
CHAPTER i -XI

GENERAL THEORY OF ^-EXPECTATION TOLERANCE INTERVAL

2.1. INTRODUCTION
As explained in the earlier chapter, a statistical tolerance 

interval is an interval determined from observed values of a 
random sample for the purpose of drawing an inference about the 
proportion of the distribution contained within that interval. 
Usually tolerance intervals are designated to capture at least a 
given proportion of some distribution. Therefore a straight 
forward way to get an interval is to find the estimates of 
parameters based on observed values and an interval I so 
that it covers, say 90*/. of the observations from this estimated 
distribution. Thus if the estimates of the parameters are close 
to the parameters of the distribution then the probability that 
the interval I covers the observations from that distribution is 
close to 90% . Such interval is called as an estimative interval 
by Aitchson(1975).

The main result of this chapter is to obtain an improvement 
on this interval. Atwood(1984) gave a general theory for 
constructing /T-expectation tolerance interval when underlying 
parameters are to be estimated. To approximate the expected 
coverage he used second order Taylor series expansion. Alsu the
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large sample properties of the maximum likelihood estimators are
used to get a correction term of order 1/n, which gives expected 
coverage closer to ft.

Section-2.2 contains the terminology and formulation of the 
problem. Section-2.3 presents assumptions on random variables 
used in later sections. In Section-2.4 we state and prove the 
result due to Atwood(1984) regarding the derivation of an 
approximation to expected coverage of the proposed tolerance 
interval. Two applications of this theorem are given in later 
chapters.

2.2. TERMINOLOGY
Let Xx, X2, ..., Xn be independent random variables with

distributions depending on ©, where 6 and Xt's may be
multidimensional, Xi's neednot be identically distributed. 
However, regularity conditions hold so that the maximum
likelihood estimator is asymptotically normal with mean Q and 
non-singular variance-covariance matrix J] .

Let Y be a one dimensional random variable whose 
distribution also depends on Q. An interval I = I(Xi, ..., Xn) 
is to be obtained such that

P CY e I (Xt, X 2, ..., Xn) 1 % (i, (2.2.1)

where ft is some desired probability. If we rewrite the above
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probability statement in an equivalent form as

E p»( Y € I< Xi, Xz, Xn) j Xi, Xz, Xn)] = ft, (2.2.2)

i*ihere the expected value is taken with respect to the joint 
distribution function of Xi, Xz, ..., Xn. Then the interval I is 
called a tolerance interval with expected content ft.

We use the following notation for computation of expected 
coverage of ^-expectation tolerance interval.

Let F(Y; 0) = P [Y < y| 0 ], be the c.d.f. of Y. We define

percentile of the distribution as
F[ a^C0>; 0] = ft.

That is a^<0) is ft percentile of
Let

the distribution.

F = 0F(y: 0)/ 0y to

Fzo = 0ZF(y; &)/dy2

F 01
Fn
F02

The vector having £F<y; O'l/dB, as i^ element.

2 t hThe vector having 0F(y; y as i element.
2 t hThe matrix having 5 F(yj Q'i/d& dQ^ as ij element.

A
2 = Non-singular variance-covariance matrix of 0, where

0 is the maximum likelihood estimator of 0.
Note that the derivatives of F are all evaluated at y = a^(0)



and a superscript T will be used to denote the transpose and tr 
denote the trace of a matrix.

2.3. ASSUMPTIONS
2.3.1. Assumptions on Xi, Xz, ...» Xn

i) The random variables Xi, X2, ..., Xn are independent.
Suppose that the maximum likelihood estimator is
asymptotically normal with mean 9 and non-singular 
variance-covariance matrix £ . Conditions which ensure 
asymptotic normality are given in Lehmann(1983).

ii) Enough regularity conditions must be assumed to give the
A

expansion of E^(© - 9) to order 1/n.
A

iii) The exact mean squared error matrix of 9 satisfies
A AEeC<0 - 9) {9 - 9)T1 = Y, + 0<i/n>,

where [ 0 = 0<ixn>, for all 9.

