--
""""" A tield containing finite number of elements is called as,
‘finite field ° or 'Galois field ‘. A finite field has been der-
ived by Galois Evariste ( 1811 - 1832 ), so it is callgd AS
‘Galois Field .

A Gélois field ccntaining s elements is denoted by ‘GF(s)’
And when s 1is & prime, the elements of GF(s) are 0, 1, 2, - -
- = 4y 8 = 1. These =2lements may be called as the marks of the
field.

As an example we consider s = 7 . The elements of GF(7)
are 0O, 1, 2, %, 4, 3 and é&. The simplest example of a Galois
field is provided by the field of the,classes of residue mod p ,
p — being any prime positive integer.

" Fraperties 0Of Balois Field ™
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‘Follbwing are the different properties of Galois field :-
1. A rule is made that any positive integer N 1is equal to tpe
remainder R wnen N 18 divided by an positive prime num—

ber p .

Then R is written as

R = Nmod p .

S Aand a field of such R e.ements of modulo p - is a Galois
field.
2. If p is a prime number then all the four operations of ad-

dition, substraction, multiplication and division are
possible.
To illusatrate this we take any two elements from

GF( 7 ). For instanc=, suppose 4 and % belonging to GF(7) are
‘chosen, then

(i), 4 + 5 = 9 mod(7) = 2 ,
(ii)., 4 - 8 = &6 ,
(iii)s 4 X 5 = 20 mod(7) = 6 ,

and (iv) . 4 / % = 5§ ,

It is seen that all the elements 3 2, 6, 6 and 3 are the el-

ements of GF(7) .

3. When any element of a prime modulo is multiplied in turn by
its nonzero elements, each time a different product is obtai-
ned. This ensures all possible divisions. But when p is non
prime, this property does not hold and hence all divisions are
not possible. When division is possible, the elements are said
to form a Galois field. When division is not possible the multi-

plicative inverse for that element does not exist. 8o Galois

field does not formed. As an example let us consider elements 3

ot



and 4 from G (&6). Note that multiplicative inverses for I and
4 do not exist, so the set of numbers 0O, 1, 2, 3; 4, 3 1is not
closed under the operation of multiplication. Hence far, s = &6 ,
Galois field does not exist.

4, There is at least one element in every field, different powe-

rs of which give the different nonzero elements of the field.

Such an element is called the “Frimitive root ° or ‘primitive el-
ement ° of the 3F(s) .

Also, for any element x of GF(s) xd = 1. And if.x = x/is
a primitive root, then x9=/= 1 .+ when d < s - 1.

As an illustration , we consider GF(7) and check whether 3
is a primitive =2lement or not.

we have ,

Q 1 2 5] 4 5 6

T =1 4 3 =32, =2, 3=6,3=4, Z=05,3=1.
Here, d = s - 1 . Hence , 2 1is a primitive element of GF(7).
Again, consider x = 2 . We have , '

O 1 2 5

2=1, 2, 2 =4, 2 =1 .
Here d =3 < 6 . Hence, 2 is not a‘primitive element of GF(7).

It
o

Also, if we consider « s We have

0 1 :
5=1,5=5, 5=4, 5=6, 5=2, 85=3, 5=1,

+J
£
&
on
o~

Hence , 9 is also a primitive element of GF(7). Which implies
that, primitive element is not unique. Further, I is multipli-
cative inverse of 5 and both are primitive elements. From this
we have the following theorem -——

Theorem 2.1.1 == If wu is a primitive element of GF(p),

then it's multiplicative inverse is also an primitive element of

GF (p) .
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proof :- We shall prove the above theorem by contradiction.

Let % be a primitive element of GF(p) and vy is a multi-

plicative: inverses of x .,

Hence,

Moy = 1 me—e—— ——— (2.1.1)
HSuppose, vy 1s not a primitive element, then
y = 1 , for d < p — 1.

Consider,

(x.y) = xn
Hence, by equation (Z2.1.1!, we have
xd = 1 for d < p - 1 .
which implies, x is also not a primitive element, which is &
‘contradiction to the assumption for % is a primitive element.
Hénce, we conclude that vy is also a primitive element .
KKK
It , » is a’brimitive element of GF(p), then all the

non—-zero elements of GF(p) can be expressed as ,

0 1 2 A 4. - p-1

La % W % 4 ® . ® .

i

n

And this is called the power cycle of % . For x = 8, the pow-
er cycle is given as -

0 1 2 .t 4 5 &
5 =1, S=5, S5=4, 5 =6, 5=& 5=23, 85=1.

