
GALOIS FIELD AND FINITE GEOMETRIES

In this chapter , we discuss about the Galois Field and fin­
ite Geometries. In the section 2.1 , we give some definitions
and elementry properties of Galoies field. In the section 2.2 
we discuss about the finite projective Geometry and in section 
2.3 we discuss about finite Euclidean Geometry along with compar 
ison of it with PG(r»,s).

Fisher during his visit to India, in the seminar held under 
the auspices of the Indian statistical Institute, made a guess 
that it should be possible to construct experimental designs 
by using properties of Galois field.
Bose (1938) has shown that his guess was correct. In the con­
struction of factorial designs the properties of Galois field are 
very useful. We will discuss about the construction of factorial 
designs by using the properties of Galois field later on. First 
we discuss about Galois field.
2.1 Definitions And Elementary Properities of Galois Field :

fieJi if § papfeioylap types of field, so it is worth­
while to define first, 'field of numbers '.
Definition 2.1.1 : Field z—

Let corresponding to every pair of elements a, b E F , 
there exist* two unique determined elements a + b , called the 
addition of elements and a.b , called the multiplication of ele­
ments in F , then the system F is called a 'field '-if the
addition and multipiication satisfy the following postulates



I. a + b = b + a , a.b = b.a
II. (a + b)+c = a+;b + c), (ab) c = a ( be ) .
III. There exist two elements 0 and 1 in F such that

a + 0 = a and a . 1 = a for every 'a' in F
IV. To every a =/= 0 , there exists an element ( -a ) and

-i , -1
an element a such that at a + ( -a ) = 0 and a . a = 1 .
The element ' - a ' is called an additive inverse of 

-1
'a ' and ' a ' is called multiplicative inverse or 
simply inverse of a .

V. c ( a + b ) = ca + cb .
For example, set of all rational numbers ,.set of all 

complex numbers, residue mcdulo p ; where p is primer or 
power of prime are fields.

Definition 2.1.2 : Galois field : —
A field containing finite number of elements is called as, 

'finite field ' or 'Galois field '. A finite field has been der 
ived by Galois Evariste ( 1811 - 1832 ), so it is called as , 
‘Galois Field '.

A Galois field containing s elements is denoted by ’GF(s) 
And when s is a prime, the elements of GF(s) are 0, 1, 2, - 
- - , s - 1. These elements may be called as the marks of the 
field.

As an example we consider s - 7 . The elements of 6F(7) 
are 0, 1, 2, 3, 4, 5 and 6. The simplest example of a Galois 
field is provided by the field of the classes of residue mod p 
p - being any prime positive integer.

" Properties Of Galois Field "



Following are the different properties of Galois field
1. A rule is made that any positive integer N is equal to the

remainder R wnen N is divided by an positive prime num­
ber p .

Then R is written as
R - N mod p .

And a field of such R elements of modulo p - is a Galois 
field.

2. If p is a prime number then all the four operations of ad­
dition, substraction, multiplication and division are 
possible.

To illusatrate this we take any two elements from
6F( 7 ). For instance, suppose 4 and 5 belonging to GF(7) are
chosen, then

( i ) . 4 + 5 = 9 mod (7) = 2 ,
(ii) .4-5=6,
(iii) . 4 # 5 = 20 mod(7) = 6 ,

and (iv) . 4/5=5.
It is seen that all the elements ; 2, 6, 6 and 5 are the el­

ements of 6F(7) .
3. When any element of a prime modulo is multiplied in turn by 

its nonzero elements, each time a different product is obtai­
ned. This ensures all possible divisions. But when p is non 
prime, this property does not hold and hence all divisions are 
not possible. When division is possible, the elements are said 
to form a Galois field. When division .is not possible the multi­
plicative inverse for that element does not exist. So Galois 
field does not formed. As an example let us consider elements 3



and 4 from G~(6). Note that multiplicative inverses for 3 and
4 do not exist, so the set of numbers 0, 1, 2, 3, 4, 5 is not
closed under the operation of multiplication. Hence for, s = 6 , 
Galois field does not exist.
4. There is at least one element in every field, different powe­
rs of which give the different nonzero elements of the field.
Such an element is called the 'Primitive root ' or 'primitive el­
ement ' of the 3F(s) .

