
Chapter-3

BAYESIAN INFERANCE IN RELIABILITY •
CADVANTAGE OVER CLASSICAL INFERANCE).

Bayes theorem is a foundation of Bayesian inferance. Using 
Bayes theorem, data points and preassumed information (prior 
information) regarding to parameter are linked together and 1s 
used for related inferance about parameters). In the- recent 
times this method is becoming very popular in almost all areas of 
statistical applications.

The extent to which gains have been recognized are pointed 
out by Box and Tiao (1973), and for ready referance we quote, 
from page no. 2 of this book. ..."Bayesian inferance alone seems 
to offer the possibility of sufficient flexibility to allow 
reaction to scienyofic complixity free from impediment from 
purely technical limitation". Kendall and Staurt (1961) comments 
"The principle argument in favour of confidance Intervals, 
however, is that they can be derived in terms of frequency theory 
of probability without any assumptions concerning prior 
distributions such as are essential to the Bayes approach. This, 
in our opinian, is undeniable. But it is fair to ask wheather 
they achive this economy of basic assumptions without losing 
something which the Bayes theory possesses. Our view is that^fchey 
doT in fact, lose something on occasion, and that this something 
may be important for the purpose of estimation....". The effect
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of this loss in reliability estimation is sharp, to be 
illustrated with some examples in this chapter.

3.1 Foundations Of Bayesian Statistical Inferance :
I> Subjective Probability CPersonal Probabilityj :

Frequency notion of probability deals with events and series 
of experiments (trials). In this situation these experements have 
to be conducted, under the same environment, as many times as we 
want. Probability of an eventLis the ratio of number of ^Cimes- 
that event occured to that of the total number of trials. From
axiomatic definition of probability one can compute the
probability of an event of interest. For example, to examine 
the unbisedness of a coin or for estimating the probability of 
head, one can conduct an experiment of tossing a coin and use the 
ratio of number of heads to total number of repetations.

While, subjective probability not only deals with events but 
also with some problems to be solved. Moreover the nature of

the events is such that, it is not possible to repeat the
experiment to compute the proportion. For example, an event like 
"nuclear power plant X will suffer a core meltdown". As a 
model one can pre-suppose the probability of such event and from 
statistical point of view, these are called hypothesis. Our 
interest is to test these hypothesis with certain degree of 
belief in it. As our evidance increases, relevent/against 
hypothesis, we change our degree of belief in hypothesis 
Once degree of belief about a proposition 'A' can be quantified 
by P(A); we speak in our daily life .* "probabily I will get
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etc. Twodistinction", "He will probably marry her because...", 
extremities of beliefs in proposition (event) ’A* are, it is true 
(that is, P(A) = 1) and it is false (that 1s, P(A) ■ 0). 
Intermediate beliefs are points from (0,1), for the values of 
P (A).

Once belief in a particular hypothesis may be different from 
that of others. That is, the probability assigned by one 
individual may be quiet different from other individuals. 
Therefore, subjective probability some times refered to as 
”personal probability”. As an investigator 1s rarely certain 
about the true nature of the process that generates observed 
events, assumptions are made about underlying process. Now, 
question arises about validity- of these assumptions. For 
example, many times in reliability analysis we are assuming 
that data are generated according to Poisson process, even 
when there is little or almost no evidance to support such an 
assumption.

Subjective notion of probability is incarporated in Bayesian 
analysis by the prior distribution. It is the distribution of 
degree of belief about 6 before data Y is observed. As a result,

A#

prior distribution not admit a direct limiting frequency 
interpritation. However, in some situations, observed data may be 
used to estimate prior distribution. Past data sometimes used for 
prior estimation. For example s Proportion of defectives (say 0) 
in a sample are plotted against sample number so as to obtain 
prior distribution of 0. Wheather prior distribution does exists



which is responsible for quantification in Bayesian analysis 
depends on nature of problem. It is well suited for use in 

reliability analysis.

Hence we conclude that subjectivity enters into all 
statistical analysis and that such analysis is an art as well the 
science. One of the branch which utilizes the subjectivity is 
Bayesian inferance.

Il>Sampling Theory Verses Bayesian Inferance:

To demonstrate difference between sampling theory and
Bayesian methods of inferance, consider an example t Suppose we
want to study life length of a certain population of energy
converter elements under spetial use conditions. Assume
tentatively that observed lives of these elements are distributed
independently and exponentially with mean life 6. Let
(Y ,Y ,...,Y ) be a given data of size n from this population. 12 n
Joint p.d.f. is given by

n
f(y/0) - (1/0)n.exp{-£ y./0 } ...(3.1).

i = i 1
We are interested in making inferance about 6 based on n data 
values.
3.1.1 Inferance Based On Classical Theory :

From classical theory (sampling theory) point of view, mean 
life-0 is assumed to be fixed constant. Its estimator 0(Y),

A*

function of Y, can be obtained according to method of moments,

maximum likelihood, minimum variance ir least squares, etc. For 
this example, here maximum likelihood and method of moment
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estimators of 6 are same, is given by
„ n
6 = 0(Y) =n/n ... (3.2).

- . ti = l
Imagining {Y ,Y ,... ) set of all data points from

hypothetical population (2.1), sampling distribution of 0(Y) is
such-that U = 2n©(Y)/0 has y/2(2n), that is the p.d.f. of U is

given by
f(u) - (2nrn)-1. expt-u/2). u(n“n» 0 <u< oo ...(2.3).

