Chapter-2.
BURN-IN TEST AND OPTIMIZATION CRITERIA

2.1 Introduction: =
For the class of 1life time distribution, when the life
timei is known to be exponential, methods of estimation and

testing have been well studied.

Saunder and Myhere = (1981) have . developed theory
‘and methods of estimation of parameters, when hazard rate
decreaszes with age. Following are situations where the
life time distributions having such property.

1.Newly born baby has high death rate and uptoc certain
age death rate goes on decreasing

2.In software developments, initially it has very high
failure rate, but as the debugging process goes on in order to
search and remove faults, the failure rate decreases.

3.New instalation of complex system with many subsystems.

Davis and Feldstein (1979) studied the family
of distributions for which the hazard rate, h(t),
which decreases from initizal value of (8 + A/¢) to an ultimate

value 8, can be modeled as
hit) = 8 + A/{t + ¢, £t >0 & ¢ > 0. «ee{2.1).
Such models seems appropriate in engineering equipments.Iin

addition an advantage of considering such parametric models

can be demonstrated by finding aptimal burn—in



periocds, which in a sense increases the guality of the unit.

For the model desceibed by (2.1), David and Feldstein (197%9)
provided the m.l.e.’'s of parameters & and A when ¢ is assumed to
be known, under progressively censored sampling and computational

method for their evaluation.

Saunder. and Myhere (1981) have considered reparametrised
version of the above mdaél and obtained m.l.e.’'s of the
parameters, and also have obtained optimum burn—-in period based
on various criteria. For the model considered by Saunder and

Myhere{(179811) the hazard +function, h{.), is given by
hit) = (—&*——~~] +  ofy, t,onfsy > O e (2.2).

where o,f3.)y are positive unknowns.

The cumulative hazard function is given by

t
H{t) = J h{x) du
O

= o {log (1+t5) + pytd; t > 0O

..-(2.3)-

Saunder and Myhere (1981) have provided m.l.e.’'s and
computational procedures,for a class of decreasing hazard rate

distribution with two unknown parameters for which

H(t) = o G5,
when certain assumptions are made about behaviour of
g = &3 namely for the functions { & y defined by

wix) = x gix);
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Cix) =1 + x~§%§%— ee(2.4).
satisfy i> yw is increasing.

ii> g is log convex.

iii> ¢ is bounded between 0 & 1; and is unimodal:

{that is, there exists S8 ={ x = L{x) > c,0 < c <12

is convex).

In section-2 we discuss the genesis of the model.
Section—-3 deals with obtaining m.l.e.’'s of the parameters in
model (2.2). these estimators are used to obtain optimum
burn—in, under different conditions, to be  discussed in
section—4. We have established optimum burn—-in period based on
desired quality in section-5. Some concluding remarks are

given in section-5.

2.2 The Genesis Of The Model:

Let us assume that each unit has consﬁant hazard rate, say
7. Thus life times are exponential random variable with parameter
* . Suppose due to variation in manufacturing quality control, the
failure rates of such unit wvary slightly in some random
manner.Preassume this variation .has gamma distribution with

parameters (a,f3) and is given by

! ta-1)
gi{A) = = pxp{-A/3}.X\ 35 A >0 &

ﬁara

A, f3 pasitive constants,...{2.9).

Then R(t) ¢ the reliability of any such unit selected
at random is given by

- . -
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s
F(t) = J expi-xtl.g().da.

“ 0 i {(a—1)

= f exp{-Aty.——— .expi{-A/f3}.A Y = b

0 o Te

= 1/7(1 + /) ve-{2.6).
That is,

Rit) = exp{ a.{~log(l+t/3) 3 e {2.7).

The failure rate of the unit then will be

£l
hit)y=s ——— . e {2.8).
F{t?
Here f{t) =5 f(t/00 .g(X).dA, {where Rx:range of A).
R
A
oy
! (a-1)
= f reexp{-At . expi{-A/f33.Xx ~dA.
v O 3 Ta
(otl)
= g3/ 01483) a ceef{2.9).
which is univariate Lomax or Pareto type-II distributiongs
. ,])
and F{t) = 4 expi{-xtl.g{x).dx
4]
—ot
= {1+ ™ «--{2.10).

Using (2.9} & (2.10) in {(2.8), we get

hit) = oy3/7¢14L3); t > 0,0, > 0. ~e. (2.11).
Here the choice of the gamma as mixing distribution comes

from two considerations, namely-
i>*Flexible two parmmeter family capable of representing many

situations adeguatly; and
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1i>Gives closed form distribution.