Also, for any element x of GF(s) x =1. And if x = x is
d

a primitive root, then x =/= 1 , when d < s - 1 .
As an illustration , we consider GF(7) and check whether 3

is a primitive element or not. 
we have ,

Here, d = s - 1 . Hence , 3 is a primitive element of GF(7).
Again, consider x = 2 . We have , 1

0 1. 2 3
2=1, 2, 2 = 4, 2 = 1 .

Here d = 3 < 6 . Hence, 2 is not a primitive element of GF(7).
Also, if we consider x = 5 , we have

0 1 2 3 4 5 6
5=1, 5=5, 5=4, 5=6, 5=2, 5=3, 5=1 .

Hence , 5 is also a primitive element of 6F(7). Which implies 
that, primitive element is not unique. Further, 3 is multipli­
cative inverse of 5 and both are primitive elements. From this 
we have the following theorem —

Theorem 2.1.1 :- If x is a primitive element of GF(p), 
then it's multiplicative inverse is also an primitive element of 
6F(p).

6,



We shall prove the above theorem by contradictionproof
Let x be a primitive element of GF(p) and y is a multi­

plicative inverse of x .
Hence,

Suppose, y is not a primitive element, then
' d
y = 1 , for d < p - 1.

Consider,
d d d 

x y = x
d d 

(x.y) ■= '<

Hence, by equation we have
d

x = 1 , for d < p - 1 .
which implies, x is also not a primitive element, which is a 
contradiction to the assumption for x is a primitive element. 

Hence, we conclude that y is also a primitive element .
**#

If , x is a primitive element of GF(p), then all the
non-zero elements of 6F(p) can be expressed as ,

0 1234. . p-1
X = 1 , X , X , X , x , — — — — , X .

1 1
And this is called the power cycle of x . For x = 5, the pow­
er cycle is given as -

0 1 2 3 4 5 6
5=1, 5 = 5, 5 = 4, 5 = 6, 5 = <2, 5 = 3, 5=1 .

n
A most general Galois field contains of p elements,' 

whear p is a prime positive integer, and n any integer. Two
Galois fields with same number of elements are isomorphic, i.e.



structurally identical in such a way that the sum corresponds to 

the sum and the product to the product. The Galois field with p 

elements is usually symbolised by GF(p ).

Let x , x , ~ , x be all the nonzero elements of
n 12 p -1

6F(p ) , then

a x m a x ■ § ^ j.j —- t'i m x ***" ™“ ** x
12 , p -1 1 2 p -1

f a =/= 0 .

Hence ,
p-i

a =1 -------------(2.1.2)
n

For all a =/= 0 and a. C GF (p ) .
n

In general , a Galois field of p 

as follows :
Let P(x) by any given polynomial in 

coefficients belonging to 6F(p} and F(x) 
x wit h in teg ra 1 coe 1 f ic: ien ts. Then F ( x )

F(X) » f(X) + p.q(x) + P(X).Q(X)

elements is obtained
i

x of degree n with 

by any polynomial in 
can be expressed as, 
--------- - (2.1.3)

Where,

f (x)
2

a +a x + a x + — + a
n-1

A (2.1.4)
01 2 n-1

and the coefficients a, ( i = 0 , 1,2,--- n-1 ) belong to
i

6F(p) . This relaticn may be written as -

F (x ) = f (x ) mod ( p, P (x ) ] -------------------- (2.1.5)

and we say, f(x) is the residue of F(x) modulo . p and P(x). 

The functions F(x) that satisfy (2.1.5), when f(x), p and P(x) 

are kept fixed form a class. If p and P(x) are kept fixed but 
f(x) is varied, p classes may be formed, since each coefficient 

in f(x) may take the p values of 6F(p). Note that the classes



«

defined by f(x) , form a commutative ring, which will be a field
if and only if P(x) is irreduciable over GF(p)[ Bose ( 1947 )].