Two sided confidance interval (TCI) estimator for B with
confidence (1-y)% is given by

12t\6(Y)/wZ (2n); 2nB(Y)/y? (2n)J ...(3.4).
„ (t-y/z) „ (y/z>

Note that, in repeated sampling in which such a confidance 
interval is computed from each sample, the computed confidance 
intervals would include the true value 6 in (1-}")* of the cases. 
Confidance interval is not probability statement about 6, since 6 
is not a r.v. That is the probability that 6 exceeds the upper 
limit of TCI is y/2. In short, sampling theory inferences are of 
inductive reasoning, since from sample we are making Inference 
about population.

For ready referance, following figer (from Martz and Waller 
_x< 1982) on page no.166), gives brief picture about 

sampling inferance.

I
Assumptive 
Samp!ing 
Model

1
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Inferance Based On Classical Theory.

Statistical

Inferance 
1-------------------------------- '--------------------------

3.1.2 Bayesian Inferance :
Compared to classical theory, Bayesian method is much more 

direct. Here instead of 6 as a fixed constant (as in classical 

theory), it is assumed to be a non-observable random variable 

(r.v.) with prior p.d.f. g(0). This prior density expresses the 

state of knowledge or ignorance about 6 before sample data. 

Since very rarely parameters of interest are known, 1t is 

helpful to consider parameter as a r.v. and modeling for its 

distribution (uncertanity) is again an art as well the science.

For above example, assume that prior distribution of 0 is

uniform on the range 0 to 6 , whwre 0<9 <9< 6 <<». That is,12 12
g(0) « id-e > j o<e <e< e <®. ...0.5).2 1 12

Let, Y = (Y ,Y , . . . ,Y ) be a sample of size n from a population „ 12 n

with p.d.f. f(x/9). As the distribution of a Y depends on 0; Y

does contain ’some* information about the unknown parameter 9. 

Now by using information about 9 gather through Y the prior

knowledge can up-dated, and this up-dated knowledge can be 

expressed by the posterior distribution of 9 (which can be 

obtained by using Bayes theorem). For model described in (3.1) 

and (3.5) posterior distribution is given by
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(Ey )n 1 exp{ - Ey./B }
l i

giO/y) sx ——— - ■ ...(3.6).
0n (Hn-I, Ey tO )- Hn-1, Ey./© ))

l 1 l 2
Z -1

where, Ha.z) = f yS . exp{ -y }.dy, a > 0; and E stands for
'■' " oJ - ^

sumation over i = 1,2,...,n.

Now, under squared error loss function point estimator of ©

Hn-2, Zy./e ) - Hn-2, Ey. /© )
i 1 l 2

is mean of posterior distribution and is given by 

E (©/y) = Ey
Hn-1, Ey./© ) - Hn-1, Ey./© )l 1 i 2

n > 2.

... (3.7).

Bayes interval estimator for © is also obtained from 

posterior distribution of ©.

Definition 3.2.t :
'ft

(©x,© ) is called (1-y)t two-sided Bayes probability 

interval for © if,
©_

J g(©/y).d© - y/1
-oo 00

©
J g(©/y).d©

...(3.8).
Probability interval provided by above definition need not 

be shortest length interval, therefore one may go for that type 

of intervals. Shortly we will discuss some other kinds 

of probability intervals in last section of this chapter.
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Differance between Bayesian analysis and classical 
theory approach is that, Bayesian analysis takes explicit 
account of prior distribution while in classical theory it is 
not. Sometimes Bayes and classical theory approaches may give 
same results but, there is a differance in the interpritafcion 
of the results. For example » confidence Interval is not a 
probability statement about 6, while Bayesian interval is.

Following figer (from Martz and Waller (1982), p.p.168) 
gives brief idia of of Bayesian method of inference s

Assumptive 
Sampling 
Model

V

Sample Data

Assumptive 
Prior Model

Two more distinctive features of Bayesian inference are~ 
i> Due to exclusive use of sample data, classical theory 
inferance are more ristrictive than Bayes Inference. Whereas, 
Bayes inferance technique uses past information in terms 
quantified prior distribution, gives more informative inferance. 
Degree of more informative inferance depends upon quality of

1
!
!

J
!
V

Statistical
Inferance

Bayesian Method Of Inferance.
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assessements incorporated in the prior distribution.

ii> Classical theory inferance requirs comparatively more set of 
data points to attain same quality of inferance as that of 
Bayesian inferance. That is why, in more expensive situations and 
cases where it is not possible to obtain more data, Bayes
inferance is having its importance. These situations mostly occur 
in reliability estimation.

3.3 Bayesian Inferance In Reliability :
1 Some Drawbacks With Classical Theory In Reliability :

Sampling theory is found to be very important in reliability 
estimation, but many times it is found to be below our
satisfaction. These are mentioned here.

Cost effectiveness reliability estimation is one of the
major factor, which contradicts to use of classical theory. Due 
to limited time and funds available to run an experiment less no. 
of sample observations available. As a result low level of 
confidance in the reliability estimate. Growhaski, Hausman and 
Lamberson (1976) illustrated this with following example i 
Suppose that in experiment, to determine reliability of a 
redesigned automobile airconditioning system only limited time 
and funds are available for testing single vehicle for 36,000 
miles. If this experiment resulted into two failures then
based on exponential model, a 90S two sided confidance 
interval estimate for the system reliability at 12,000 miles 
(say waranty ends at this period) is found to be (12.2*, 88.8*).
(This confidance interval is due to, under exponential life time
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model number of failures follows poisson process. Bain (1978) 

(Theorem (1.4.3),p.p.106) and Martz and Waller (1982) (Table 

4.4, p.p.122)). Such an estimation is practically useless.