Generally, such a distribution is called
mised enponential distribution’ and sample from such a
model are highly censored. This might be due to the cost
involved in testing and /7 or a unit that does not fail eariy, is
is considered "good" and probably, that unit does not

fail during the subsequent test period.

2.3 M.L.E.For Progressively Censored Data:
Denote sample data with E= (ti,tz,...,tk;t&+”"..,t“);

where (t1,t2,...,ty) are ordered failure times and
: tck+z>”
ie to -be continued until each item has failed or

—

censored. The contribution of the i}huﬁit g(ti); to the

.-,tr) are ordered censoring times. Note that experiment

likelihood is F(t) provided i'" unit is censored and £0)

otherwise. That is,
s (1-6)

1 9

g(ti) = (f(ti)) '(F(ti)) s

1
where,

{ 1, if death occurs to kth unit;
& o=
k

. th .
Q, if loss occurs to k unit.

hence,likelihood function is given by
n

Lo, A7/t ) = [y g(t) eea(2.12).
[4"2

i=1
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n S (1-&.)
= EFCE ) NLCFiE ) v,
iz g ‘
Thus,
k ™
Lia, 5/t ) =1 f(t) 31 F(t)
~ i=1 izck+1)
k f(t) n k
= n—-—_——-—‘ . QI F(t) L Fee)
=1 F( t.) it=(k+1) iz
k n
= . hit .. Fee) - ce e (20130,
V=g iz

1/k times log likelihood is given by

k n -
1/}*.?_0(;!..(01,1:)'/1:) =1/k.¥, log h(t) +1/k L log F(t)
" 1=1 " =1 v
=1/k.} log h(tt) ~-1/k.3 H(ti.) «ee{2.14).

£ORY? t vEL
where h{(t) = — JH(E) = S h(x).dx

Fi{t) o

= - log E(ti).
Let
H(t) = a.0(3:p)3 hi(t) = a3.q{t3:)) - {2.15).

where, Q(t5:y) = logl{l+tss) rit;

+
gqltBzy) = 1/¢1+L3) + p .
Differentiating (2.14) with respect to (w.r.t.)ox and equating to

zero we get

¥ 1 S n S
1/LLE !1(t Y 5a (h(t y) - llk:zi ——“(H(t )y = O
k 1 1

4 - r — e - -
1/7k.F7 {ait 1+t,ﬁ+r 13 ﬁ[_——f;*')’ ] ~-1/k. 2G(tﬁ’ ») 0

t=4 1 =1
{Substituting values aof h(t) and H{(t)).

1/ = n/k.a(ﬁ:y); Fee{2.16).
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where, C!(f} »I)=1/n. 20(tﬁ ¥).

\—1
&
Similerly,éﬁlogL(a,ﬁy;t) = 0 gives
L 1 & n &
- - <. ——(H(t )) = 0
1/.% h(t Y &n (h(tt” 1/k.T° 13 (H t
tpt i=1 n
1/ {af3.qlt ﬁ y {afq(tfi 7)+ﬁ. 50 q(tﬁ y)]‘*&/k.ﬁq(tﬁ y) =0
i=1 t=1
(by (2.15))
k g’ (3tizy) on n :
. r N - b4 -
(liﬁk):§d+ﬁ‘ q(ﬁ‘tiw)' T .1/n:§1ﬁq(tiﬂ.y) 4]
—— an —
L3y “—‘:’—,;ry: (3:y), weaf{2.17).
_ n - k g (stizy)
wherey (f[S:y) = llnz)_:lﬁ‘q(t_tﬁzy)&((ﬁ:y) =(1/k):£"‘_‘{1+ﬁ-———(—ﬁ-€——'-;—)-
&
Finally, E;logl..(a,ﬁy/t) = Q gives
k 1 & n &
? h(t Y &y (h(ti)) - ? H(tt)) = 0
“Et 1 oy “n
1/':f§: {aﬁ’[m+y 33 3 -—1/&.2101{% = 0
l.; 1 B haﬂ _ =
1/k.% \untﬁmvﬁy‘ti\»w > = n t «=s{2.18).
vEl n
where, t = 1/n. Et .
t=1

Mow, to obtain m.l.e.’'s of parameters one has to solve
(2.16), (2.17) and (2.18).Following is an algorithm to obtain
m.l.e.’'s D? the parameters.

i*» Initially give values of a and 3 as o, and ﬁb1in equation
{2.18).50l1lve it for p say yk(}= Q).
ii%* Solve (2.16) and (2.17) for a, 3 with fixed y at v, - Say these

values of o and 3 as o and fa‘_\.
v



iii>» Stop this procedure for appropriate accuracy.