A most general Galois field contains of p elements,’
whear p is a prime positive integer, and n any integer. Tuwo

Galois fields with same number of elements are isomorphic. i.e.
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structurally identical in such & way that the sum corrosponds to

the sum and the product to the product. The Galois field with p

-

eleﬁents is usually symbolised by 'GP(p ).

et % , » 4 — — — . ¥ ) be all the nonzero elements of
n 1 2 p -1

AX . an . - - - ., au R O i
1 2 . p —1 1 2 p ~-1
~f oa =/= 0 .
Hence
p—1
a =1 e (2.1.2)

For all a =/= 0 and a C GF(p )} .
. n
In general , a Galois field of p elements is obtained

as follows @ '
Let F((x) by any given polynomial in x of degree n  with

coefficients belonging to GF(p) and F(x) by any polynomial in

» with integral coetficlients. Then F{(x) can be expressed as,
F(x) = f(x) + p.g(x) + F(x).Q(x) =————————= (2,1.3)
Where,
2 n—-1
f(x) = a+ax +ax + =— - =+ a # o ——— 2.1.4)
o 1 2 n-1
and the coefficients a , (i =0, 1, 2, - - - n-1 ) belong to
i :

GF(p) . This relaticn may be written as -~

F(x) = f(x) mod { py F(x) J —=moreee—e—— e (2.1.3)
and we say, f(x) is the residue of F(x) modulo . p and P(x).'
The functions ‘F(x) that satisfy (2.1.5), when f(x), p and F(x)
are kept fixed form a class. If p and P(x) are kept fixed but
f{x) is varied, b classes may be formed, since each coefficient

in f(x) may take the p values of GF(p). Note that the classes
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“defined by f(x), fore a commutative ring, which will be a field

if and only if F(x) is irreduciable over GF(p){ Bose ( 1947 )1].
. n ‘
The finite field formed by the p classes of residues is
n n
called a Galois field of order p and is denoted by GF(p ). The

function P(x)‘ is sa.d to be & minimum function for generating

n

the elements of GF(p ). 7The minimum function need not be unique
n

for GF(p ). Once a monimum furction is found all the nonzero el-

n
ements of GF(p ) are given as -—-

0 1 2 3 p—-1
X o= Ly Ky % 4 B o4 — = = =~ 4 R residue modulo P (x)
. p—l
and x is a primitive root of the equation x = 1 . Such an

equation having roots as primitive roots is called the ‘cycloto-

.

mic equation °.

.

Here main difficulty is to find ‘minimum function ‘. Follo-

wing are the differen: steps [Bose(1947)] used to find minimum
n
function for given GF{p ).

Step 1 ¢~ Divide x4 -~ 1 by the least multiple of all factors
d ' n
like: % — L , where d is a divisor of p - 1 .

Step 2 :~ Obtain the equation

P
: # R |
=) e e ( 2.1.6 )
d
*» -1

The roots of this equation are all the primitive roots of
the equation bt = 1. The arder of this equation (2.1.6) will
n
be G(p - 1)  where k) denctes the number of positive integrs

less than k and relatively p-ime to it. And let this equation

be as, -——



where, m is order of this equaltion , and a « & « T - a are
S m-1 m—22 4]
integers. And this is a cyclatomioc eqution.,

Step % 11—~ Replace the integers a of the left hand side of eq-

e ot e e 1

wation (Z.1.7) by their residae classes (a ) modulo P, and

i
obtain the cyclotomic polynomial .,
m m—1
oot & ) ® + o = () e (21,8 0)
m—1 ‘ s}

Step 4 :—~ Find the irreduabls factor of polynomial ( 2.1.8 ).

Let P((3) is that irredusble factor. Then F(x) is a.minim-
um function.

Az an example, we find a minimum function for generating

-y

s

the elements of GF(2 ).

Here,
n = 2 and po= 2
Hence, A
FEx) = »w - 1 .
Step 1 :- WE‘divide ® - L by ¥ o= 1

[ e

.
> o

i.e2. ‘(x ~ 1)Y/(x = 1) = ®x + x + 1.

Step 2 1= The cyclomotic equation is

2
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Step % :— COyclotomic polynomial is ¥+

Step 4 :— Let,

bd

i
a1
a1
+
P
o
f
+
b
0

S

+

which implies ,



be + ac = 1 e (2.1.10)

be =2 e 2.1.11)

From, equations (2.1.9) and (Z.1.11) we get
a=c¢=bh=4d=1.

But with these values equation (2.1.10) is not satisfied. So

3
¥+ x + 1 cannot be further factorised. Hence x 4+ 3 4+ 1  1is a

oy
E

irreducible polynomial and is a minimum function for GF(Z2 ).

