
Chapter-4,

BAYESIAN APPROACH TO SOME PROBLEMS 
IN LIFE TESTING ANDRELIABILITY ESTIMATION.

4.1 Introduction:
When X s the life time of a system. has exponential 

distribution with an unknown fixed parameter related inference 
abuut 6 and also about the reliability functions is well known 
under classical theory of estimation.The parameter/s 6 need not 
be fixed,generally the case in reliability estimation. Some times 
prior information about 6 is known.In chapter-2 we studied how 
classical (sampling) theory fails when d is not fixed. Also we 
have studied its incapability of incorporating prior information 
about parameter/s 6 while doing reliability estimation and some 
other shortcomings. Bayesian inference 1s one of the method which 
overtake these problems and superior to classical theory. We have 
also discussed suitability of Bayesian approach in reliability 
estimation in previous chapter.

In this chapter we consider Bayesian approach to some 
problems in reliability estimation credited.to Basu and E&rahimi 
(1989). Section-2 deals with reliability estimation for different 
models (k-out-of-n system, sterss-strength model) under 
squared error loss function assuming inverted gamma as 
a prior. Asymmetric loss function in section-3. Parametric 
empirical Bayes methods discussed in section-4 and in 
last section some concluding remarks.
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4.2 Reliability Estimation Under Squared Error Loss Function For 
Different Models :

Model-1:Let T denote life time of a system with distribution
function F(.), then the reliability function R is thei
probability that the system will be in operating condition and 
functioning satisfactorily at time t.That is,

R « P(T > t). ...(4.1).l

Model**!!: Let X and Y be two random variables with cumulative 
distribution function F(.) and G(.) respectively. Suppose Y be 
random strength of a component subject to random stress
x.Naturally,component fails if at any moment the applied stress
or load is greater than its strength or resistance (that is,it 
fails if X>Y). Hence reliability of the component in this case is 
given by

R - P(X < Y). ... (4.2).2
Such situations mostly occurs in structural and aircraft
industries. As an example sA solid propellent rocket engine is 
successefully fired provided the chamber pressure (say X) 
generated by ignition stays below the brust pressure (say Y) of 
rocket chamber.

4.2.1 Different Systems:
A system is called simple if it consists of a single

component, otherwise it is called a complex system. k-out-of-p 
system is one of the complex system with total p components. This
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functions if at least k of its components are functioning. As an 
example : Airoplane consists of three engines and is functioning 
if at least two of its are in good condition. This is 2-out-of-3 
system.

Series system and parallel systems are perticular case of 
k-out-of-p system.

For k=p, it is p-out-of-p system and this will function if 
all components are functioning simultaniously-called "series 
system".

For k=1, it is 1-out-of-p system and this will function if 
at least one out of p is in working condition - called 'parallel 
system".

4.2.2 Estimation Of Reliability Function For Model-lt
Suppose life time of the system (say X) at which it fails 

follows exponential distribution. Conditional p.d.f. of r.v.X for 
given 6 is given by

f (x/0) =X .(4.3).
1/9.expC-x/0}* if x,©>0
0 i otherwise.

»

where, © is a r.v. whose prior distribution is known to be 
inverted gamma with parameters (a, v), denoted by © ■* IG(ot,i>) and
is given by

g@<e> - ■!
Ji tiX 1
a /Tv.expt-ot/©]. (1/©) j if ©,a,v>0
0 ; otherwise. . (4.4).

Let X = (X ,X , ...,X ) be a random sample from (4.3). ~ 12 n
hence,1ikelihood of X on conditioning to © is given by

70



LCX/0) = (1/0)n.exp{-T/0J ...(4.5).

Now,conditional distribution of © for given X called
AS

posterior distribution of 0 using Bayes* theorem is

f(X/0).g(0)
g@(0/X)

f f(X/0).g(0).d04 \
(1/0) .exp( Xi/0JaV/rv.exp{-a/0}. ( 1 /et1*-'

oo n __ .
J(1/0) .expC ^ i/0]. ot^/rV. exp{-a/0}. (1/0) ,d0

0 .n+v (n+p+1)
(CH-T) (1/0) .exp{-(T+ot)/0]

H n+i>) oo (n+i>) (n+in-1 )
J( 1/run-n). (ch-T) . . (1/0) .exp{-(T+a)/0} .d0

n+v
(ct+T) ( n+p+1 )

.exp(-(T+a)).(1/0)
H n+p)

...(4.6)

therefore, (0/X)-*IG( a+T; n+i> ).