Appendix is provides programming to obtain random sample
from such a model and to estimate parameters of this model by

making use of above steps.

2.4 Optimum Burn-in And Ultimate Hazard Rate:

Consider a unit which is having life 1length X,with hazard
rate as given in (2.2).A burn —-in of length v 2 0 yields a random
remaining life, say XT.Hazard rate corresponding to r.v.XT is

given by
£, (&)

heter) = "X /Ex ()
o T .
= 4 2.2)).
1+ (E+7)f3 ] + ofly, tyasf3,0 > O {(by (2 2
L = off gltfs =) - - ' e (2,19

vihere B'= {‘lﬁirﬁ]’ y‘z yi{i+r/3).

Note that hazard rate corresponding to residual life time XT
also belongs to the same family as that of X, with new
parameters o, and » . After burning the wunit in
& laboratory, initial hazard rate is lowered to aﬁ'(1+y') from
the value of3(i+y). While the terminal {(or ultimatelhazard rate

remains the same as that of X, which is given by

F

of3 r' = A3y -

Upon obtaining the all the three estimators,one might look
for the use of these estimators.These estimators can be used for

determining optimum burn—in time, depending upon various



criteria.These criteria are described bellow:
First criteria:
Let Re.C be cost per unit time of burn—-in, then the

increased gain per unit (csystem) for a burn—in of period T is

gl{r) = BLog@B{l+y) — o3 (1+y )1 — Cr

e T 7 R - - -
gt Ti=nBRT(14+)y) — (1+rﬁ)~1{11y(1+rﬁ)}3 - Cr
—o@BL1-(1+73) 11 -Cr ...(2.20).
S
In order to maximize gain, soclve St g{(t) = Q for T.
v 2 °F
(2.20) gives of37R.(1+73)" = C
o e
c T4
Since burn—-in cannot be negative, take optimum burn-in
period as
1,2 1
- = — - — 2
T max{ ({ T 3)’0} s (2.21).

Second Criteria:

Here we consider procblem of minimizing the cost toc bring
the i1nitial hazard rate within 100P%Z (where O<P<1 )J)of the
ultimate hazard rate using green—-run (without failure), that is

we want to have

a3 {1+y ) = ofiy + P.(of3y),

(since o3y is the ultimate hazard rate).



o3
[ - +rﬁ].[1+y(1+rﬁ)] = oy (1+P),

4 .

(substituting values of 3 ,y in above

egquation).

Now, solving far T we get

o . _ . - -
r = (1P -1 L.
Therefare minimum burn—-in time required according to
this criteria is given by
¥ = maxt(1/3Pp -5, o3, e (2.22).

cozts Rs.C.r*.

Third Criteria:

Suppose the benefit due to increased reliability is Rs.B
per unit time of increased expected life and Rs.C be «<ost per
unit time of burn-in . Here the corresponding optimization

function is given by

g(t) = B.E(X_~-X ).
T o

Hence maximum gain is determined from gg*gtr) = 0, which is
equivalant to
S
. 3;“ EXT = C/B
h(r).exp{H(T)}XTf expi{-H(t)>.dt = (B+C)/B ee{2.23).
(since,EXT =OJ?%}T(t).dt

w-— ——
=of F(t+7)/F(7).dt
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w (L+7T) Lo} T

= pi— : : tpli— d 3.
_Of ;xp\ th(x).dx}/of eng Of h(») dx3.dt
= _f exp{-H(t+r)+H(r)3.dt;&
Q
S e o]
<t EXT =OI Th(t)-h{t+t)l.exp{-H{t+T)+H(7)3.dt

o0
=h(T).EXp{H(T)}tTf exp{-H{(t)>.dt - 1.)

The equation (2.23) can be solved for v by numerical method.
In the +following section we now establish the optimum
burn—in period for desired quality.