>
s

With this minimum function, we generate the elements of
-

. 2 _

GF(2 ) . If % is & primitive root , the nonzero elements
0 1 2

are o= Ly M= M, ®no= W+l

Following is a list of some minimum functions that are need-

ed in the construction of designs.

Galois Field Minimum Functions
=z 2
2 AR S TR I §
=z = 2
2 #o+ow o+ 1
4 4 A
2 o+ ou o+ 1

- ]
. -
- -
= ¥ o+ o® o+ 2
i -
- -t
- .
= wo+2x + 1
,
. -
2 2
- -
a ®o+ 2+ 3
- ~
— e
7 ok b+ 3 .

With the help of Galois field GF(s), we can construct

finite geometries such as Finite Frojective Geometry and Finite



"Euclidean Geometry. We discuss detail about them in the next
sections.

2.2 « Finite Frojective Geom2try :—
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From Balois field we can construct a finite projective geom—

etry of m dimensions in the following manner ; where s is
. n i
prime power li.e. s = p 3 p -—prime number and n any posi-

tive integer.
; .
Consider the ordered set of (m + 1 ) elements

( % 5 % 4 % 4 = = = 4 # ) mee——— ( 2.2.1 )
O 1 2 m
where the ® ‘s belong to GF(s) and are not all simultaneously
i
zero. This ordered set (2.2.1) may be taken as a point.of proje-

ctive geometry of m dimensions. This projective geometry is

daenoted by FPGOm,s). It i1 clear that two points ( X x4 = = =

9] A
mm % ) and (Y .y 4 == =y ) are same if and only it,
m 0 1 m
y = P x, 1= 0, 1, 2 - = =y m.
i i
where,

F is a nonzero element of GF(s). And we may take

H o4 Hog ™ = = X as the co-ordinates of point (2.2.1).

Each of x4, %, — = =, x can be chosen in s different
o 1 m

ways and not all x ‘s are simulataneously zero. So the total
i _

-~

number of points in FG(m,s) is .

Since,two points ( x 4 o “ - - . ) and { v Y PRV |
Q 1 m : Q 1 . m

o
2



are same when Y =‘P ¥ o3 di= 0 (1,2, - - m and P =/= 0 .
i i :
S0, ‘F can take s ~ 1 values. Hence, the number of distinct

ponts in PG(m,s), denoted by qW are

For m = 0 , we get Yo = -1. For justification, we can co-

sider FG(Z,3). The possible nunber of distinct points for all

I3

# ‘s not simultaneously equal to zero are enumerated as ——
i

{ 0,0,1 ), ( 1,0,0 ), « 19,1 ), ( 1,0,2 )y ( 0,1,0 ),
( O lal Dy ( O 1,2 ), ( 1,1,0 )y ( 141,101 Y, ( 1,1,2 ),
 1,2,0 ), ( 1,2.1 )y ¢ 1,2,2 ).

These are in al: 13

By, using the equation ( 2.2.2 ), we get
".5:
Eo- 1

o
q - S T ——

3 -1

3]

-

~t

Hence the verification ,

B e T L T PR SH S SpA———

All the points which satisfy a set of (m -1 ), (1 < m )

independent linear homogeneous eqgquations

]
t
a # +a 4 +a ¥ + ~ -~ - 4+ a x = 0 |
10 O 111 202 im m '
;
a ®x +a «% +a nw + - - = + a x = Q|
20 0 21 1 2202 2m m :
.
(2.2.3)
13
1
—— - ]
)
H
a 20 *t @ > I ® = Q]
i
]

o
R



may be said to form a 1 —~dimensional subspace, or briefly , a

1 ~flat in FG(m,s). The equations may be said to represent this
flat. It is clear that [ Ragnav Rao (1971) 1 any other set of

m - 1 independant equations, obtained by linear combinations of
the equations, in system of egquations (2.2.3) & will have same
set of solutions, and_hance it will represent the same 1 —~flat.

N tes th&t the number of independent points lying on the 1 —-flat

of (2.2.3%) is

It is clear that a D —flat is identiéal with a pointA, 1 ~flat
with line i.e. two independent points , a 2 —-flat with plane
i.e. three independent points., and =0 on.

Now we find the number of 1 ~flats in PG(m,s).

It is clear that, each | ;flaﬁ is determined by any set of
(1+1)  independent paints lying on it. Hence the total number
of 1 - flats in PG(m,s)  1is equal to the number of ways of sel-
acting (1+1) indep=z=ndent points from the FG{m,s) divided by
the number pf ways of selecting (1+1) independent points on an
1 - flat. And it is denoted by g(mgl,s) .