Under squared error loss function, Bayes estimate of mean
life 0 and its variance respectively given by

0_ ■ E (0/X)B

•r*
X

c 
C--—

in•r-
ii

i-u<DJC3
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00
* f e.g^e/x) .d©0*» 0

n+v
oo (ch-T) (n+v+1 )

= J 6 -------- .exp{-(T+ot) 3.(1 /0) .d0
0 F(n+i>)
— (OH-T ) / ( n+is— 1) ...(4.7).

and, ”
Var(©B) = E(02/X) - [E(0/X)J2

*=( oh-T ) 2/{ (n+p-1 )2 (cH-v-2)} { (n+v)>2, ...(4.8).
(since, E(02/X) = (o+T)2/(n+v-1)(n+p-2)).

Estimation Of Reliability Function FMt) Under Squared Error 
Loss Function:

R (t) * P( X > t/0)i
* exp(-t/&) ...(4.9).

Bayes estimate of R (t), under squared error loss function is1
expected value of R^(t) under posterior distribution of 0, given 
by

oo
lR,(t))« f exp(-t/0)g,J0/X) .d0 1 B QJ 0

n+i>
oo (ctf-T) (n+v+1 )

= J exp(-t/0). .exp{-(T+a)}.(1/0) .d0
0 F(n+p)

= ( 1+t/(cH-T))_tn+V ...(4.10).

and,

Var(lR (t)J 1 B E(R (t )/X) - {E(R (t)/XJ)
_( + j -2(n+v)( 1+2t/(cH-T)) ln v -l 14-t / (a+T ) J ...(4.11).
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n+i>
2 oo (a+-T) (n+p+1 )

(since, EIR (t)/XJ * f exp(-2t/0). .exp{-(T+a)J.(1/6)
1 ~ Hn+v)

-(n+i>)= [ 1+2t/(oH-T) ) ).
Estimation Of Reliability Function For k-out-of-p System:

Consider the complex system with p distinct units.Let X,
th 1denote life time (failure time) of the i component. Suppose,
thconditional distribution of life time of i unit is given as

f (x /& ) = (1 /6 ) .exp{-x /6 ) ;x. ,0 >0 for i * 1,2,. . . ,p.X.ii i i i i i1
...(4.12).

Let, Xi life time of k-out-of-p system. Reliability function of 
the system at time t is given by
R (t) » P( X>t )3

=P( k o^ more components work at time greater than t)
P j - P= rr riF (t). n f (t) ... (4.13)."isi a 1=1+1 aj=k i 1

where, F (t) *= 1-F (t)a a1 1 lh*exp{-t/0 J;reliabi1ity function of a unit} a. t1
the sum £is over all P. distinct combinations of the integers a. 3

C1,2,...,P) taken j at a time such that exactly j of the X s are, i
greater than t and hence remaining (P-j) X s are less than ori
equal tot); j>k.

Now, one can increase the complexity of above system by
* sassuming prior distributions of parameters 0 , for i =i
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In the Bayesian framework we assume priorily that
«

0 ,6 . . ,Q are independent with 0,-+IG(a. , v.) ♦ for i *1 2 p lit
1,2,. ..,p. Let (X„; j - 1,2, . . . , n^ , i ■ 1,2,. ..,p) be p 
independent random samples of sizes n ,n ,...,n respectively.1 2 pThe ith sample is from following population.

f ( x/0.) «X l
1 /0 . exp {-x/6 };i i if x,0.>0 for ii

otherwise.
1,2,. . ., p
...(4.14).

n.
Note thatDefine statistic T.=» £ X. . _ . , _i . i3;forT=1,2,...,p. j=1

(T ,T . ,T ) is sufficient statistics for (0 ,0 ,. .. ,0 ).Also1 2 p 1 2 p
note, posterior distribution of 0 -*IG(a,+T , n +t> ) i for ii it it
= 1,2,...,p (using (3.6)). Thus under squared error loss
functionfunction, Bayes estimate of reliability function for t 
unit is given by

.th

(F. (t) ) ° [1+t/(a+T ))~(Vyi) ...(4.15).
i B i i

(using (3.10)). Hence, Bayesian estimate of R (t) is givens
by _

P J _ P(r (tn = r r.n (f (tn , n ( f un3 B . , u i=i a. B isjt i a. B j=k a. i i
■_ _ * — (n +v )■= £ £ n (1+t/(a +T )] a. a. ,“^i=i ot. a. iij=ka. i iip*. n {1 - I 1+t/(a +T )J_(na+Va.) )i = j+i a, a t it t

(4.16).