• n
The finite field formed by the p classes of residues is

n n
called a Galois field of order p and is denoted by GF(p ). The
function P(x) is sacd to be minimum function for generating

n
the elements of 6F(p ). The minimum function need not be unique 

n
for GF(p ). Once a nu.ni.mum furction is found all the nonzero el- 

n
ements of GF(p ) are given as --

0 12 3 p-1
x - 1, x, x , x , - ---- - j, x residue modulo P(x)

p-1
and x is a primitive root of the equation x = 1 . Such an 
equation having roots as primitive roots is called the 'cycloto- 
mic equation '.

Here main difficulty is to find ‘minimum function Follo­
wing are the different steps [Bose(1947)] used to find minimum

n
function for given GF(p ).

Step 1 s — Divide x - 1 by the least multiple of all factors
d n

like x - 1 , where d is a divisor of p - 1 .
Step 2 ;- Obtain the equation

* x - 1
____________  = O ----------------  ( 2.1.6 )

d
x - 1

The roots of this equation are all the primitive roots of
£1

the equation x =1. The order of this equation (2.1.6) will 
n

be Q(p - 1) , where 3(k) denotes the number of positive integrs
less than k and relatively p'ime to it. 
be as, ■

And let this equation



m m-1
x + a x + - - - + a =0 ------- ----(2.1.7)

m-i 0
where, in is order of this equation , and a , a , - - a are

m-1 m-2 0
integers. And this is a cyclotomioc eqution.
Step 3 Replace the integers a of the left hand side of eq­
uation (2.1.7) by their residue classes ( a ) modulo P, and

i
obtain the cyclotomic polynomial , 

m m-1
x +( a )x + - - - +(a ) ----------  ( 2.1.8 )

m-1 0
Step 4 :- Find the irreduable factor of polynomial ( 2.1.8 ).

Let F'{'/>) is that irreduable factor. Then P(x) is a minim­
um function.

As an example, we find a minimum function for generating 
the elements of GF(2 ).

Here,
n - 2 and p = 2

Hence,
F ( x ) = - 1 .

Step 1 We divide x - 1 by x - 1
3 2

i . e. (X - 1) / ( X - 1) = X + + 1 .

Step The cyclomotic equation is , 
2

x + x + 1 - 0 .

Step 3 ;- Cyclotomic polynomial is x + x + 1 
Step 4 :- Let,

x + x' + .1 = ( ax + b ) ( c x + d

which implies ,
= ac x + ( be + ad ) x + bd

i



ac = i -------------  (2.1.9)
be + ac = 1   (2.1.10)

be * 1  (2.1.11)
From, equations (2.1.9) and (2.1.11) we get

a = C = b = d = l .
But. with these values equation (2.1.10) is not satisfied. So

x + x + 1 cannot be further factorised. Hence >; + x + 1 is a
i-y

irreducible polynomial and is a minimum function for (3F(2 ).
With this minimum function, we generate the elements of

Xm

GF(2 ) . If x is a primitive root , the nonzero elements
0 12 

are x = 1, x=x, x - x+1
Following is a list of some minimum functions that are need 

ed in the construction of designs.
Galois Field

2

o
4

a

Minimum Functions

x + x + 1

X + X + 1

4 3
X + X + 1.
o

X + + 2

25

7

x +2x + 1

+ 2x + 3

x ■+• h x + 3 .
With the help of Galois field GF(s), we can construct 

finite geometries such as Finite Projective Geometry and Finite

• 1



Euclidean Geometry. We discuss detail about them in the next 

sections.