In similar manner classical estimation techniques are

useless in caes of scarce data. In case of highly reliable

system, failure data will be scarce. For example s Data from

Nuclear Regularitory Commission (1978) reported zero value
6

failures over 7.9*10 hours for population of 16 boiling water 

reactors. As a result under exponential failure time model, point 

estimate of constant failure rate is zero, highly optimistic 

result and confidance interval here is not possible to obtain. 

Also frequency of core meltdowns in nuclear power plants are very 

rare over long period. Hence the same kind of problem arises as 

that in the above example for estimation of failure reactors of 

nuclear power plant due to core meltdowns.

Most of the engineering designs are evolutionary rather 

than revolutionary. That is, engineering equipments get modified 

in its old design so as to fulfil new requirements from 

customers. This modified design must be reliable at least as that 

of the old one. In classical theory it is not possible to 

incorporate such previous information. As an exmple t Suppose 

previous year model equipment yielded an observed system 

reliability of 85* based on warranty data. The fact, new design 

is an evolution of old design, which had an observed reliability 

of 85*, is an important consideration that can not be taken into 

account using methods based on classical theory. - ^
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Sometimes classical theory methods gives absurd results. If
parameter of interest is known to lie within a specified range it
is difficult to consider this information for classical methpds.
For example j (Martz and Waller (1982) p.p.171), suppose we are
interested in estimating in meanlife iO) of a certain automobile
system, such as steering, brakes etc.based on the assumption of
an exponential model. Generally, it is known that mean life of

4 5
such automative systems exhibit a mean life between 10 and 10 
miles per failure. Based on sample test data, classical theory 

/can do no more than compute a confidance interval estimate 
according to (3.4). Such estimators are still true in the 
required proportion of cases, but the statements take no account 
of our prior knowledge about the range of 6 and may occasionally

3be idle. It may be true, but would be absured to say that 10 
6

to 10 is confidance interval even we know that 6 lies between 
4 5

10 to 10 .

Sometimes due to classical theory, overdesigning and high 
margines of protection are given than really it is needed. 
Ultimately, again it results in to large no. of tests and long 
duration of time. Higher consumers and producers risks have been 
highlighted. As an example s Suppose the mean life (0)of an 
exponential distribution is a random variable and reliability 
demonstration test is used with $ (minimum acceptable MTTF) and 
6 = lOt ;where, 6 - P(accepting Ho under Hi is true)
:consumers risk; but, suppose it is known that P(0 < Q ) =i
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0.0001. In this case one is paying (in terms of sample 
provide 10? protectionfor an event that is quiet rare.

size) to

II Advantages Of Bayesian Inferance In Reliability :

All statistical inferance theories, weather classical 
theory, Bayesian, likelihood or otherwise, require some degree of 
subjectivity in there use. For example : Classical theory 
analysis of (3.1) proceeds by assuming priori that data were 
exactly exponentially distributed with unknown parameter X, that 
each observation had exactly same mean life and that each 
observation was distributed exactly independently of every other 
sample observation. The Bayes method provides flexible and 
satisfactory way by assuming prior knowledge or ignorance. These 
assumptions lead via Bayes theorem to posterior inferences, that 
is, inferance obtained by incorporating data into analysis, about 
reliability parameter(s) of interest. Bayes theorem provides 
simple and error-free truism for incorporating prior information. 
The engineers generally appriciates to tell such prior 
information in formulized way.

Since engineering situations are evolutionary rather than 
revolutionary, subjectivity is basic to reliability engineering. 
This fact is personnel, so quantification of subjectivity may not 
agree with that of other engineer(s). One may worry about the 
fact of different prior assumption results into different 
inferances about the same problem. However, truthfullness in the 
subjective belief is an advantage of Bayesian inferance. If the 
group of engineers hold the same degree of belief then such

13651
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argument reassure the reliability analyst that the resulting 
inferances are probabily correct. On the other hand, situatins 
where disagreements amoung the engineers, reliability analyst, in 
this case, either to ignore the judgement of one or more of the 
engineers, or further data be obtained to s.olve the problem. In 
any case, Bayesian inferance shows to what extent different 
results may or may not be obtained according to differences in 
prior options held. This credits Bayesian reliability analysis.

Two important practical benifits of Bayesian analysis are- 
i> Under the condition that prior information accurately shows 
the true variation in the parameter(s), Bayesian analysis gives 
high quality of inferance, and '
iideduction in testing requirment, namely test time and sample 
size.

There is another important advantage of Bayesian 
inferance,namely, unacceptable inferances must come due to 
uncorrect assumptions and not from weakness (insufficiency) of 
method used to provide the inferances. From this point of view, 
since Bayesian inferance is more direct, it shows many drawbacks 
of sampling theory. Based on component data, system reliability 
analysis is possible in Bayesian inferance, since it is possible 
to manipulate probability statements on components into 
corresponding statements on system reliability.

For previous automobile airconditioning example, provided by 
Grohowski, Hausman and Lamberson (1976), they constructed a
S'"
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Bayesian interval estimate for system reliability at timt 12,000 
miles to be (66*, 84*) with a point estimate of 75*. Compared 
to the previous model observed value of 78*, the Bayesian result, 
indicate that the system on the average is not quiet as good as 
the old, but is a fogur that is believable. On the other hand, 
the classical estimate of 51* is so low as to be absurdly 
pessimestic. Thus, Bayesian method produces believable results 
convincing engineers.