Remark-1:

Since series and parallel systems are perticular case of 
k-out-of-p system; reliability function for series system is
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given by

r.(t) = n F (t) 4 1=1 i
and its Bayesian estimator is given by

...(4.17)

v — (n +v )(R (t)) _ =n(1+t/( a.+T,) ] 'iV4 B 1=1 x x
... (4.18)

X X

(using (4.13) & (4.16) respectively).
Similerly,'reliability function for parallel system is given by

R_ (t) * 1 - .n (1-F.(t)) 5 i=i i
and its Bayesian estimator is given by

P

...(4.19).

( -(n(R (t)) = 1 - .n Jl-l1+t/(a+T.)J i \5 B 1=1^ X X
•'}

. . (4.20).
Remark II:

’ sIf X are Independant and identically distributed (i.1.d.)i
with p.d.f. as given by (4.3) reliability function of k-out-of-p 
system is given by

R (t) <3 j = k
which can be rewritten as

3 P-3
( F (t ) ) ( 1 —F (t) ) }

P P-3 -1 0(V) 3 _ 6
(F (t) ) .(F (t)) *R (t) = £ £ (-i)

j = k s^=Q
r it) = r r (-1)'' P!].fp -;,1 .expc-tj/e>.Bxpt-ts/sja j = lc s=0 V-) *• S >

D D~ 1
Rtf(t) = E E <-i)

j = k s=0
-1 C)-Mexp{-t(j+s)/©} ...(4.21)

Now, if (X , X ,...,X ) be a random sample of size n from (4.3) 1 2 n
then Bayesian estimate of R^(t) is given by
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(t)) B
P P-3E E'->)

j = ks*=0
t( j+s)/(<*+-T) J - (n+v)

. . . (4.22)
n

where, T = £ X.. (using (4.6) and (4.10)).
i= 1

4.2.3 Estimation Of Reliability Function For Model-lit
Assume that Xs random stress, and Yj random strength 

following exponential distribution with parameters 0 and 0<t> 2
respectively; where 0-*IG(ot,i>), for i = 1,2.Data available ist ii
of the form (X,,X_,...,X ;Y ,Y_,...,Y ).12 m 1 2 nz

Problem is to estimate reliability function given by
R = P( X < Y ) z

- e /ie +e )Z 12
= X/(1+X) . . . (4.23)

oo
for,P(X < Y/0 ,0 ) - f P(x< Y/0 ).dF(x/0 ) 1 z 0J

00
f exp(-x/0 }.(1/0 ). exp{-x/0 ) . dx . 
J z 11
00
f (1/0 ).exp{-x(1/0+1/0 J.dx. 
J 1 i z
0 / (0 +0 ) 2 12
X/(1+X) (where, X ■ 0 /0 ).2 1

Theorem 4.2.1 : The posterior density of X is given by

g(X/T ,T ) = [ftln+v i n +i> ))12 11 2 2
-1

< n +v ) . (n +i> -1 ) u 2 2 .X 1 1
.. , (n +v +n +i> ) ; ...(4.24)(X+u) l l Z 2
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nt r»2
Where, T » V X.; T * PX. and u - (T+a)/(T+a).1^*1 2.1 il 22i = l i=l

Proof! Note that

g(0 ,0 n ,T ) 
12 12

9(eie2’Tl,T2)

f (T , T )
g(+ ,£ ) -g(T_,0J

l l 2 2

f ( T ) . f (T )
1 2

(since (T , 0 ) and (T , 0 ) are 1ndipendent).
f(T /e±).Xg{6 ).f(f /I ).g(0 )

11 1 22 2

if f (T /0 ).g(0 ).d 0 J.tf f (T /0 ).g(0 ). d0 J
J 11 1 1 J 22 2 2

01 0

...(4.25).

Consider,

ff(T /0 ).g(0 ).d0 
J i i i l

0
00 n -1

= f ( 1/0 ) Jfn ) exp{--t /e ) ( t
J3 l i i

n -1 V “1 -1
= (T ) 1 . (a ) x. iTv ) . (Tn )l l i 1 ,

n -1 v -1 -1
= (T ) 1 . (a ) l. (rv ) . (Tn )l 1 1 l

Similerly,

Jf(T /0 ) .g(0 ) .d0i i

1 n -1 v -1 -1
= (T ) 2 .

2
(a ) 2. (Tv )

2 2 . (Tn )2

n -1

( n +i> +1 ) 
l l

it l

v +1

d0

-(n +v )
i i

l l
(4.26).

(n ) 
2 2

2 2 2 2
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(4.27)
Using (4.26) and (4.27) in equation (4.25) we get.

