
Chapter-2

BURN-IN TEST AND OPTIMIZATION CRITERIA

2.1 Introduction: -
For the class o-f life time distribution, when the life 

timei is known to be exponential, methods of estimation and 
testing have been well studied.

Saunder and Myhere <1981) have developed -theory
and methods of estimation of parameters, when hazard rate 
decreases with age. Following are situations where the 
life time distributions having such property.

1.Newly born baby has high death rate and upto certain 
age death rate goes on decreasing

2.In software developments, initially it has very high 
failure rate, but as the debugging process goes on in order to 
search and remove faults, the failure rate decreases.

3.New instalation of complex system with many subsystems.
Davis and Feldstein (1979) studied the family

of distributions for which the hazard rate, h< t >,
which decreases from initial value of (3 + \/4>) to an ultimate
value &. can be modeled as

h (t) = e + X/<t + 0), t > 0 & 4> > 0. ...(2.1).

Such models seems appropriate in engineering equipments.In 
addition an advantage of considering such parametric models 
can be demonstrated by finding optimal burn—in
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periods, which in a sense increases the quality of the unit.

For the model desceibed by (2.1), David and Feldstein (1979) 
provided the m.l.e.'s of parameters 6 and X when (f> is assumed to 
be known, under progressively censored sampling and computational 
method for their evaluation.

Saunder and Myhere (1981) have considered reparametrised 
^version of the above model and obtained m.l.e.'s of the 
parameters, and also have obtained optimum burn—in period based 
on various criteria. For the model considered by Saunder and 
Myhere(1981) the hazard function, h(.), is given by

h(t) = + > o ...(2.2).

where a,fi,y are positive unknowns.
The cumulative hazard function is given by

t
H(t) = S h(x) dx 

O
= ot Clog (1+tfi) + fifty; t > O ...(2.3).

Saunder and Myhere (1981) have provided m.l.e.'s and 
computational procedures,for a class of decreasing hazard rate 
distribution with two unknown parameters for which

H(t) = a Q(t/?),

when certain assumptions are made about behaviour of 
q = Q' ; namely for the functions if & y/ defined by

y^(x) = x q(x);
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r < x) = 1 + x-97-“ ...(2.4).s q(x)
satisfy i> yj is increasing.

ii> q is log convex.
iii> £ is bounded between O & 1; and is unimodal:
(that is, there exists S={ x s C<x) > c,0<c<l>
is convex).

In section-2 we discuss the genesis of the model.
Section-3 deals with obtaining m.l.e.'s of the parameters in 
model (2.2). these estimators are used to obtain optimum 
burn-in, under different conditions, to be discussed in 
section-4. We have established optimum burn-in period based on 
desired quality in section-5. Some concluding remarks are 
given in section—5.

2.2 The Genesis Of The Model:
Let us assume that each unit has constant hazard rate, say 

X. Thus life times are exponential random variable with parameter 
X. Suppose due to variation in manufacturing quality control, the 
failure rates of such unit vary slightly in some random
manner.Preassume this variation has gamma distribution with 
parameters and is given by

1 . _ng(X) = ------- expf—X//S1.X 01 ; X > 0 &
(fTa

cksft positive constants, ... (2.5) .

Then R(t) : the reliability of any such unit selected 
at random is given by
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R< t)
oo

= S ex p-C —X13 . g (X) . dX,
0 .co 1
= / expf-Xt}.-- ;----O ff^T a

(a—1)
.expf — \/(35 .X .dX.

= 1/(1 + tft) a
That is,

R(t> = expf a. (-log(l + tft) 3

(2.6)

.(2.7)

The -failure rate of the unit then will be
f (t)

h (t > = —---- .
F( t)

(2.8)

Here f(t> =/ f(t/X).g(X)-dX, (where R.^:range of X)

oo
= / X.expOXtJ.------

0 (fra
exp1).dX.

(otf-1)
= c*ft/i l + t/9) , ... (2.9) .

which is univariate Lomax or Pareto type-II distribution;
_ co

and F(t) = / expC-Xt3.g(X).dX 
0

—oi
= (1+ t/J) ...(2.10).