3.4 Nature Of Bayesian Inference :
3.4. t. Bayes Theorem :

Suppose that y « (y ,y ,...,y ) is a vector of n- 12 n
observations whose probability distribution p(y/0) depends on the
values of k parameters 6 * i6 ,6 ,...,6 ). Suppose also that $1 2 k
itself has a probability distribution p(0). Then,

p(y/0).p(0) * p(y,0) * p(0/y).p(y) ...(3.9).
^ « <v A* V IW

Given the observed data y, conditional distribution of 6 is given 

by
p(y/0).p(0)

pld/y) = ---------------- ...(3.10).
~ ~ p(y)

Also we can write,

, . ep(y)« '

J p(y,0).d©

E p(y,6)
6

,if 6 continious;

,if 6 discrete.
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f p(y/0).p(0).d6 , if 6 contlnlousj
nr ** ** ** ** **

« - Ke
- £ p(y/0).p(0) , if 6 discrete.

e " ~

The statement (2.10) is rereferred to as Bayes theorem. In this 
expression, p(0), which tells us what is known about & without

knowledge of the data, is called the prior distribution of 0,

correspondingly, p(0/y), which tells us what is known about 0

given knowledge of the data, is called the posterior distribution 
of 0 given y. the quantity p(y) is "normalizing" constant

necessary to ensure that the posterior distribution p(0/y)

integrates or sum to one.

3.4.2 Bayes Theorem And The Likelihood Function:

Given the data, y, p(y/0) in (3. 10) may be regarded as

function of 6 and not of y, when so regarded, following Fisher

(1922), it may called the likelihood function of 0 for given

y -and can be written as l(0/y). Bayes formula can be written as

p(0/y) * c. 1 (0/y). p(0) ...(3.12).
IV M IV «v

where, c = 1/p(y) : normalizing constant.

In other words, Bayes theorem tells us that the 
probability distribution for 6 posterior to the data y is

A* M*

proportional to the product of the distribution for 6 prior to
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the data and the liklihood for 8 given y, that is,
W A<

Posterior Distribution o Likelihood * Prior Distribution.

The likelihood function l(0/y) playes a very important role in
M A*

the Bayes formula. It is the function through which the data y 

modifies the prior knowledge of Q. Therefore it can be thought 

of as representing the information about 8 comming from the
A*

data.

The likelihood function is defined up to a multiplication 
constant,that is, multiplication by a constant leaves the 
likelihood unchanged. This is in accord with the role it playes 
in Bayes formula; since multiplying the likelihood function by an 
arbitrary constant will have no effect on the posterior 
distribution of 8. The constant will cancel upon normalizing the

product on the right hand side of (3.12). This relative value of 
likelihood is of importance.

3.4.3 The Standardised Likelihood :
When the integral Jl(0/y).d0, taken over the admissible

range of 8, is finite, then occassionally it will be convinient

to refer the quantity

1(0/y)

Jl(0/y).d0 ...(3.13).
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We shall call this the standardised likelihood, that 1s, the 
likelihood scaled so that the area, volume, hypervolume under the 
curve, surface, or hypersurface, is one.

3.4. 4 Sequential Nature Of Bayes Theorem. :

Note that, (2.12) provides a mathematical formulation of how 
previous knowledge be combined with new knowledge (knowledge 
after data obtained). Also this allows us to update Information 
about $ continually, as more observations are taken.

Thus, suppose we have an initial sample of observations y 

then Bayes formula gives

p(0/yt) a .pteKKe/y^) ...(3.14).

Now, suppose we have a second sample of observations y~2
distributed independently of the first sample, then

p(0/y y ) a p(0).l(0/y ).l(0/y )

o p(0/y ).l(0/y ) ...(3.15).

Observe, (3.15) is precisely of the same form as (3.14) 
except that p(0/y ), the prior distribution for 6 given- y ,

playes the role of prior distribution for the second sample. 
Obviously, this process can be repeated any number of times. In 
particular, if we have n independant observations, posterior 
distribution can be recalculated after each new observation, if 
we want. Therefore, at the mth stage the likelihood associated
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with mth observation is combined with the posterior distribution 
of © after (m-1) observations to give the new posterior which is

now based on m observations, given by
p(0/y y ,...,y ) a p(0/y ,y ,...,y ).K0/y ); m * 2,3,...** *✓ 1 2 m a/1 2 iv ^

...(3.16).
where,p(0/y ) a p(0).l(0/y ).

Thus, in fundamental way, Bayes theorem describes the 
process of learning from experience and shows how knowledge about 
the state of nature represented by 6 is continually modified as

new data becomes available.

Following example, (from Martz and Waller (1982)1, dipicts 
how likelihood improves the prior judgements made by two 
engineers A and B about their ability to achive mean life (0) 
of engine in different intervals.

Suppose two design engineers A and B are given the task of 
redesigning an industrial engine that is to have a mean life 6 of 
at least 3000 hour. Engineer A has had considerable experience in 
the design of similar engines and can make a moderately good 
guess of the success of the effort. On the other hand, B has had 
less experiance and is far less certain of the outcome of the 
task. With the help of a reliability analyst, both A and B have 
been seperately encouraged to quantify their degree of belief in 
the success of their task. A and B quantified their beliefs in 
the following manner.