-l (n +i> ) -i (n +p )
g(0 ,0 /T ,T ) = (Hn+v)) . (T +a ) 1 4 (T(n+v)) . (T +a ) 2

1 2 fn Wll 4 4 (n+y+4n+V+2) 2 2 2 2
.(©/©) 4 4 .(1/0) 1122 .exp{-[0 /0 (T +a ) + (T -fa )J/0 }

2 % 2 22 2
(4.28).

Let, X = (0 /0 ) and 0=0 2 1 2
0: (0 ,0 )<Z-»(X,0) = 0/X2.

1 2
Therefore,

g(X,0/T ,T )1 2
-l (n +v ) -i tn +v )

= (T(n+v)) .(T+a) 4 4(r(n+i>)) .(T+a) 2 2
, 11,. 1.1, .22 22 (n+v-1) (n+v+n +V+1)

(X) 4 4 .( 1/0) 1 1 2 2 ,exp{-[X(T +a )+(f"+a ))/0)
11 2 2

(4.29).

g(X,0/TiJz)
-l (n +i> ) -l (n +v )

= (T(n+p)) .(T+a) 4 4 (T( n +v )) .(T+a) 2 2
, 1 1,. 1.1 ,.2 2 2 2 (n+v-1 ) (n +v +n +v +1)

. (X) 4 4 .(1 /0) 1 1 2 2 .exp{-(X(T +a ) + (T +a ))/0J
11 2 2

(4.29).
g(X/T ,T )12
= J g(X,0/T ,T ) d0.

0
= (T( n +v )) 

(n -tv -1) 
,(X) 4 4

-l ( n +v ) -l (n +i> )
. (T +a ) 4 4 (T(n +v )) . (T +a ) 2 2

1 1 2 2 2 2 oo (n +v +n +v -+1)f (1/0) 1 4 2 2 .exp{-(X(T +a )+(T +a ))/0)d0.J 1122

-i ( n +i> ) -l (n +v )
= <Hn +v )) . (T +a ) 4 4 (T(n +v )) . (T +a ) 2 2

1.1,,.11 22 22 .,(n+v-1) -(n+v+n+v )
.(X) 1 4 .T(n +v +n +v +).[X(T +a )+(T +a )J 4 4 2 2

1122 11 22
Let u = (T +a )/(T +a ) therefore above equation can be written 112 2
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as

g(X/T ,T ) - Ifiin+v ;12 11

hence result.

n +v ) J 2 2

(n +t> ) . (n +i> -1)u 2 2.X l i
,. . (n +i> +n +v )(X+U) 1 1 2 2

t

Bayes Estimate Of Under Squared Error Loss Function :

Using above theorem Bayes estimate of R^ is gives by

( R )n * E. ,.T _ . [X/( 1+X) J2 B X/(T ,T )
12 (n +v )

= t n +i> i n +v ) J (u ) 2 2 .
oo 11 2 f n +y -1 ) (n +v +n +i> )

J IX/(1+X)HX) 1 1 (X+u) 1 1 2 2
0 ‘

4.3 Parametric Empirical Bayes Method :
In an empirical Bayes analysis the prior parameters are 

unknown and need to be estimated from the data. Sometimes prior 
itself is unknown which is to be estimated from 
data, such methods are also called as an empirical Bayes methods.

Here we consider parametric empirical Bayes procedure for 
the estimation of parameters of failure processes. These systems 
are assumed to be repairable with negligible repair time. 
Suppose successive failures of a physical systems, (for example j 
computers, aeroplanes, vehicals, etc.), follows a homogenious 
Poisson process with rate X. Therefore, times between failures, 
after repairing, follows exponential with mean time to failure is 
equal to (IX). We assume X to be random with a prior distribution 
chosen to reflect our prior knowledge about X.
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Now consider N similar systems following N independent 
homogenious Poisson processes with parameters These 
are subject to failure at random points in time having repair 
facility with negligible repair time. Even though X *

(X ,X »...,X ) are unobservable, assume that it is a random12 N
sample from a gamma prior with parameters (atft)i where a, ft are 
unknown. Let
t (t ,t , 11 12 22 } t ,t , N1 N2 ,tNnN

)

be observed failure times of sizes n ,n ,...,n from systems1 2 K
1,2,...N respectively. Since failure times for each system are 
independant exponentially distributed and systems operate 
independantaly, joint density of t given X is given by

p(t/X)
N

i «=■ 1

ni

< X..expO X.t..} •. 1 1. i i ioT 3 ] ^

N . . n.—I—j— (n. ) i
X 1 .expt- X. J t..3 

1-1 1 1j«1 10

N
_ _—_ (n ) ... (4.30) .

