CHAPTER I

PRELIMINRIES

1,0 Introduction 3

Bayes procedure for testing of hypothesis is a statis-
tical decision problem when parameter space and decision
space contains only two points. In the present chapter
it is emphasied that hypothesis testing is a decision
problem. Also tne analogue between MP test in a classical
test procedure and Bayes test procedure when null and alter-
native hypothesis are simple is explained, with Yg;%ogs.
cases arising. The iégf is explained with the help of
examples on normal and binomial distribution in Section 1.3.

As basic requirement . classical test

in section 1.1.

procedures are discribed A In Section 1.2 general decision
problems are discussed with illustrations regarding Bavyes
decision, Bayes risk and construction of Bayes decision
function. In Section 1.2 it is shown that as the number
of observations increases the Bayes risk decreases./ How-
ever, if the cost factor due to sampling is considered the

may a certsin
Bayes riskatend +to infinity as n 9« , In models

optimum sample size can be computed, corresvonding to whicn

the Bayes risk is minimum.



Problems
situations such as this do not arise in practieval * The
procedure used in practice is to limit the probability
of type I error to some preassigned level « (usually
0.01 or 0.05) that is small and to minimize the probabi-
lity of type 11 error.

To every XE& S we assign a number ¢(x), 0 £ ¢(x) < 1,
which is the probability of rejecting Hl that X\f\fw,
w € VW, if X is observed. If H, is true ¢ rejects it with
probablllty < as we call such a test a randomized test
function. If #(x) = I,(x), ¢ will be called non-randomized .
test. Ceonsider o mbxu of finiing * g,, glwn W12 and X

In the subsequent, this problem be denoted by
(a, Wy, W ) and let ¢ be ;ytest funcilon for the problem.

cmed below

As a function of w, ﬁb(w)« is called power function of the

test §

E,, $(X)
= Pw{_Reject Hi} s We ...,

5$(W)

Now let us formuléte bhe problem. of tectlng of hypothesis

) as foixm , fmd a test d)(x) such that pb(w) L a
for wE wl, and Bb(w) is maximum for weW,. Let 4: be the
class of all tests for the problem <a’W1’W2) where W,, W,
are singleton. A test &ﬁg ba is said to be a most powerful

(MP) test againsi an alternative w & W,



.}for some k > O and o £ YW(x) £ 1, is most powerful of
| its size. for teating Hls ™ w1 spaimt H2ywsn
' In particular if k = » the test
1 if £(%) =0 |
b(x)= { (1.1,2)
0 if f (x) >0
is most powerful of size O fer. tasting hu\ agninst 2.
Given a, 0 £ a £ 1, there exists a test of form (l.l.1)
or {1.1.2) w1th]”(x) =Y (constant) for which E, ¢(x) =0 .
Ngte that MP test is not unique on the {:X f?(x) = kfl(§)}
| We now consider a problem of testing one-~sided hypo-
thesis on a single real valued parameters. Suppose we
wish to test Hys w L Wy against the alternative H,iw > wy
or its dual Hi: w2 W, against Hé: w < Wy. Here we consider
a special class of distributions called family of distri-
butions having MLR property which is large enough to
include one parameter exponential family, for which a
considered above ¢
UMP test of a one-sided hypothe51s«ex1sts.
Let X»1f,, we L, _n€R, where {fw} has an JMLR
in TQﬁ) (Refer defination O.1). For testing Hy:w < wy

against Hy: w > wy, wle -, any test of the form

1 if T(x) > t
p(x) = ¥ if T(x) =t
0 if T(x) <t

has a non-decreasing power function and is UMP of its size

E .
wlb(gg)

10



Moreover, for every O  a £ 1 and every wiE L
there exists a t , == S t < =, and O L£¥-< 1 such that
the test described above is a UMP size a test of Hl
against HQ.