TABLE : a

47



6 (hour) gA(0) gB(0)

0 - 1000 0.01 0. 15
1000 - 2000 0.04 0.15
2000 - 3000 0.20 0.20
3000 - 4000 0.50 0.20
4000 - 5000 0.15 0.15

> 5000 0. 10 0.15

It is observed that A believes a priori that the probability 
is 0.75 that the design will be successful, while B believes that 
the probability is 0.50. Engineer A further believes that there 
is only a priori 0.05 probability that the design effort will 
grossely fail ( a mean life less than 2000 hour.), whereas B 
believes that the prior probability that this will happen is 
0.30. In other words, the past experiance of A leads him to a 
more optimesiic view concerning the success of the task, wjiereas 
B'has a more pessimistic attitude.

Following the redesign effort the reliability analyst 
propose that two prototype engines be tested until! both fail. 
Assuming an exponential failure time distribution with mean life 
(0), the standerdised likelihood of 0 is given by

f (x ,x /0)
l(0/x ,x ) - ----1 ~Z------

1 2 ff(x ,x /0).d0J 12
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« (x+x )/02.exp{-(x +x )/6) ...(3.17).
12 12

0< 6< 00.

Now suppose that the test has been conducted and that x^

= 2000, and x = 2500 are observed. The standardized likelihood 
2

that 6 is between a and b, where a< Q< b, is given by
b

1(a< 6<b/2000,2500) - J (4500)/02.exp{-(4500)/$].d$
a

- expC-(4500)/b) - exp{-(4500)/a),

...(2.18).
Using this we can easily compute the values of the standardized 

likelihood to be as follows.

TABLE : b.

6 (hour). 1(0/2000,2500).

0 -1000 0.01111

1000 - 2000 0. 10

2000 - 3000 0.12

3000 - 4000 0. 10

4000 - 5000 0.08

> 5000 0.59

Note that the likelihood is 77* that 6 exceeds requirment 

3000 hour, in spite of the fact that neither engine survived 3000
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hour. This is due to the exponentiality and associated property 
which says that, in such a model, 63* of the failures are 
expected to occurs prior to the mean life 8. Consequently, it 
is expected that the mean life should exceed 5000 hour, as
indicated by the likelihood of 59*, given x =* 2000 and x1 2
* 2500.

Now let us compute the posterior distribution for A in light
of test results. According to Bayes theorem

1(0 <8 <1000).g (0< 8< 1000)
__________ ___ Ag (0< e< 1000/2000,2500) -n f (2000,2500)

n

where, f.(2000,2500) denotes the standerdized marginal A
distribution for A, evaluated at x = 2000 and x = 2500. It may1 2
be calculated according to

oo
f (2000,2500) ■ f (4500)/0Z.exp{-(4500)/0}. g(0).68
A oJ 1000

« t f (4500)/8Z.exp{-(4500)/&}).(0.01) + 
0 2000

( f (45OO)/0Z.exp{-(45OO)/d)l.(0.04) +
1000 3000

1200oJ* (4500)/02.exp{-(4500)/0} ). (0.20) +
° 4000

l. f (4500)/02.exp{-(4500)/0)J.(0.50) +
5000

l4000J (4500)/eZ.exp{-(4500)/0}).(0.15) +
oo

l50ooJ <4500 )/0Z.exp{-(4500)/©)).(0.10)
* (0.01).exp{-4500/1000) +
(0.04).I exp£-4500/2000} exp{-4500/1000}}+
+....+(0.01).(1-[exp£-4500/5000}J .
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0.15.
Thus,

g (0< 0< 1000/2000,2500) * (0.01111).(0.01)/(0.15)
A -4

« 7.4*10 .
Similarly, by computing remaining posterior probabilities for A 
we tabulate them as follows.

TABLE : c

6 (hour) g (0/2000,2500)
n

0 - 1000 7.4*10
1000 - 2000 2.5*10
2000 - 3000 0.16
3000 - 4000 0.34
4000 - 5000 0.08

> 5000 0.40

It is noted that, in light of the observed data, the posterior 
distribution of A indicates that the engineer now belives that 
there is 0.82 probability that 0 exceeds the requirment, upward 
from 0.75 prior to the data. By comparing table values in TABLE : 

a and TABLE : c, it is observed that A’ strong belief that 
3000< 0<4OOO has been reduced from 0.50 to 0.34, whereas the 
bekief that 0 > 5000 has increased in view of the test results 
from 0.10 to 0.40. We see that in this case, neither the prior 
nor the likelihood "dominates" the posterior, but that both are
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fairly equally weighted in the analysis. This is not always the 
case as will now be shown.

The posterior distribution for B is slmilerly computed by 
use of Bayes theorem. For example

g (0< 9< 1000/2000,2500) 
B

1(0 <9 <1000).g (Q< 0< 1000)
_______________ B____________

f (2000,2500)B

where, f (2000,2500) denotes the standerdized marginal
O

distribution for B, evaluated at x = 2000 and x * 2500. It may12
be calculated according to

f (2000,2500) - f (4500 )/(?2.exp{-( 4500 )/0}.g(0). d©
8 0

1000
[_f (4500) /QZ.exp{-(4500)/&)).(0.15) +
°J2000

(lOoo/ (45OO)/d*.expC-(45OO)/0}).(0.15) + 
3000

l20nnJ* (4500)/<?2.exp{-( 4500)/£} ]. (0.20) + 

4000
I3000J (4500 )/02.exp{-( 4500 )/f?}}.(0.20) +

U 5000
C4000J (4500)/02.exp{-(4500)/0)3.(0.15) +

oo
[5000J (4500)/02.exp{-(4500)/9]J.(0.15)

« (0.15).exp{-4500/1000} +

(0.15).[exp{-4500/2000} expC-4500/1000})+ 
.... +(0.15).[1-(exp{-4500/5000}).