2. 3. 2. Assumptions on Y
i) The random variable Y is independent of Xt, X2, . .., Xn.

ii) The range R of Y is a possiblly infinite interval that 
does not depend on 9.

iii) The c.d.f. has continuous derivatives with respect 

to y and all components of 9 of order three, for all



Ye R and 9 e © .

iv) dF(y; 9)/dy is strictly positive for y e R and 9 e ©

2. 4. PROCEDURE TO OBTAIN EXPECTED COVERAGE:
Let ft be some probability of interest such as 0.05 or 0.95. 

Let F^ be the c.d.f. of Y, for arbitrary 9 and ft we define a^(©)

as F 1ift) so that
C7

F[ aft{&) ;©]=/? (2.4.1)
A

The estimative interv
A

interval I. If a.^<9) 

coverage probability

al would use s.A9) as one end point of
ft

is the upper tolerance limit, then 

of the interval I can be found from

the

the

p9[ Y s V®> ] = e4 pel Y s V®’ I ® ]}

- Ee{ F[ V®1' s ]}
A

Therefore, if 9 is approximately equal to 9, Equation-(2.4.1) 

is expected to imply that

Ee{ 'TV®" ®] } (2.4.2)

To improve on this approximation Atwood(1984) has obtained 

an expression for expected coverage of the form

:e{ F [*o<®) 5 ®1 } ft + C (9) + 0 <i/r>>,n P (2.4.3)
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where 0^(0) is called the correction term, by using second 
order Taylor series expansion. Also he has suggested that, to 
get the corresponding improvement on the estimative interval, 
iterate on ft until ft plus the correction equals the desired

A
probability, such as 0.95. For this ft, a^<0) is a one end point 
of a tolerance interval with approximately the desired expected 
content.

In the following, We state and prove the result due to 
Atwood(1984) regarding the approximation to expected coverage of 
the proposed tolerance interval.
THEOREMC 2.4.13 Under the assumptions on Xi, X2, ..., Xn and Y 
given in Section-2.3 we have
e4 p - e ® 3Vo, - °-s tr( f.*z >

+ FTZF/F +0 <i/n>. (2.4.4)01 li to
PROOF: By Taylor's Theorem

✓N AFrart(0); el = FCa/O(0); & 1 + Cart<0> - art(0>3 F1Ca/-(0)j 03 
1" P J P P P P

A+ 0.5 Ca^(0) - a^(0>32 F41Ca^<0>; <?3 + ...

= ft + <5 F + 0.5 <52F + 0 «52>, (2.4.5)' 10 20
A

where 6 = Ca^(0> - a^(0)3
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£F(y; 9) / dyF = FtLa.^(.9): 0] = to ft ’
and F = F11Cart(©); 61 = <?zF(y; 9)/9y2.20 ft ' J 1 J

Note that here and below, F , F , F , F and F are alwayslO 20 ’ Oi ’ 02 li '

evaluated at . To evaluate other terms, an expression for 6

is required,

Applying Taylor's theorem for a^<0>, we get

, T ia^<e> = a^(0> + Z9 - 0] a‘(9)
A A

+ 0.5 te - 0]Ta“(0)C0 - 61
ft %l\e ~ *1*1

This implies that
As

6 = C0 - &lTa^(6)

A As As

+ 0.5 Z6 - 0]Ta“(©> C© - 61 + 0p [|0 - 0|2]. (2,4.6)
i tihHere a^(9) is the vector with i element #Ca^,16)1/69. and
ft ft »•

J.L
a (9) is the matrix with i.j element d Cart(0) 1/99.69. . 
ft ft »• J

To evaluate a*(0) and a**(9) we differentiate the identity 
ft ft

FE a^(0) ; 61 - ft

with respect to 0; so that we have

C0F(y; 9)/dy Idy/99 + IdFly; 9)/691d9/d9 = 0. (2.4,7)

When y = a^><0), we have
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0F a*<0> + F
10 ft 01

That is a^<0) ~ ~ Foi/ Fto * (2,4,8)