J I X .exp{- X.S.} 
i - 1 11

n.
(where S. * f t.. ). i . , i j

Joint density of X is given by

g(X/a,/3) = (/?a/ra)N —j—j— i\^)a *.exp{-ftk.1 ...(4.31).

i = 1
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Hence,

p{t/atft) = I p|t,X/a,$)dX.
w I ~ ~ ^

*x

= I p(t/X)p(X/oi,/?)dX.

V
oo

J
N

i = 1

(n.) . (/?<X/ra)N. (X. J01-1.exp£-/?X. } .dX.
. 1 r -w rs 1 1 'll
X. .expt- X.S.J i i 1

=(^a/ra)N
ooN f

T J‘N
)ni+0t~* . expt-t/jFS^ )X_.) dX^

i = 1 0
. . . (4.32).

Point estimates of X can be obtained based on the 

posterior distribution of X.. given the estimated values of a and 

/? (Basu and Rigdon(1986)). The marginal maximum likelihood 

estimators of the parameters of the prior distribution can be 

obtained by using numerical techniques. In general, the 

parametric empirical Bayes point estimates are less disperse than 

the classical m.l.e.'s. When there are few systems and many 

observed failure times per systems, the point estimates are only 

slightly less disperse. Parametric empirical Bayes posterior 

probability interval estimates are generally narrower than the 

classical confidence intervals.

4.4 Asymmetric Loss Function :

In certain situations over estimation/under estimation of 

reliability function is savier. For example : From consumers
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point of view, over estimation of reliability ( or under 
estimation of failure rate ) is dangerous to him if actually that 
component or system is low reliable. On the other hand, from 
producers point of view, under estimation of reliability function 
( or over estimation of failure rate ) is savier to him if 
actually his product is of high reliable quality.

From this point of view, Basu and Ebrahimi (1989) considered 
loss function which takes in to account both these facts under 
some ristrictions on constants in their loss function and is 
given by

L(A) = b.exp(a.A) - c.A -b, a,c *»/= 0, b > 0. 
where A = (6/6 - 1). ...(4.33).
i> Here L (0) = 0 and for minimia to occur at zero, L* (o) *= 0
gives ab = c. 
ii> For a = 1,

L(A) - L(-A) = b lexpCA) - exp{-AJ) -2cA 
* b CexpCAJ - expC-A) -2A )

( since, ab « c ).
- b C ( 1+A+A2/2!+A3/3! +.... )-

( 1-A+A2/2!-A3/3! +.... ) - 2A )
■ b [ 2A3/3!+2A5/5!+.... ) > 0.

Therefore, in this situation over estimation is more savier than 
under estimation.
iii> For a < 0, L(A) rises exponentially when A < 0
( underestimation ) and almost linearely when A > 0 (
overestimatio ). 
iv> Finally, for small |a|.
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L(A) « bl1+aA+(aA)2/2!+(aA)3/3!+------J-cA-b

£ bM+aA+(aA)2/2 I J-cA-b 

2 2- ba /A 2!,

which is symmetric function.

4.4.1 Estimation Of 0 Under Asymmetric Loss Function L(A> :

Let X = X.,X_,...»X be n observations from p.d.f. „ i 2 n

(3.3), problem is to estimate 0, say 0(X), under asymmetric
AT

loss function so that posterior risk is minimum. Mathematically, 

estimate 0 by 0 so thatD

nn0D - "T 1 E0/0(X)lL(A,) 
B 0

} . . .(4.34).

Consider,

Ee/eixi1L(An
00

= J jb.exp£a (0/0-1)-c(0/0-1)-b). 

n+i>
(ctf-T) ( n+y+1 )■

.exp{-(T+ot) J. (1/0) ^.d0.
T( n+y)

}•

t. r 1 , ^.(n+lO , i- " -(n+t>)b.exp{-a}. (cx+T) . (a+T-a0)

- c.0(n+y)/(cH-T) + c -b) ...(4.35).

Therefore, c f L C A) 1to obtain minima of 0/0(X) , differentiate

(4.33) with respect to 0 and equate to zero, we get
ab.expt-a). (ch-T) (n+V). (n+v). (oH-T-a0) c. (n-K>) / (a+T) ■ 0.

On simplification, we get
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[ l-exp{-a/(n+i/4-1)} J. (oH*T)/a

Therefor®, Bayes estimator of Q under asymmetric loss function 
is given by

. . . (4.36).

4.5 Concluding Remarks :
Here we studied some problems by considering exponential 

distribution as a model, which is applicable in number of 
physical situations. Here we have only considered gamma (or 
inverted gamma) priors. One can carry out similar analysis for 
other priors. Also results can be extended to other physical 
models and to censored samples.
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