CHAPTER :-I1

GENERAL THEORY OF A-EXPECTATION TOLERANCE INTERVAL

2.1. INTRODUCTION

As explained in the earlier chapter, a statistical tolerance
interval i1s an interval determined from observed values of a
random sample for the purpose of drawing an inference about the
proportion of the distribution contained within that interval.
Usually tolerance intervals are designated to capturg at least a
given proportion of some distribution. Therefore a straight
forward way to get an interval is to find the estimates of
parameters based on observed values and an interval I so
that it covers, say 90%4 of the observations from this estimated
distribution. Thus if the estimates of the parameters are close
to the parameters of the distribution then the probability that
the interval I covers the observations from that distribution is
close to 204 . Such interval is called as an estimative interval
Dy Aitchsﬁn(1975).

The main result of this chapter is to obtain an improvement
on this interval. Atwood (1984) gave a general theory for
constructing B-expectation tolerance interval when underlying
parameters are to be estimated. To approximate the expected

caverage he used second order Taylor series expansion. Alswy the
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large sample properties of the maximum likelihood estimators are
used to get a correction term of order 1/n, which gives expected
coverage closer to 3.

Section-2.2 contains the terminology and formulation of the
problem. Section-2.3 presents assumptions on  random variables
used in later sections. In Section—-2.4 we state and prove the
result due to Atwood(1984) regarding the derivation of an
approximation to expected coverage of the proposed tolerance

interval. Two applications of this theorem are given in later

chapters.

2. 2. TERMINOLOGY

Let X1, X2y ...y Xn be independent random variables with

distributions depending on &, where & and Xi‘s may be
multidimensional, Xi's neednot be identically distributed.
However, rtegularity conditions hold so that the maximum

likelihood estimator is asymptotically normal with mean 8 and
non-singular variance-covariance matrix ¥ .

Let Y be a one dimensional random variable whose
distribution also depends on 6. An interval I = I{X1, ..., Xnr}

is to be obtained such that
P LY @ I(X1, X2, ..., Xn)1 = 3, (2.2.1)

where 3 is some desired probability. If we rewrite the above



probability statement in an equivalent form as

-

E PCY € I(Xt, X2y wuuy Xnd| X1, X2y ouwy Xm)] = 3,  (2.2.2)

where the expected value is taken with respect to the joint
distribution function of X4y X2, ..., Xn. Then the interval I is
zalled a tolerance interval with expected content 3.

we use the following notation for computation of expected

coverage of S—expectation tolerance interval.

Let F(Y; ©) = P LY £ y| 6 1, be the c.d.f. of Y. We define

ﬁth percentile of the distribution as
F[ aﬁ(e); 6] = (3.
th

That is aﬁ(e) is the pB percentile of the distribution.
Let
on = gFly; 6)/ 8y
Fzo = 8°F(y; 6)/3y°
. th
Foi = The vector having aF (y; 9)/:36,L as i element.
. 2 . th
Fit = The vector having 9 F (y; 6)/09tdy as i element.
Foz = The matrix having azF(y; e>zaekaaj as uth element.
”~
r = Non—-singular variance-—covariance matrix aof &, where

”~
€& 1is the maximum likelihood estimator of 6.

Note that the derivatives of F are all evaluated at y = a_(86)

£
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and a superscript T will be used to denote the transpose and tr

denote the trace of a matrix.

2. 3. ASSUMPTIONS
2.3.1. Assumptions on Xi, X2, ..., Xn
i} The random variables X1, X2, ..., Xn are independent,
Suppose that the maximum likelihood estimator ig
asymptotically normal with mean & and non-singular
variance—covariance matrix }J . Conditions which ensure
asymptotic normality are given in Lehmann(1283).

11} Enough regularity conditions must be assumed to give the

~

expansion aof E_(8 — &) to order 1/n.

e
~

iii) The exact mean squared error matrix of 8 satisfies

~ ~ T
EGE(S - 8)(e - 6) 1 =F + Ourm,

where ES[ Dpu/m] = Ourm, for all 6.