By interchanging inequlaities throughout we see that
it provides a solution of the dual problem Hj: w 2 w;
aginst Hé: w < Wy

By restricting the class éa of all tests oihifze o,
there do not exists UMP tests for many importantAhypothesis.

dose .not exists
For example the UMP testAfor testing H;: w, LwX W, and
‘“Hi: W= wy in case of one parameter exponential family.

In tnis case one has to look for a UMP test in a restricted
class of test,

Defination :

A size a test ¢ of Hyj: w€W, against the alternative
Hpt wE W, is said to be unbiased if
Ewb(g) 2 o for all w € W,
Let Ua be the class of all unbiased size a tests of Hl,‘if
there exists a test $€ U, that has maximum power at each
w € Wy, we call ¢ a UMP unbiased size a test.
In case of exponential family with density defined in

The UMP urbised test fer testing

(0.2) Hy: w = w; against H,: w F wy the UMWP

unbiased test &s given by .
v

1!



1 if T(x) < Cy or T(x) > C,

1 if T(x) = Cl

(x) =
¢ Yo if T(X) =¢C,
0 if ¢, < T(x) < C,
and Ewl [ &(X) ] = a.

_§_ E, LQ(> W=W, =0
- Ey[00) 1/ 1

l.1.1 Example :

Let Xl,X2,...,Xn be independent identically distributed
(i.i.d) b(1l,p) random variables and let Hyt p = py, Hyt p =Py,
P2 > PI' Then MP size a test of Hl against H2 is of the

form
ly )\(X) = k
$(xq e ex ) ={¥" Nx) = k
o, Ax) < k
n
X E
1 Ne= X
le (l"PQ) 1 i
whereI%(X) T
p ixi (leP yn-= gx.
1 1 11

In this case Y and k are determined by

Epl[b(X) ] =a.

‘ n nn
P Ix, 1-pP n- Ix,
Ax) = (g2 1 (g 1

And since P, > Py, )(x) is an increasing function of EX,
it follows that }«x) > k if andonly if Ix; > k;, where k;

is some constant. Thus MP test reduces to

12



n
1 if  Ix, > Kl

ll
$(x) = n
Y- if Ix. = Ky
ll
0 otherwise

In particular n = 5, Py= 1/2, P, = 3/4, a = 0.05 MP test

is given by

1, if Ix. > 4
— n
blx) = 0.122, if Ix, = 4

0 y if ZTx, < 4

where k and ¥y are determined by,
5
0.05 =« = (2) (1/2)%+¥ () (1/2)°,
k+1

Thus the MP size a = 0.05 test is to reject p = 1/2 in
5
favour of p = 3/4 if Ix; = 5 and reject p = 1/2 with
1 n
probability 0,122 if Ix; = 4.
X . ;_,ﬁ

P

1ot X1,CpeeecessnsXn b $,1.d, b(1,p) random varisbles, the UNP test for
tasting His p= Pl agalnst H23 P P2 of size follows.

?” ?odof. of gi 15 ﬁi‘t’ﬂ* W‘l o
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() p* (1-p)7%, x

we have—fp(x)

,1 x log -Bo 4
<) € 1-p
The »n:rmspaﬁim 1ike1ihood sy

=

, log (1=p)

£ (X) = ‘E(l ) e lOg -E- ixl +Yllog(l-p)

1%
This is 1n the form of

with T(X)
l

Therefore UkiP test is of the form.
1, if T(x) >

o(x) = ¥, if T(x)
o , if T(x) <

t_ and ¥ are determined by

o
- Ep [é(x)]
for P; = 1/2 Ao o= 0.05 it follews

one paraamtcr exaonnneial aeomity ftﬁf- 042}

that to = 4 and Y= 0.122.

Now let use consider the c ase where alternative hypo-

thesis is two sided.
H

n
1l if ix, < C
11
‘ n
'81 if §xi
o(x) = o

C

]

C

1

1

2

)¢ P =P, against H,: p # P, the UMPU test is

n
or ?Xi > CQ.

n
0 if C) < IX; < C,.