Qut of Q@ poiitts, the first point can be chosen in Q@ ways

m ' m
and second in @ -~ 1 =0 - @ ways. Fhe third point must be

m m 2
chosen in such a way that it is linearly independent of the first

-
'

two points, i.e. it should not be a point on the 1 —flat for-

med by the first two points. As, there are @ points on a
1 ~ .
1 ~flat hence, the number of w~says of choosing & third point is

a - . In general, the nunber of ways of choosing (1+1) th
m 1



point , having chosen 1 independent points and it is linearly

independent of the first 1 points is O - @ « Where @
, m -1 : 1-1
are the points on (1 - 1 ) = rlat. Hence, the total number of

ways of selecting ( 1 + 1 ) independent ways in FG(m,s) are

a (o -a 3y ¢(a -a )y - ~ =~ (@3 - @ ) == (2,2.8)
m m 0 m 1 m 1-1

But the same 1 —-flat can be generated by any ane of

a(ege-a )y a-ag )y - S (@ - Q Y sets of (l1+1) inde~
1 1 0 1 1 ) 1 1-1

pendant points. Therefore the total number of distinct 1 -fla-
ts in FB(m,s) is

ea@a-ag¢) - - - (@ -a )
m m 0 m 1-1

My 1 g5 )= e o e st e e e
ag@-a¢)y - - - (@ -0 )
1 1 0 1 1-1

(2.2.86)

oy

Making the use of equation ( 2.2.2 ) and solving further,we get

m+1 m m—1 m—1+1
{ s - 1Y (s - 1) (s -1 ) - - - (s - 1)
UMy 1§ )5 rmm e oo o o o o e e e e e e e
1+1 1 1—-1
( s -1y (s ~1) (s -1y - = = (s -1

-

1. By using equation ( 2.2.% ) we have

Q ( myles ) =8 ( meor ~ 1 -~ 1.‘ s ) mee—ee—— 2.2.8)
m+1
s -1
2' D ( mgC’qS ) B e e e e v e oo e e
s ~ 1

Which is equal to number of points in FG(m,s). Hence,
number of 0 —flats .s equal to the number of points in FG(m,s).

Example 2.8.2 3~ For PEIE,R) we find the number of points in

)

FGE,2) and number of 2 —~flats. The number of points in PE(3,2



2 -1
A = e = 15 .
2 - 1

And tHese are enumarated as ,

(O 001 ), (OO LC), (OOLL)), (O1LOGCG), (OLO1L1),
( O 1'10), (01 1 Ly, (1000 ), (1010 )'_. (1011,
'(11.00),(.1101),.(1110),(1111),(0000).

Further, number cf 2 ~flats in PG(I,2) are given as ,

And these flats are constituted by the solutions of following

equations -—-

0 2 b = O 1 =
¥+ =0, W+ ox =0 ou oo =m0
0 A 2 3 1] 2 s
]
¥+ o+ =0 and ® 4+ x4+ x t+ x = Q .
1 2 =z 0 1 2 &

Further , we get number of independant points in 2 —-flats

of FG(I,2) equal to

If we take the intersecticns of pairs of 2 —-flats , we obt-

ain the design for 1 ~flats . Number of 1 ~flats are calcula-

s



ted as ;

4 £
(2-1) (2~ 1) 15 X 7
Q( Tyly2 ) B e = e = I8,
2 T X 1

And number of points in each 1 ~flat is ,

g
e

2 o- 1

Q o sntes aners oo sonbs S suns saves

1 2 - 1

il
l:,.‘.g

If we remove from FPG(m,s) all the pointg in the (m - 1 )

il

dimensional subspace n O ., we can get a geometry , called as
finite Euclidean geometgy « denoted by EG(m,s). It can be desc-—
ribed as follows ~——
2.3 The Finites Euclidéan Georetry BEG(m,s) 5~
Any ordered set of m elements ( x 5 x , - - x ) belan-
1 2 m

ging to GF(s) may be called a noint of the finite m —dimension-—
al Euclidean Geometry EG(m,s) , where the two points

( % o % 4 = = =~ ¢ x5 vand (¥ 4 ¥ 4 — = = ,'y ) are identical

e
it
’_i
Fd

)
i
H
i

if and only if « = v
i i

=, «m . It is

clear that the number of points in EG(m,s) is s where s = p .