2.3.2. Assumptions on Y
i} The random variable Y is independent of X4, X2, «.0y Xn.

ii) The range R of Y is a possiblly infinite interval that

does not depend on 6.

iii) The c.d.f. F9 has continuous derivatives with respect

to y and all components of 8 of order three, for all
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Ye R and & €« © .

iv) OF ly; 8)/dy is strictly positive for vy €e R and € €

-

2. 4. PROCEDURE TO OBTAIN EXPECTED COVERAGE:

Let 3 be some probability of interest such as 0.05 ar 0.95.

Let Fs be the c.d.f. of Y, for arbitrary € and 3 we define aﬁ(e)

as F;*(m so that

FL aﬁ(e); 8] = n (2.4.1)

~
The estimative interval would use aﬁ(e) as one end point of the

o~
interval I. If aB(G) is the upper tolerance limit, then the

coverage probability of the interval I can be found from

Ee{ Pe[ Y < aﬁ(e) | e ]}

i

”~
PB[ Y = aﬁ(e) ]

”~
Ee{ FI aﬂ(a); 8 ]}
”~
Therefore, if 8 is approximately equal to €&, Equation—(2.4.1)

is expected to imply that
R :
Es{ F[aﬁ(e); 6] } x 3 (2.4.2)

To improve on this approximation Atwood (1984) has obtained

an expression for expected coverage of the form

~
Ea{ Flaz@)s 6] } =B+ C (8) + O asm, (2.4.3)



where Cn(e) is called the correction term, by using second
order Taylor series expansion. Also he has suggested that, to
get the corresponding improvement on the estimative interval,

iterate on B until B plus the correction equals the desired

”~

probability, such as 0.93. For this 3, aﬂ(a) is a one end point

ot a tolerance interval with approximately the desired expected

content.

In the following, We state and prove the - result due to
Atwood (1984) regarding the approximation to expected coverage of
the proposed tolerance interval.

THEOREM(2.4.1) Under the assumptions on X1, X2y, .w.y Xn and Y

given in Section—-2.3 we have
~ ~ T
Ea{ F[aﬁ(e); 9] } =p-E L6 -6 1 F01 - 0.5 tr( Fozz )

+ FTSF /F _ +0 amnm (2.4.8)
0 11’ 10

PROOF: By Taylor’'s Theorem

)

~ le)
Flagtors 6] = Fla (615 6 1 + [a (6) - a ()1 Fila,(e); o]

3 IE] 3 r
~ 2 14
+ 0.5 [a (6) - a (1% Fita_(®); 61 + ...
% r3 p ol
=3+ &8F + 0.5 &8F + 0 S5, (2.4.5)
10 20
”
where S = [a _(8) — a3 (68)]
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1
Fio~ F lagler; 61 = oF(y; 6)/0y

and F

#

11 2 2
20 F [aﬁ(é); 81 = &Fly; 8)/8y".

Note that here and below, Fxo’ F_ .,

20 F and F1 are always

o1? oz 1

evaluated at aﬂ(e). To evaluate other terms, an expression for &

is required.

”~
Applying Taylor’'s theorem for aﬁ(e), we get

~

~ T 1
(B = a (8y + [6 - 61 a (&)
e . 3

-~ — ~ ~ 2
+ 0.3 [ - 8] arg (eyte - @1 + Dp[|e - 9[ ].

This implies that

~

s =6 - e1Tat(e

3
~ T 11 ~ ~ 2
+ 0.5 [& - 8] aﬂ () [ - 81 + Dp[|9 - 6| ]. (2.4.8)
Here aé(e) is the vector with Lth element 6[aﬂ(6)]/06i and
11 . . . th : 2 N
aﬁ (8) 1is the matrix with ij element & [aﬁ(e)J/aaLaej.

To evaluate a;(e) and aé‘(a) we differentiate the identity

Fla (6); €1 = 13

with respect to 6; so that we have

CoF (y; ©)/8y 19y/96 + LaFly; 8)/00106/06 = O. (2.4.7)

When y = aﬁ(e), we have
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. 1 - :
That is aﬁ(é) = F01/ Fto . (2.4.8)

Now differentiating Equation—-(2.4.7) with respect to € we get

[ ¢ 8°Fty; @)/0y° daysae + { O°Fly; 6)/8yde 2006/00 Joy/oe
+ £ 3% 786 98" Y (y: 8)/3y + { 8F(y; 6)/9ya6 33y/d6
+ { 8F(y; 6)/906 88" 286788 = O.