Using (2.9) & (2.10) in (2.8), we get

h(t) = otft/ (l+t/3) ; t > 0,a,/? > 0. ... (2.11).
Here the choice of the gamma as mixing distribution comes 

from two considerations, namely—
i>Flexible two parmmeter family capable of representing many 
situations adequatly; and
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ii>Gives closed form distribution.

Generally, such a distribution is called
mixed exponential distribution' and sample from such a 
model are highly censored. This might be due to the cost 
involved in testing and / or a unit that does not fail early, is 
is considered "goad" and probably, that unit does not 
•fail during the subsequent test period.

2.3 H. L. E. For Progressively Censored Data:
Denote sample data with t= <t,t,...,t;t...... t >:^ . 1*2* * k * <k+l> n *

where (t ,t , ...,t, > are ordered failure times and±* 2’ ’ k
(t, ... ttk+i> n ) are ordered censoring times. Note that experiment
is to be- continued until each item has failed or
censored. The contribution of the ithunit g(t); to the
1ikelihood is F (t. > provided ith unit is censored and f (t. >
otherwise. That is,

6. (1—<5.)
g(t.) = (f(t>> \ (FTt. > )

X.

V
9

i
where,

r 1, if death occurs to kth unit; 
0, if loss occurs to klh unit.

hence,likelihood function is given by
n

L(a,/3,y/t > * fj g(t.) ...(2.12).~ i . L
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n 6. __ (1-6.)= n(f (t. ) ) \ (F^) ) 1 ,
i= i

Thus,
L(a,/5^/t ) - n ^(tvLn F<Vi = 1 i = < k 1 >

k fit ) n _ k _= n—1 • n F<V -n F<Vi =i F ( t. ) t = < k ♦ l > i = i
k U n _

* .]] h(t. )..p F(t.)
i = 1 1 t = 1

(2.13)

/k times log likelihood is given by

k n _
1/k. togL(a,/?^/t) = l/k.£ log h(t. ) +l/k .£ log F(t.)

^ , i=i t t=t 1k n
=l/k. £ log h<t.) -1/k.J2 HC t,)

fil5‘ t
where h(t) =

Let

F( t)
,H(t) = S h( x ). d>:

tog F(t. )t

(2.14)

(2.15)H(t) = oi.Q( t/?:y) s h(t) = aft.qitfizy) 
where, Q(t/3sj-') = tog(l+t/S) +- y/3t; 

q(t/9:2-> = l/<l+t^?> + y .
Differentiating (2.14) with respect to (w.r.t.)a and equating to 
zero we get
1/k'E “hit"

1=1 ik
l/k.£ Ccr/9C-

(h(t.)) - l/k.£*T—(H(t.)> « 0
t =ii l

;+y 3 >-1’ ftl
n

. =1 1 t . ft

1/a — n/k.Q(/3:j*');

3 -l/k.EQ(t,/3:y) - 0
1 i’ i=l

(Substituting values of h(t) and H(t))
...(2.16)
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o

where, Qlftz y'i =1 /n . £ 0( tftty) .
6 t=1

Similerly,—LogL(a,/?^/t) = 0 gives 
k 1 6 n i

•rr 7—r 'TT-(h(t.)> - 1/k .£ '-r—(H( t.)) = h < t. ) 6ft v . ** <>/? tV =1 t 1=1 .k O
l/k.T Zaft.q<t ft:r>y %laZq(t.ftiy'>+ft.T^-qit.ftiy)lJ~a/k.'£qit.ftiy) = O i. t Of 3 v il = i t = 1

(by <2.15))
k q'(ftti:y) an n

<i/ftk).j;u+ft q((3t.:rp “ ^r-1/n*E^<V*!r> = 0
V =i

Kiftir)
otn

y (ft-.y) (2.17).