Thus,
gg(0< 0< 1000/2000,2500) - (0.15).(0.01 1111 )/(0.16 )
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» 0.01.
Similarly, by computing remaining posterior probabilities for B 
we tabulate them as follows.

TABLE : d

6 (hour) g0(0/2000,2500)

0 - 1000 0.01
1000 - 2000 0.09
2000 - 3000 0.15
3000 - 4000 0.13
4000 - 5000 0.07

> 5000 0.55

In view of the observed data, B now belives that there is JD. 7 5
probability that 6 > 3000, as apposed to the prior probability of
0.50. Comparing TABLE : a and TABLE : d the likelihood is thus
observed to have a fairly influential seffect on B* posterior
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distribution. In fact, apart from a slight increase in the centre 
of the posterior distribution due to the slight influence of the 
prior, the posterior resembles the likelihood. In such a case we 
say that the prior is "dominated" by the likelihood.

In general, the sharpness or flatness of the prior
distribution relative to the sharpness or flatness of the
likelihood determines wheather the prior dominates the
likelihood. Generally, if the prior is flat relative to the
likelihood, then likelihood dominates the prior; as we see in the

§case of engineer A’ prior in above example. On the other hand, 
if likelihood is flat relative to prior, prior dominates the 
likelihood. Box and Tiao (1973) point out that, generally in case 
of analysing scientific data, the likelihood dominates the prior 
and rarely apposite holds.

3.5 Performig A Bayesian Reliability Analysis 8
Definition : Martz and-Waller (1982), '

" A Bayesian reliability analysis consists of the use of 
statistical methods in reliability problems that involve the 
parameter estimation in which one or more parameters are 
considered to be a r.v. with a nondegenerate prior probability 
distribution which expresses the analyst’s prior degree of belief 
about the parameters".

3.5.i Problems and Considerations In A Bayesian Reliability 
Analysis :

In performing Bayesian reliability analysis, identification,
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veryselection and justification of prior distribution is 
important and is difficult too. Following problems arises while 
doing the Bayesian analysis s 
i> Which prior distribution to use.
ii> What sources of data are available for selecting a prior 
model.
iii> How to quantify the subjective information, and
iv> Which procedure is appropriate for fitting prior
distribution to subjective data.

When multiple sources of relevant data are available for 
analysis, it must be decided that which data are to be used in 
fitting the prior distribution and which data are to be used in 
the likelihood function. Even this is not an easy task, but 
traditionally softer and more objective data have been allocated 
to prior, whereas the harder and more objective sample data have 
been used in likelihood.

Identification of prior concerns with wheather to use 
discrete or continuous prior, informative or noninformative 
prior, its mathematical simplicity and convenience, flexiblity of 
family, degree of softness or hardness of the subjective data 
sources.

3.5. £ Preposterior Analysis :

Preposterior analysis is a procedure for analysing (or 
searching) a prior distribution, before achivement of test data. 
Based on its (tentative priors) impact (effect) on
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posterior with respect to hypothetical data, desirability of 
this tentative prior is to be checked (studied).
Followings are steps for preposterior analysis t -
i> Initially select a tentative prior distribution.
i1> For a set of hypothetical data obtain posterior distribution.
iii> Study the set of posterior distribution so that wheather
they seem reasonable in light of hypothetical data.
iv> If they are reasonable, prior distribution (which are
tentatively selected) is good, otherwise go for another prior and
repeat the steps untill it is resonable.

3.6 Bayesian Decision Theory :
Statistical decision theory concerns with making decisions

about state of nature 6, which is unknown, based on given set of
data. Decidion maker has to make a choice from a given set
of available actions Ca,a,...,a}. In Bayesian decision12 k
theory, © is assumed to have a prior distribution. The decision 
maker combines prior knowledge of © and information provoded by 
an experiment by posterior distribution of ©. Then he chooses an 
action so as to minimize expected loss over posterior 
distribution.

Notations :

1.0^: { Q ) s parameter space or possible states of nature
( may be vector valued ).

2. jf t { a 3 s action space.
3. L(0,a) : loss due to action a when state of nature is ©.
4. X * C x } : sample space of r.v. X which has p.d.f. f(x/©).
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when 0 is true state of nature.
5. D « l <5(x) j : decision space of possible decisions functions

defined on X to action space jf.

3. 6. t Risk :

Note that, our action a depends upon particular sample data 
x that we observe. For decision function 6, loss function may be
A*

written as L(0, <5(x)), when we observe X ■ x as a sample data.
W A# A*

Therefore, loss function is a r.v. which depends upon sample 
outcome. Thus, risk is defined as expected value of the loss 
function. Mathematically it is given by

R(0,6) = E |l.(0, <5(x))/e|

J* L(0, 6(x)).f(x/0).d0 ...(3.19).
X

Naturally, good decision function would be one that minimizes the
risk for all values of 0 in Q . This need not be always possible

&
to obtain such a decision function.