When y = aﬁte), we get

1 1 11
[Foo2pt® +F, ] aze +a

1

(¢) F + F a () +F = 0O
10 1 oz

g 1 3
So That
11 . _ - 1 T
F1oaﬂ (8) = F02 F11caﬁ(6>]
1 1 T 1 T
onﬁaﬁ(e) ] {aﬂ(e)] F11£aﬁ(6)] (2.4.9)
Substituting the expression for a*(e) and atter some

3

simplification we get

a:')y=F*[-F _+ (F F. + F_F')/F
3 10 oz 11 01 o1 114 10

- (F_/F

) F__Fr. ] (2.4.10)
20 10 o1 o1

;(9) and aé‘(e) in Equation-(2.4,64),

Substitute expresssion for a

which gives



”~
5 =106 - 61°C -~ F /F )
[¢ B § 10

+ 0.5 06 -~ 01T [F *-F_ + (F F' + F_ F' )/F
10 o2 14 O4 [ T1 14 10

~ ~
_ 2 T - _ 2
CFLo/Fio? FuFo,2] e - 81 + 0p[|a e|"].
This implies

”~ ”~ ~
&% = te - 61 (F_F. /F2 ) te-e1+01[|6-e|"].
o1 ot 10 P

Substitute the expression for & and 8% in Equation—(2.4.5) after

simplificaticn, this yields
~ ~ T -~ T ~
F[ aﬁ(a); 6] =R - [e - &1 F01 - 0.5 te - &l FOZEG - 81
~ T T T ~
+ 0.9 [ ~-1 {tF F +F F ywr 3Le - 8]
114 01 o1 11 10
~ 2
+ 0 6 — 8 . (2.4.11)
S 18 - 61°] ‘

”~

”~
trile - 81°F [6 - 81}
o2

”~ Fa
But (6 - 61°F [ - &1
02

i}

~ ”~ T
tr{F [& ~ 81le - &1}
o2

and

1]

T T
F_F
11 O1 a1 11

Therefore Equation—(2.4.11) reduces to

”~ ~ T ~ ”~ T
F[age; 8] = p - (6 - 61F - 0.5 triF [6 - 6116 ~ 617,

~ ~

~
+ (1/F, ) FT [6 - 018 - 61'F__ + 0 [| & - 6|°].
10 o1 11 p

(2.4,12)
Taking expectation on both the sides of Equation—-(2.4.12) and



using the assumption on Xi, X2, ..., Xn we have
~ ”~ T
Ee{f[ aﬂ(s); 8}} = - Eete - 81 Fo1 -~ 0.5 tr(FOZZ)

+ F'SF JF + 0 asm
ot 11 10 p

Hence the theorem. o]

”~
This theorem suggests a way to estimate Ee{%[aﬁ(e); 9]}.
”~

If the expected values in the expressions for £ and EBEG -~ @1 can

be written as functions of &, then we can estimate them by

7~

substituting 6 for 6. Otherwise replace each expected sum by

corresponding sum of observed values to obtain estimates of Z and

~~

Eets -~ 1. Note that both the estimators n 'S and nEng - &1
are consistent. But, since g is a sufficient statistic, we
use the first estimators because they only depend on the
sufficient statistic.

Similarly estimate Fio’ F 4 F and F02 by evaluating them

o1 11
~ ”~~
at 8 = @ and y = aﬁ(e). These estimators are all consistent.
Use them to estimate the guantity
-~ T T
#~-E&é-001F -0.5¢tr{F Z3Yy+F ZTF [/ F . (2.4.13)
o1 o2 o1 14 10

The quantity (2.4.13) is of the farm ( 3 + correction ). Note
that each term in the correction is of order 1/n. The whole

expression (2.4.13) equals

d
~0



~ ”~
PolY = aﬂ(e)l = Ee{ FI aﬂ(e); e] },

ey
to within Ousm. The estimate of (2.4.13) equals PQCY < aﬂ(e)l

to within Dpu/m. Iterate on (73 until the estimate of (2.4.13)
~
agquals a desired probability, such as 0.95. Then use aﬂ(s) as

one end point of the interval I.
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