_ r, _ k q' (ftti :y)
wherey (ftzy) = 1/n. £ /?q( t/?:/)&£ iftzy) = ( 1/k) .££i+/3 —~y>-

i=i *■ i = ' i '

6
Finally, — logL(ot,^/t) = O givesOy
1/k;E“h?u '5T(h<t;>> " 1/k'^

i =i
-- (H(t ) ) = 06 y t

1/k.£ Co/?C-
iCt t + i ft+r u -i. .aft -l/k.'£af3ti = O 

no/? _ t=1
1/k.£ (<i+t ftnt+ftyi.+y> 3

V = 1 n
t , (2.18)

where, t = l/n.T tiv =1
Now, to obtain m.l.e.'s of parameters one has to solve 

(2.16), (2.17) and (2.18)-Following is an algorithm to obtain 
m.l.e.'s of the parameters.
i> Initially give values of a and ft as a and ft^in equation 
(2.18).Solve it for y say )/(>= O) .
ii> Solve (2.16) and (2.17) for a, ft with fixed y at y^. Say these 
values of a and ft as a. and ft .
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Stop this procedure for appropriate accuracy.i i i >

Appendix is provides programming to obtain random sample 
from such a model and to estimate parameters of this model by 
making use of above steps.

2.4 Optimum Burn-In And Ultimate Hazard Rate:
Consider a unit which is having life length 

rate as given in <2.2).A burn —in of length r S2: O 
remaining life, say X^.Hazard rate corresponding 
given by
h < t+r > = fX (t)/~ ...

T FX (t) 
aft T

-h
+ <t+r)ft 

- aft q (tft : y)
+ aft}'f t,a,ft,y > 0

X,with hazard 
yields a random 
to r.v.X isT

(by (2.2)).
...(2.19).

where ft = * Y = y<t+rft).

Note that hazard rate corresponding to residual life time X^.
also belongs to the same family as that of X, with new

» \

parameters a,ft and y . After burning the unit in
i •

a laboratory, initial hazard rate is lowered to aft (1+y ) from 
the value aft(l+y). While the terminal (or ultimate)hazard rate 
remains the same as that of X, which is given by

aft y — afty.

Upon obtaining the all the three estimators,one might look 
for the use of these estimators.These estimators can be used for 
determining optimum burn-in time, depending upon various



criteria.These criteria are described bellow:

First crit&ria:
Let Rs.C be cost per unit time of burn-in, then the 

increased gain per unit (system) for a burn—in of period t is

g (r) = BCot/3<l+r> ~ aft < 1+y >3 - Cr

g-(r)^o/?BC (1 +y) - ll+rft) { 1 +y < 1 +rft) > 3 - Cr

=a/5BCl-( 1+t/?) 3 -Cr
6

In order to maximize gain, solve ^— g(r) = 0 for t
(2.20) gives aft2B.(1+Tft)2

(2.20)

aft
T — f~ C ft

Since burn-in cannot be negative, take optimum burn-in

period as
aft 1= max! (<-p—>4'2- —> ,0)

w / 3
(2.21).

Sts-cond Cri t &r i a:
Here we consider problem of minimizing the cost to bring 

the initial hazard rate within 100P7. (where 0<P<1 )of the 
ultimate hazard rate using green-run (without failure), that is 
we want to have

9 •

aft (1+/ ) = afty + P.(afty),
(since afty is the ultimate hazard rate).
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(• aftr~”+r/? Zl+yil+rftil = aftyii+P),

(substituting values of ft ,y in above
equation).
Now, solving for r we get

r = (1 /yP -Dft 1 -
Therefore minimum burn-in time required according to 

this criteria is given by

*T max£(1/yP lift 1, 0>, ..(2.22).
%costs Rs.C.t .

Third Criteria:
Suppose the benefit due to increased reliability is Rs.B 

per unit time of increased expected life and Rs.C be cost per 
unit time of burn—in . Here the corresponding optimization 
function is given by

g(r) = B.E(X -X )r o
Hence maximum gain is determined from ^~~g (r) 
equivalant to

6

= 0. which is

00
7-- EX = C/B<5t t

h(r>.expCH(r)>* S exp€-H(t)3.dt = (B+C)/B 
(since,EX^ =^S (t).dt

TCD _ _
=Qf F(t+T)/F(T).dt

...(2.23)
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CO (t + r > co T

CO
= f expf—H<t+r>+H(r)>.dt;&6 °co

7-- EX = ./ Ch(r)-h(t+r)1.exp{-H(t+r)+H<r)3-dt6r r u ^
=h( r) . e>:pfH(r) >* X e>:pOH( t) > .dt - 1.)

The equation (2.23) can be solved for r by numerical method.

In the following section we now establish the optimum

burn-in period for desired quality.