Definition 3.2.2:Inadmissible Decision Function :
x

A decision function 6 is inadmissible if there exists any 6 
in 2) such that if, ' "

and
R(0,<5) < R(0,6 ), for all values of 0 in flLX ®

R(0,<5) < R(0,6 ), for at least one value of 0 in Cl^.|

Definition 2.3 : Better Decision Function ;

<5 is said to be better decision function than any 6 in 2) if 
R(0,<5 ) < R(0,<5), for all values of 0 in
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Definition 3.2.4 : Best Decision Fvnction :
ttA decision function 6 i9 best amoung the class of all 

decision functions D if
R(e,<5*) < R(0,<5), for all values of 6 in D , 6*different from

tt
6 , for that value of 6 _

3. 6. 2 Bayes Risk :
Bayes risk of a decision function 6 is defined as the 

expected value of the risk r(0, 6), with respect to the prior 
distribution g on

Mathematically, Bayes risk r(g, 6) of decision function 6 
with respect to prior g is given by

| R(©, 6)J

Jj
r(g, 6) *» E \ R(©, 6)

L(d,<5(x)) .f(x/0) .g(6) .dx.dd

% x
...(3.20).

Thus, Bayes risk orders the decision space 2>, that it,
decision maker preferes decision function 6 to 6 if 6^2 12
has smaller Bayes risk than that of <5^.

3.6.3 Bayes Decision Function : _ „ —-

Since Bayes risk orders the decision space 5>, according to
this principle one may search for a decision function 6t with
respect to prior g, so that it has minimum Bayes risk. If such a
decision function, say 6 (x), exists it is known as Bayes9 -
decision function and its associated Bayes risk given by

58



r(g) r(g,6 ) 9
is known as the minimun Bayes risk.

(3.21).

Construction Of Bayes Decision Function :

Assuming, order of Integration can be reversed, 
becomes

r(g, 6) ) < L(0, 6(x)) .gte/x) .d6

e

Bayes risk

dx..

...(3.22).
where, g(0/x) is posterior probability distribution of © given x. 

Therefore, to minimize the Bayes risk, a decision function 6(x)

should be chosen such that the inner integral is minimum, which 
is equal to expectation of [L(0,6(x)/xJ under posterior

distribution of © given x, or simply posterior- risk. TJTus with

respect to prior g, Bayes decision function can be obtained 
without going for value of minimum Bayes risk.

Let, $(6,x) be posterior risk and ,
0(x) * 0(6, x) -/l" 0(6, x)

■\5e»n E{ue,<5(x>/><]} .

Therefore minimum Bayes risk is given by
r(g) «= I 0(x) .f (x) .dx.

X=E[ 0( X)]

(3.23).

(3.24).

3.7 Bayesian Estimation Theory :
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Estimation problem is a perticular case of statistical 
decision problem, in which decision made by analyst is the 
estimate of an unknown parameter 0.

3.7.1 Bayesian Point Estimation :

Bayesian point estimation consists of, 
a saction space - set of point "estimates" of the parameter 0, 

which is subset of parameter space flu
C7*

3) t decision space - possible "estimators" for 0.
Thus, decision function is 0 =* 6(x), ...(3.25).

where, x is observed value of X. On observing X, the function
v m v

6(x) can be evaluated and the resulting "action"

0 is called point estimate of 0. The function 0 is called a point 
estimator for 0. Thus "estimates" (the actions) are the values of 
an "estimator" (a decision function).

While estimating 0 by 0, the differance between the values 
of 0 and its estimate 0 causes a loss. Thus, we should define a 
loss function such that for 0=0, loss is zero. For a reason as 
such, loss function in estimation problem is generally assumed of 
the form

L(0,0) - »(0).d(0-0)» ...(3.26).
Where, d is nonnegative function of discrepancy (0-0), such that 
d(0) » 0, and « is weighing function that shows relative
seriousness of a given discrepancy for different 0.

When the parameter is one dimentional, the loss function in



an estimation problem can often be expressed as
- d

L(0, 9) » w | 9-9 | , (3.27)
where, «, d > O.When d « 2, the loss function is quadratic and is 
called squared-error loss function. If d *1, loss function is 
called absolute error loss function, which is proportional to the 
absolute value of estimation error.

3.1 A A Bayesian Estimation Under Squared-Error Loss Function :
For one dimentional parameter, the squared-error loss 

function is given by
(3.28).

Thus, Bayes risk of this loss function is given by

As we discussed in section 2.2 that there need not always exists 
a decision function (here 9) which minimizes risk for all values 
of 6. So, we have to choose such a rule, 9, which minimizes the 
expected value of EL(d,d) under prior distribution of 9.

Now, from (2.22), 9 should be chosen such that,

is minimum.
Which can be rewritten as

E©/x a(© - 9)^/x ] ' Ee/*[ 2
aU@ ~ E©/x(e/J)3 “ 19 ” E0/x(©/x)))/x
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= a E„ . | {© - E (©/x)} /x ©/x I ©/x.[
-[

]
+a- Ee/xI 19 - W*/:,I/!! ]

-2a. {0- E^. (©/x)}.E^v. {© - EA. (©/x))/x ©/x « ©/x I ©/X

= a E {© - E (©/x)r/x ©/x I ©/x

+a. E_ . 16 - E (©/x)}/x®/x I ©/x

]
]

* a.Varv-. (©/x) +a.E/e., ©/x „ ®/x £0 - E^. (©/x)}/x

which will be minimum for 0 * E^,. (©/x)0/x

j e-
V

g(0/x). d0;

...(3.29).

...(3.30).

which is mean of the posterior distribution.

Thus under squared-error loss function, Bayes estimator is 

simply the posterior mean of © given x. The minimum posterior

risk associated with this Bayes estimator is equal to

a.Var_, (©/x). Therefore, according to (3.23) and (3.29),©/x

<pix) = mln E a(0 - 0)“/x
0 0/x l

* a-Var©/x(e/x)-

:]
...(3.31).