2.2 . Finite Projective Geometry :-

From Galois field we can construct a finite projective geom­

etry of m dimensions in the following manner ; where s is
n

prime power i.e. s = p ; p —prime number and . n any posi­

tive integer.
/

Consider the ordered set of (m + 1 ) elements

( x , x , x , - ~ , x ) -------- ( 2.2.1 )
0 12 m

where the x ' s belong to GF(s) and are not all simultaneously 
i

zero. This ordered set (2.2.1) may be taken as a point-of proje­

ctive geometry of m dimensions. This projective geometry is

denoted by PG(m,s). It is clear that two points ( x , x , - - -
0 1

- - x 5 and ( y , y * ~ ~ - y ) are same if and only if, 
m 0 1 m

y = f x , i = 0, 1, 2----- , m .
i i

where,
f* is a nonzero element of 6F(s). And we may take

x , x , - - - x as the co-ordinates of point (2.2.1).
0 1m

Each of x , x , — - -, x can be chosen in s different 
0 1 n

ways and not all x 's are simulataneously zero. So the total
i

number of points in PG(m,s) is ,

m+1
s 1 .

Since, two points ( x , x - - , x ) and ( y , y , - - ,y )
0 1 m 0 1 , m



are same when y = J3 x ; 1= 0 ,1,2,- - - m and p =/= 0 .
i • i

so, jp can take s - 1 values. Hence, the number of distinct 
pants in P6(m,s), denoted by are

m'1-1

qm
1
1

-- / o
V • A. B *. /

For m = 0 , we get -- 1. For justification,- we can co-
sider PG(3,3). The possible number of distinct points for all
>: 's not simultaneously equal to zero are enumerated as — 
i

( 0,0,1 ), ( 1,0,0 ), ( 1,0,1 ), ( 1,0,2 ), ( 0,1,0 ),
( 0,1,1 ), ( 0,1,2 ), ( 1.1,0 ), ( 1,1,1 ), ( 1,1,2 ),
( 1,2,0 ), ( 1,2,1 ), ( 1. ,t., 2 )•

These are in all 13 .
By, using the equation ( 2.2.2 ), we get

3 -- 1 
<**2 3-1

.= 13
Hence the verification ,

Definition 2.2.1 : Flat
All the points wtich satisfy a set of 

independent linear homogeneous equations 
a

( m - 1 ) , ( 1 < m )

X + a X *+* “ - - + a x =0
10 0 11 1 12 2 lm m

X + a + a x + — + a x = 0
20 0 21 1 2m m

&
m Xo + a1.0 m 1.1 1

a k — 0
m — 1 . m m

(2.2.3)



may be said to form a 1 —dimensional subspace, or briefly a
1 -flat in PS(m,s). The equations may be said to represent this 
flat. It is clear that [ Ragnav Rao (1971) 3 any other set of 
m - 1 independant equations, obtained by linear combinations of 
the equations, in system of equations (2.2.3) , will have same 
set of solutions, and hence it will represent the same 1 -flat. 
Note that the number of independent points lying on the 1 -flat 
of (2.2.3) is

1 + 1
s 1 

1 s - 1
It is clear that a 0 -flat is identical with a point , 1 -flat 
with line i.e. two independent points , a 2 -flat with plane 
i.e. three independent points, and so on.

Now we find the number of 1 -flats in P6(m,s).
It is clear that, each l -flat is determined by any set of 

(1+1) independent points lying on it. Hence the total number 
of 1 - flats in P6(m,s) is equal to the number of ways of sel­
ecting (1+1) independent points from the PG(m,s) divided by 
the number pf ways of selecting (1+1) independent points on an 
1 - flat. And it is denoted by q(m,l,s) .

Out of Q points, the first point can be chosen in Q ways 
m mand second in 0 - 1 - Q - 0 ways. “The third point must be

m m 0
chosen in such a way that it is linearly independent of the first
two points, i.e. it should not be a point on the 1 -flat for—
med'by the first two points. As, there are Q points on a