1
where Cl and Cn are determlned :

?. R

for xivei (mgg}.mz. £ 2003 a8 é@ am« : %nmtmx?a T
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l.2 General Decision Problem :

l.2.a Bayes Risk And Bayes Decisions :

Consider a decision problem defined by a parameter
space (1., a decision space D and a loss function L.
For any distribution P of the parameter W, let the
risk be f(p,d) for d € D where f(p,d): J L(w,d)d P(w)
it is that -
and assumed it is finite for every d& D. Then the
Bayes risk g¥(P) = inf /f(P,d). Any decision d* whose risk
5 dg D
is equal to Bayes risk is called a Bayes decision against

the distribution P if exists.

i.e. f(p ,a%) .—=di£fo (P,d)

l.2.,a Example : ¢ {O, l}
D : § All the numbers d, 0 £ d £ l}*
L(w,d) = |w=d|

Pr(W = 0) 3/4y Pr(W = 1) = 1/4

f(p,d) = L(0,d) Pr{W = 0) + L(1,d) Pr(W = 1)
= 3/4.4 + 1/4 . (1=d)
= d/2 + 1/4
For d = 0, f(P,d) is minimum.
« « d =0 is the unique Bayes decision with Bayes risk
fﬁ(P) = 1/4,
In this case, of the two possible values of the para=-
meter, O is a logical estimate of the parameter which of
course is the Bayes decision.If P W=0] < P[W=1] then Bayes

decision would be W = 1.



If D ={o, 1} then
ﬁ*(P) inf f(P,d)
4dED

il

= 1/4
Note that there does not exists a d* in D' = (0,1) for
which inf 'f’(P,d) is attained i.e. Bayes rule in D' does
not eggitg.

l.2.b. Concavity of Bayes Risk :

Theorem ¢ l.2

For any distributions Pl and P, of W and for any num-
ber o (0 £ a £ 1);
PrlaP +(1-a) Py] 2%f*(P))+(1-a) P*(P,)
Proof :
We have P(P,d) =,[ L(w,d) d P(w) for any d € D
flaP #(1-a) P,,d] = a p(P;,d) + (1-a) P(P,,d)
Now,

j:*[apl+(1—a) P, ] =d12fo[aPl+(1-a) P,,d ]

= inf [a P(P,,d)+(1-a)P(P,,d)]
L0 'f 1’ L(P,,
This gives

f*[aPl+(l~a) P,] 2_ adigfof(Pl,d)-}- (1-a)d12fo(22,d)

= af*(Pl) + (l-a) f*(Pz)'

. . NG . .
l.2.c. Randomization e# mixed decisions :

Let d,,d,,.... be a sequence of decisions (i.e. the
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number of decisions are countable). .Let us assign the
probabilities Pl,PQ,.... to the sequence of decisions.
die D. The process of sele;ting one of the decision di
on the basis of these probabilities is called mixed or
randomized decision. Thus a randomized decision is not-
hing but a probability distribution defined on the
decision space D.

o
L(w,d) = £ P L(w,di) (1.2.1)
i=1

is the loss associated with the mixed decision d for
we -,

Let M denote the set of all mixedsdecisions-in a
given problemy where D is the class of pure decisions. ..