2.5 Optimum Burn—in Period For Desired Quality :
I. Optimum. Burn-in P&riod. For Desired Quality 

Period to
Suppose survival function of life time of a unit is as given 

by equation (2.10). After burning the unit for a period of r, 
survival function of residual life time is given by

(2.24)F (t) r
We know that, this survival function is more than that of new
un it.

Now, if producer wanted to convince the consumer with the 
warranty that, his unit is of quality (reliability) at least rq 
at period t>;j, then problem is how much duration of time producer 
has to burn.the unit in a laboratory in order to attain this 
criteria with minimum cost. Mathematically, find minimal t such
that

F (t ) > R (2.25)T O O
That is
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{ 1
fit a -a 
(1+rfi) } “ Ro*

Which on simplification optimal period < say t ) is given by
1 /a

ma; {- 0.
i — r i/a -in (2T26)

Again, it Rs. C is cost per unit burn—in, plus compitition 
cost function ( say C(t), which is increasing in t ) due to other 
producers unit of the same type. Therefore, total cost incured to 
achive above criteria is given by

*x(Total cost at r*) = C.r* + f C(t).dt
oJ

II> Optimum. Burn-in Foriod Criteria. For Dosirod. Quality Level 
Ouor Lifo Longth Of A Unit

Above criteria gives warranty rq at period t only. Suppose,
instead of giving desired quality at period t only, producer
wants to convince consumer by giving desired quality level,
say S (t). Now problem is how much duration of time burn-in test o
be conducted in order to achive given desired quality 
level,S(t) with minimum cost. Mathematically, find minimum t
such that

F (t) > S (t), for all tT O (2.26).

For example:
1. Let desired quality is given by
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S (t) 10

expC-XtJ, i-F t,X > O
(2.27).

0 otherwise.

Therefore, we have to find minimal r such that

F (t) > S (t), for all t > 0.T lO

( ftt .-af 1 + --— v > expf-Xt> > expC-Xt> for all t > O.| (1+rft) j

On simplification for r,we get

max
t>0

Let g(t)

____ 1_______ LI
expt(X/a).t> —1 ft j

. {____ !__ ^___LI J
j expC(X/ct).t> -1 ft j ’

...(2.28). 

which is maximum at t = 0,

and 1im ... lim I
9<t) = *-o {—+(X/a)t+(X/a)2t2+..J-l ft

= (ex/ft) - < 1/ft).
Thus, optimum burn-in period is given by

(2.29)

f (a/X) - (1/ft), 

0
if /X) > (1/ft)

...(2.30)
, otherwise.

[using (2.28) and (2.29)3.

2. Let desired quality level is given by

20
(1 + tft’) 

0
-a if t > 0 and ft' < ft, 

otherwise. (2.31)
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Now, we have to -find minimal t so that

F (t) > S (t) for all t > 0.T 20
That is,

{ 1
ftt

( 1+Tft) (1 + tft) for all t > 0.

On simplification, optimum burn —in period, t , is given by

" ift - ft’ )/lft.ft’ ), if ft’ < ft,
0 , otherwise. . ..(2.32).

3. Let desired quality level is given by

30

<1 + tft) " , 
O

if t > O and a’ < a, 
otherwise. (2.33)

Similarly, we have to obtain minimum t such that

F (t) > S (t) for all t > 0.
T 30

Which gives,

T max I 
t>0t>0 [Zil+tft)iCl

Let, g(t)
{c(l+t/9> <Ql /a)-l3 ^ }

(2.34)

Differentating g<t) with respect to t and equating to zero, we
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get

(1+t/S) <ol'/ct) 1 + C<0(' fi/a)-fnt -1=0 ...(2.35).

For given values of ot, a' and ^?, solve this equation for t.
Putting this value of t in equation <4.34) we will get optimal

$burn-in period, r say, which gives desired quality level.

2.6 Concluding Remarks:
From available data following stated model,M.L.E.'s for 

parameters can be obtained by method described
above.These estimators are used in equations <2.21),(2.22) and 
<2.23) to obtain optimum burn—in period under respective 
criteria.Note that under all these criteria, optimum burn-in 
period for exponential life time distribution is equal to zero.

Instead of single unit one can go for a system having two or 
more than two units working together. If each units life length 
following model <2.2),with same or different parameters,one can 
go for the same problem with respect to the system.

*«**t«*
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