Now differentiating Equation-<2.4.7) with respect to 0 we get

[ C <?2F(y; 6>)/<?y2 y&y/de + i <y; &)/dyd& ydQ/d6 ]dy/QQ

+ c azy /ae a&T yaFiy-, e)/ay + i <?¥(y; ey/ayae yay/ae

+ { a2F(y; e)/ae aeTyae/ae = o.
When y = a^(©)i we 9e^

r F a*<£) + F I a*(8) + a“(e) F + F a‘(£) + F » 0L ZO ft lij /? ft to 11 ft 02liJ -ft' ft tO 1 i ft

So That
F a‘‘(a) = - F - F Ca^.(a)]T 
to ft 02 11 ft

F £a*(0) 3 £a‘<e>3T - F Ca*(a>3T 
zo ft ft u /?

Substituting the expression for a^iQ) and 

simplification we get

(2,4.9) 

after some

‘A'”
i

io
-T
Ol F F )/ F Ol 1 1 ior - F + ( F Ft 02 11 <

- ( F /F2 ) F FT 1. (2.4.10)
20 IO Ol 01-1

Substitute expresssion for a^(£) and a^(&) in Equation-(2.4,6), 

which gives
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6 = 16 - ei ( - F /F )o 1 to
A+ 0.5 te - 0]Tr F_1C- F + < F FT + F FT )/FL lCI 02 i i Oi Ot 1 1 iO

- ( f /fz > f ft >] ce - ei +o r\e - e|*1.20 10 o l oi-* dL' IJ
This implies

62 = te - eiriF ft / f2 > te - ei + o [ \e - el*'].OlOl IO p L 1 IJ
2Substitute the expression for <5 and <5 in Equation-<2.4.5) after 

simplification, this yields
A A_ r ^ ^ ._Tr A- o.s ce -

Ol

Ae]TF ce 02 - ei

|TU F FT + F ft >/f AiceHOI Olll IO

+ ° [ le - Cl- <2.4.11 >

and

ce -- eiTF ce - ei = tr-cce - eaTF ce - ei>02 02
A A

= trCF ce - eice - eiT>02

T TF F = F F
1101 Olll

Therefore Equation-(2.4.11) reduces to

f f art<e); el = ft - ce - ei f - o.s trTF ce - eice - ei >,L f? ’ J 1 Ol 02

A A A+ <i/f > ft ce - eice - euV + o He- e|2l.tool 11 p*-l IJ
<2.4,12)

Taking expectation on both the sides of Equation-<2.4.12) and
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using the assumption on Xi, X2, . .., Xn we have
Ee{p[ y®>« ®)} -

ft Eaze - 03 F 6 01 0.5 tr(F Z> 02

F Z F / F +0 <t/n> 01 it to p

Hence the theorem, a

,{F[y®'i ®]}-This theorem suggests a way to estimate Eg-jF£a^(0); 0"j

If the expected values in the expressions for Z and - 0] canC7
be written as functions of 0, then we can estimate them by

/S
substituting 0 for 0. Otherwise replace each expected sum by 
corresponding sum of observed values to obtain estimates of Z and

A /NE^C0 - 03. Note that both the estimators n~4Z and nE-C0 - 03
& v

A
are consistent. But, since 0 is a sufficient statistic, we 
use the first estimators because they only depend on the
sufficient statistic.

Similarly estimate F , F , F and F by evaluating themJ 10’01’ii oz J *
A A

at 0=0 and y = a^(0). These estimators are all consistent. 
Use them to estimate the quantity

/A

ft — E C0 - 03TF - 0.5 tr-C F Z } + FT Z F / F . (2.4.13)01 02 01 ii 10

The quantity (2.4.13) is of the form ( ft + correction ). Note
that each term in the correction is of order 1/n. The whole
expression (2.4.13) equals
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to within 0<ixn>.

P

to within 0 <i/r».P
equals a desired
one end point of

,:v < = Ee{ f[ »pte>-, e] },
A

The estimate of (2.4.13) equals P^CY < a,.(0)3a is
Iterate on ft until the estimate of (2.4.13)

A
probability, such as 0.95. Then use a^<0) as 
the interval I.
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