1
1 -flat hence, the number of ways of choosing a third point is
Q - G . In general, the number of ways of choosing (1+1) th 
m 1



point , having chosen 1 independent points and it is linearly

independent of the first 1 points is Q - Q . Where Q
m 1-1 , 1-1

are the points on ( 1 - 1 )  flat. Hence, the total number of

ways of selecting ( J + 1 ) independent ways in PS(m,s) are

0 ( Q - Q ) ( Q - U ) - - - (Q - Q )----(2.2.5)
m m 0 m 1 m 1-1

But the same 1 -flat can be generated by any one of

Q ( Q - Q ) ( Q - Q ) - - - (Q - Q ) sets of (1+1) inde-
110 11 11-1

pendant points. Therefore the total number of distinct 1 -fla­

ts in F'6(m,s) is

Q (Q - a ) - -- - (Q - Q
m m 0 m 1-1

Q (Q - Q ) - -- - (Q - Q
1 1 0 1 1-1

:.6)

Making the use of equation ( 2.2.5! ) and solving further,we get

m+1 m m-1 m-1+1
(s -l)(s-l)(s _1)___(S -1)

1+1 1 1-1
(s — 1) (s 1) (s -1) - - — ( s — 1 )

----(2.2.7)

Remark : -
1. By using equation ( 2.2.5 ) we have

Q ( m,l,s ) = Q ( m,m - 1 - 1, s ) ------ (2.2.8)

m+1
s - 1

2. Q ( m,0,s ) = ---------
s - 1

Which is equal to number of points in F'G(m,s). Hence, 

number of 0 -flats i.s equal to the number of points in F'G(m,s). 

Example 2.2.2 s- For F’G(3,2) we find the number of points in 

PG(3,2) and number of 2 -flats. The number of points in F’G(3,2)



3+1
Q

And these are enumarated as
15

( <:> o 0 1 ) 5 ( 0 0 1 c ), ( 0 0 1 1 ), ( 0 1 0 0 ), ( 0 1 0 1 ),

( <:> l i 0 ), ( 0 1 1 1 ), ( 1 0 0 0 ), ( 1 0 1 0 ), ( 1 0 1 1 ),

( 1 1 0 o ), ( 1 1 0 1 ), ( 1 1 1 0 ), ( 1 1 1 1 ) s ( 0 0 0 0 ).
Further, number cf -flats in PG(3,2) are given as , 

3 2
Q ( 3,2,2)

( 2

( 2 
15

1 ) (

1 ) ( 2

1 ) (

1 ) (

1 )

1 )

And these flats are constituted by the solutions of following 
equations —

X — O , X ™ (1 , X — U , X — U n

0 1 2 3
x + X = O , X + 
0 1 1

o + w % /
/\ 1 A

U
= O

o
x + 
0

0 , x +

0 , x + x + 
0 1

<„)

: + x + x ~ 0 and x + x + x + 
1 2 3 0 1 2

0

0

g

o

Further , we get number of independant points in 2 -flats 
of F'G (3,2) equal to

"p;

2-1
2-1

If we take the intersections of pairs of 2 -flats , we obt 
ain the design for 1 -flats . Number of 1 -flats are calcula



ted as ;
4 3

( 2 - 1 ) ( 2 1 )

( 2 - 1 ) ( 2 - 1 )

15 X 7 
3X1

And number of points in each 1 -flat is ,

2-1
1 2-1

If we remove from PG(m,s) all the points in the ( m - 1 5
dimensional subspace x = 0 , we can get a geometry , called as

0
finite Euclidean geometry , denoted by EG(m,s). It can be desc­
ribed as follows —
2.3 The Finite Euclidean Geometry E6(m,s)

Any ordered set of m elements ( x , x , - - x ) belon-
12 m

ging to GF'(s) may be called a point of the finite m -dimension­
al Euclidean Geometry E6(m?s) , where the two points
( x , x , - - - , x i and ( y , y , - - - , y ) are identical 
12m 12 m

if and only if x = v ; i
i i

clear that the number of points in

1 , 2, 3, - - - , m . It is 
m n

EG(m,s) is s where s = p .



Definition .1 1 -fiat
All the points satisfying a set of ( m - 1 ) , ( 1 < m ) co­

nsistent and independent linear equations — ___
+ a + a . - + a = o

10 11 1 4 O *">X X. jL. 1m m
+ a >!: + ‘a + 1 - - * + a x =0

20 21 1 22 ^ 2m m

a + a a = 0 !
m-1,0 m-1,1 1 m-1,m m !