By (3.24), minimum Bayes risk associated with 0 ** EA, (©/x) is®/x
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given by
r(g) = a*E©/xJVar©/x(e/><,J» ...(3.32).

00 00

which is Bayes risk of Bayes estimator.

3.7.i. 2 Bayesian Estimation Under Quadratic Loss Function :

When parameter to be estimated is k dimentional vector, say
0 - ,6 ,...,3 ), k>2. A generalisation of squared error-loss~ 12 k
function is the quadretic loss function which is given by

nete) « te-$)'Dte-e), ...0.33).
00 00 00 00 00 00

where D is a symmetric k x k non-negative definite matrix,
(that is, |D| >0). If 0 is positive definite, ( that is,|D| >
0), then any non-zero error vector {6-9) leads to a positive

00 00

loss.

Suppose that the mean vector E(0/x) and covariance matrix
00 00

Cov(@/x) of posterior distribution of © given exists. Thus 
00 00 00

according to equation (2.22), the Bayes estimator is that
estimator which minimizes the posterior risk and 1s given by

|(0 - 6)*0(0 - 6)/xL........J
“Ee/x[l,?-Ee/x(!/:,,-'^Ee/x,!/!:,n'-0-l(!
-Ee/x(0/x,)-(e-E9/x(e/x.n/xl
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=Ert/ ll&-Ea/ ie/x))J'.D,H0-EA/(< <©/x))]/x +0/x „ 0/x „ „ „ e/x „ „ ■]
£[ (00-E@/x(0/x))]' .D.[ (0-Ee/>((0/x) )}/x:]

« Ea/ tr K0-E,,. (0/x))]’.D.l (© (0/x)))/x +0/x „ 0/x „ „ ~ 0/x _ „ -]
t(Ea/ (0/x)-0)]'.0.[(Efl/u(0/x 0/x „ „ „ 0/x

0/x)-0) jJ

.[- E0/xltr D*n?“E0/x(!/;,)),-n! “E0/xc?/;,,,/;|+

|t(EA/ (0/x)-0))’.D.KE-, ( 0/x „ _ „ 0/x 0/x)-0) Jj
w v v J

- tr O.CovA/ (0/x) + HE*. (0/x)-0) 3 • .D. I (E^. ( 0/x___ 0/x______ 0/x

Naturally, this will be minimum when
0 ■= Ett/ (0/x) 0/x „ „

0/x)-0))l
M M I

. . . (3.34)

Ie'V ‘ g(0/x). d0» ...(3.35).

Therefore, posterior mean, (0/x), is Bayes estimator for 0.“/ x „ „

3.7.1. 3 Bayesian Estimation Under Absolute-Error Loss Function :

For one dimensional parameter estimation, absolute error 
loss function is given by: _ —"

L(0-0) = 0) | 0~01, <o > 0, ...(3.36).
which assumes loss is proportional to the absolute value of the 
estimation error. Again by (3.22), Bayes estimator is that 
estimator which minimizes the posterior rlsk-E^, I u> J© - 0}/ xl.
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Chernoff and Moses (1959) show that the value of 0 that minimizes 
this posterior risk is median of the posterior distribution given 
x. That is, 0 is such that

PI9 > 0/x) >0.5 and P(@ < 0/x) <0.5 ...(3.37).

Bayes risk becomes
rio’ - » eJe8/x[ |e-e|/*]}. ...(3.38).

here 0 is median of the posterior distribution of © for given x.

3.8 Bayesian Interval Estimation :
The classical interval estimates are confidence intervals 

for 6 and not probability intervals. Since, in Bayesian analysis 
0 is not a fixed constant but a r.v., Bayesian interval estimate 
for 0 is not confidence interval but a probability interval. 
Assuming © is a single parameter for which interval estimate is 
desired, following definition provides Cl-jO. i00% two sided Bayes 
probability interval,l(1-y).100* TBPI), for ©.

Definition 3.5 :CI-y5.10O% two sided Bayes probability

interval,((1-y).100* TBPI] :
(0k,0 ) is said to be (1-y).100* TBPI for © if O^and 0

satifying following posterior probabilities
0K _ ^J * g(0/x),d0 ■ y/2 ...(3.39).

-oo 00
and, J g(0/x).d0 = y/2 ...(3.40).

e I
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Definition 3.6 :Ct-yy.tOO% Lower Ono Sided Bayes

Probability Interval,l(\-y).100* LBPI) :
(©„, oo) is said to be (1-y).100* LBPI for © if

satisfying following equation

J g(0/x).66 = y
-oo

• « • (3.40).

■

Definition 3.7 :ct-ry.too% Upper Ono Sided Bayes

Probability Interval,[(\-y).100* UBPI) :
*(oo, 6 ) is said to be (l-y).100* LBPI for 0 if 6*

satisfying following equation

00
g(6/x)

eJ
.66 * y * • • (3.41).

I
Two sided Bayes probability interval estimator provided by 

definition-3.5 need not be shortest Interval, as every point 
included may not have higher probability density than every point 
excluded. Following definition, from Box and Tiao (1973), gives 
shortest interval estimate for ©.

Definition 3. 8 :Highest Posterior Density (HPD) Region : ^
Let p(©/x) be a posterior density function. The region R in

the parameter space of © is called highest posterior density 
(HPD) region of content (l-j') if

P(© e R/x) * 1 -y ...(3.42).
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P(B /x) > P(0 /x), if 6 eR and 6 eR. ...(3.43). 1 „ Z „ 1 2

WWW****
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