2.5 Optimum Burn-in Period For Desired Quality :
I. Optimum Burn—-in Period For Desired Quallty CROJ At
Fertod t
o
Suppose survival function of life time of a unit is as given
by equation (2.10). After burning the unit for a period of T,

survival function of residual life time ,XT, is given by

- Bt 3y
Fr(t) = { 1 + —TT:;ET } - -e={2.24).

e know that, this survival function is more than that of new

unit.

Now, if producer wanted to convince the consumer with the
warranty that, his unit is of quality (reliability) at least R
at period to’ then problem is how much duration of time producer
has to burn the unit in a laboratory in order to attain this
~criteria with minimum cost:“Mathematically,_find-minimal T such
that

F (t)>nr ... (2.25).
T [s) (o] :

That 1is,



3t -
e >
{ 1+ (1+7t3) } = Ry

. E $ . .
Which on simplification optimal period ( say v ) is given by

Rx/a
X o 1
o T = max {,O, [——“_—:7; - - ] }, eea(Z726) .
_ 1 - R 3

Again, if Rs. C is cost per unit burn-in, plus compitition
cost function ( say C(t), which is increasing in t ) due to other
producers unit of the same type. Therefore, total cost incured to

achive above criteria is given by

(Total cost at v7) = C.t~ + j‘ C(t).dt

11~ Optimum Burn—in Pertod Criteria For Desired Quality Level
Jver Life Length OFf A Unit

Above criteria gives warranty R, at period to only. Suppnse,
instead of giving desired quality at period to only, producer
wants to convince consumer by giving desired quality 1level,
say So(t)‘ Now problem is how much duration of time burn—in test
be conducted in order to achive given desired quality
level,So(t) with minimum cost. Mathematically, find minimum =<

such that

—

Fr(t) = So(t), for all t. e (2.26).

For example:

1. Let desired quality is given by



expi-atl, if t,x > 0
(L) = .aa (2.27).

10 Q otherwise.

Therefore, we have to find minimal T such that

F (t) 28 (), for all t > O.
T 10 ,

£t —x
P = - > Z - } -
{ 1 + (14153 } 2 exp{-At}y z exp{-At for all t > 0O

On simplification for r,we get

t 1
- Mmax _ 2.0
T = o exp{(A/a) .t} ~1 3 ---(2.28).
t 1
Let gi{t) = { enpln/o0.t3 -1 3 } s which is maximum at t = 0,
and lim glt) = lim t - !
- L B S .
£20 00 vz te /o0 t%+. 3.1 P
= (a/ﬁ) - (1/3)- ---(2-29).

Thus, optimum burn—-in period is given by

r = -e.{2.30).

. { (a/N) — (173, if /N Y (m

0 . otherwise. ‘
fusing (2.28) and (2.29)1.

2. Let desired quality level is given by
s . { (1 + 3y 2, ift>0and 3 <p,
20

0 otherwise. e (2.1,



Now, we have to find minimal 1 so’that

F (t) 28 (t) for all t > O.
T 20

— That i=,

3t -t —o
J—— > " -
{1+ (1+r/3’)} Z (1 + &3 for all t > ©

On simplification, optimum burn -in period, T*, is given by

3 t—4

% (3 — B )Y/¢(p.A"), 1if 3° < 3,
o) s Otherwise. - ={2.32).

3. Let desired quality level is given by

S _{(1+tm"°‘, if t > 0 and &’ < a,
o ‘

-Q - otherwise. L (2.33).

Similarly, we have to obtain minimum T such that

v
w

F_(t) (t) for all t > 0.
T so

Which gives,

max f ! 1
T 2 o 7o) —'ﬁ, e (2.3%).
- £30 |ro1+etm -13 _
T ( 1 1
Let, g(t) = , -
lecieem /@015 A

Differentating g{t) with respect to t and equating to =zero, we



get

(14t 7O L wpred-AIE -1 = 0 ‘e (2.35).

For given values of a, o and {5, solve this equation for t.
Futting this value of t in equation (4.34) we will get optimal

burn—in period, r* say, which gives desired quality level.

2.6 Concluding Remarks:

From available data +following stated model M.L.E.'s for
parameters o.f3,) can be obtained by method described
above.These estimators are used in eqguations (2.21),(2.22) and
{2.23) to obtain optimum burn—-in period under respective
criteria.Mote that under all these criteria, optimum burn—in
period for exponential life time distribution is equal to zero.

Instead of single unit one can go for a system having two or
more than two units working together. If each units 1life length
following model (2.2),with same or different parameters,one can

go for the same problem with respect to the system.
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