I
—«

may be said to constitute a 1 -flat of E6(m,s) represented by 
the equations(2.3.i).Any other set of m -1 consistent and indep­
endent linear equations which are obtained by linear combinations 
of(2.3.1) represent the same 1 -flat. The number of 1 -flats 
in E6(m,s) . is

( m, 1, s ) - ( m-1, 1, s ). ----(2.3.2) .
Example 2.3.1

Consider £0(3,7). Here m - 3 and $= 2 . Number of poin­
ts in EG(3,2) is 2=8. And these are ( 0, 0, 0 ),
( 1,0,0 ), ( 0,1,0 ), ( 1,1,0 ), ( 0,0,1 ), ( 1,0,1 ), ( 0,1,1 ), 
( 1,1,1 ). To obtain the 1 -flat we have to solve the equatio­
ns - say

= 0 and = 0 simultaneously. And number of
1 2

1 -flats are —
(3 ( 3,1,2 ) — (3 ( 2,1,2 )

Now



15 X 7( 2 - 1 ) (2 - 1 )
G! (2,1,2 ) = ----------------- --- -

2 3 X 1
( 2 - 1 ) ( 2 - 1 )

and
( 2 - 1 ) ( '2 - 1 ) 7X3

□(2,1,2) » - ! 1

K3
 1 1 1 1 1 1 1 I 1 i f 1 ! 1 1 i 3X1

( 2 - 1 ) ( 2 - 1 )
substraction , we get numbe' of 1 -flats equal

Relation between Pt^n,s) and EG(m,s).

If x^=/= 0 , then a point in P6(m,s) can be regarded as
( 1, x / x ,x / x ,- - -, x / x ). A (m-1) -flat satisfying 

1 0 2 0 n 0
is called an (m-1) -flat at i-finity , and points lying on it 
ed as points at infinity.
And the remaining points are called as finite points of PG{m,s).

If x ~/~ 0 , then point, in PG(m,s) can be written as 
0

( 1, t -i: ) . where =---,i=l,2,
n i x

0
is 1:1 corrospondance between the finite points of

,n. So there

PG(m,s) and

the points ( x , x , - - x ) of EG(m,s). For any finite
12 m

1 -flat of P6(m,s) , given by
a x + a x + - - - +a x = 0 , i=l,2, - - ,m-l. —(2.3.3)
10 Dili lin m

and corresponding 1 -flat of EG(m,s) , given by the equation
a + a x + -• - - + a x - 0 , i-1,2, - - ,m-l .---(2.3.4)
10 11 1 - 1m m

It is easy to see that the set (2.3.4) is consistent when the



1 -flat of PG(m,s) is finite. Thus there is 1:1 corrospondance 
between finite .1 -flats in PG(m,s) and 1 -flats in E6(m,s), also 
the finite points on the 1 -flats of P6(m,s). corrospond to the 
points of the 1 -flats in EG(m,s). Thus by cutting all the po­
ints at - 0 and 1 -flats lying at infinity, EG(m,s) can be

0
derived from PG(m,s). And by considering the points on E6(m,s)
as the finite points of PG(m,s) and adding ( m - 1 ) -flat at
infinity at h = 0, along with distinct points lying on it. We 

0
get P6(m,s) from EG(m,s).

We refer the two examples 2.2.1 and 2.2.2 and compare. In
P6(3,2), the number o" distinct points are

4
5-1

G = ........ = 15 .
3 5-1

And in £6(35,2) , these are 2 = 8 . And these points in
EG(3,2) are obtained by discarding the paints lying on 2 -flat
of P6(m,s) represented by the equation = 0 . i.e. the poi-

0
nts ( 0,0,0,1 ), ( 0,0,1,0 ), i 0,0,1,1 ),( 0,1,0,0 ) and
( 0,1,0,1 ). Hence number of points in EG(3,2) = 15-7 = 8 .