Definition Hedol o I —~flat 2--

All the points satisfvying a set of (m -1 )} . (1 « m ) co-

nsistent and independent linear equations -——

]
. 1
A +a M +a 4 0+ = - = 4+ oa w =0 !
10 111 12 2 imm :
) ;
a + &8 Hx+a x + - -~ = "4+ a u =0
20 211 22 2 2m m i
:

- : ———(2. 5. 1)
]
L]
o 1
)
]
]
— 1
~ 1
]
1
a + @ - o= 0 ]
m=1,0 Com-lal 1 m—1l,m m H
)
i

may be said to constitute a 1 ~-flat\ of EG{(m,s) represented by
the equations(2.%.1).Any other set of m -1 consistent and.indep—
endent linear equaltions which are obtained by linear combinations
of(2.3.1) r@hrmﬁmnt the same 1 ¥f1at. The nhmber of 1 ~-flats
in EG(m,s) . is

( my, 1, 5 ) - ( m—1i, 1, s ). e (R UALRY

s e toant otse S e e b B e Hnt A i Yot

Consider EG(3,%). Here m= 3 and @ = 2 . Number of poin-

K]

ts in EG(3,2) is 2 = 8. And these are ( 0, O, 0 ),
(C 1,0,0 )y (01,0 )y ( 1,1,0 ), ( 0,0,1 ), ( 1,0,1 ), ( O,1,1 ),
( 1,1,1.). T7To obtain the 1 -flat we have to solve the equatio-

nes -  Say

¥o= 0 and x o= O simultaneously. And number of
1 2

1 -—-flats are —-

@ 341,2 ) —— 0 ( 2,1,2 )

Now .



4 ' A

(t2-1) 2 -1 1% X 7
e B bt B emem o e = =5 .
: 2 X1
{2 -1) (2 -1
and
3 1
(2-1) (2 -1 7 X3
CH{2,1,2) = e e o e e = e e e e e = 7 ]
2 T.X 1

(2 -1 (2~ 1)
By substraction , we get numbe~ of 1 ~flats equal to 28.

Relation between Pq@,ﬁ) and EG(m,s).

If xD=/= 0O , then a point 1n PG{(m,s) can be regarded as

( 1, % /% 4% /% 4= = =y x / x ). A (m1) ~-flat satisfying

is called an (m—-1) ~flat at i~finity . and points lying on it
ed as points at infinity.
And the remaining points are called as finite points of FPG(m,s).

If » =/= 0 , then point in PB(m,s) can be written as

Q
i
i 1 a - ! . ~ ) -y
{ 1, 3 48 4, - - =% ) . where H = —-- ,i=1,2,- .n., 50 there
1 2 n i X
0

is 1l:1 corrospondance between the finite points aof FPG(m,s) and
the points ( % , ® 4 — ~— =, ® )} of EG(m,s). For any finite

1 —flat of FG(m,s) , qgiven by

-

a #®x+a »n + — - -~ +a 3 = O i=1,2, — — w1, ——(2.3.3)
10 0 11 1 : im m

and corrasponding 1 ~flat of EG(m,s) , given by ths equation
a +a ®x + - - ~+ a x =0, i=l,d - - ,m1 ~=—(2.35.4)

g.-::.:l - Wt W
10 11 1 . m m

It is easy to see that the set (2.3.4) is consistent when the



1 ~flat of FG(m,s) is finite. Thus there is 1:1 corrospondance
between finite 1 —flats in FG(m,s) and 1 ~flats in EG(m,s), also
the finite points on the 1 ~flats of PGB(m,s) corrospond to the
points of the 1 —-flats in EG(mﬂs). Thus hy cutting all the po-
ints at x =0 and 1 —flats lying at infinity, EG(m,s) can be
derived frgm FGimys). And by considering ﬁh@ points on EB(h,s)
as the finite points of FPG(m,s) and adding ( m - 1 } —flat at
infinity at woo= O, AKQHQ with distinct points lying on it. We
get FG(m,s) fﬁmm EGim,s).

We refer the two examples 2.2.1 and 2.2.2 and compare. In

FPGE(E,2), the number o distinct points are

4
5 o~ 1
@ = e = 15 .
= 5 - 1

And in EG(E,2) , these are < = 8 . And these points in

EG(I,2) are obtained by discarding the pnints iying on 2 -flat

of FG(m,s) represented by the =zquation % = ., i.e. the poi-
‘ o

nts ( 0,0,0,1 ), ( O,0.1,0 3}, 1 0,0,1,1 ),2 0,1,0,0 ) and

( 0,1,0,1 ). Hence number of points in EG(3,2) = 18 -7 =8 .