(Mn'é.ar\do-ml.std, dectsion)
Trivially we can regard each pure decisionAd as a mixed
decision in which pure decision must be selected with
probability 1. Hence D&M.
- The loss function given above (1.2.1) for mixed
decision is weighted average of the loss functions defined
x‘:‘j

for pure decisiong Therefore, whenevef the risk f(P,d)
for mixed decision exists its value must be the weighted

average of the risksj’(P,di) of pure decisions di’

Hence inf P(P,d) = inf f£(P,d) = p*(p)
de M f dE D fEs f
If follows that if the Bayes riskyﬁ*(p) is finite and is

attained for a mixed decision in M then this risk must

be w
also+attainrfor some pure decision in D. Hence when we

17



come across two or more pure decisions each yields a
Bayes -1
randomization to select one of these Bayes decisions. -

" Randomization in this situation is irrelevant because
any method of selecting one of the Bayes decisions is

acceptable,

l.2.d. Decision Problem with Observations :

It may be possible to observe the value of the
random variable or a random vector which gives informa-
tions about the value of W/f!jﬁ@“‘helps in taking good
decision. Let £ be the sample sapce of all possible valu-
es of the observations X. The decision chosen depends

on observations; so for each possible value x &S a deci-

sion O(x)E D. The class of aliwdécision functiong 9 will
be denoted by A .
For any g.p.d.f. € of the parameter W and any decision
function 0€ 4 the risk
F(§ ,0) =E Lw, ax) ]
S L 0T £(x/m) §lw) dods

eee (l.2.2)
Assume for each value w € -l the function L[{w,d(.)] is
measurable ana-integrable over the set S. For any parti-
cular value of we& L, f(w,b) denotegthe risk of the

decision function & when W = w =~ and "’91“"“;’;



R(w, d) =sf L{w,a(x)] f(x/w)dyg (1.2.3)

$C8 ,0)=J f(w,3) §(w) dw C (1.2.4)
Let o* € D s.t.
SCg ) =inf  f(§,8) = PX(§) (1.2.5)
d€EA

Then 3* is Bayes decision against € and‘f*(ﬁ ) is
Bayes risk.,

l.2.es Construction of Bayes Decision Function :

We have by (1.2.2)
f(g ,0) =_r.[sf Llw,d(x)] £(x/w) & (w) dxdw

Since the loss function is non-negative or a bounded
function the order of integration in the above integral
e hak 4:3,\%_%\-(»;%0”15'-2
; san be fnterchanged
FCE, 0) = [ J {Llw,a(x)] £(x/w) §(w) dw | dx
S -n.

s e (10206)
For each value x € S let 3%(x) = d* where d* is any
decision in D which minimizes the integral.

_r{ L{w,d) f(x/w) E(w) dw (1.2.7)
Let f; is the marginal g.p.d.f. of X the value of fl(x)
can be O only on set of points x which has probability O.

£,0x) = J £(x/w) §(w) dw (1.2.8)
Py Y
Now, instead of finding a decision d¥* which minimizes

(L.2,7) we can find equivalently a decision d¥ which

minimizeg

19



f L(w,d) [ f(x[w)'giw)}]d& (1.2.9)
£,(x) | o
. and
which is the conditional expectation can be written as
A A
E[{L(w,d)/x). Therefore, any minimizing cdecision d* is
simply a decision which yields the smallest expected
)
loss under the conditional distribution of & when the
observed value K is x. In statistical decision problem
the marginal distribution of W is called the prior

distribution of W, Because it is distribution of W

before X has been observed. And the ccnditional distri-
buLlon of % when the value of X is known is called the

posterior distribution of W because it is the distribution

of W after X has been observed.

sider the follow:
Example 1.2.e M on illustratien m e ing axm;su

‘Let xl,xz,...,xn be i.i.d. normal variates with
mean € variance cg and the prior distribution of e be
" normal with mean p and variance“?z. Let the loss function
be given

0, if |e - a] £C
L(e, a) = {

1, if |e - a] >C:
where C: is positive and known.

Let ﬁl}xz,...,x be observations denoted by x=(xl,x2,..,xn).

n
.The posterior distribution of e is normal with mean &(x)

and variance c% where

20



o2 p 1
%
and
1 1l n
= = k. A e
2 2 2
o] < oy

-

For eah given x we are interested to find that &(x)

for which

J{ L(e,b(x)) P(e/x)de is minimum.

That is [ P(e/x)de should be minimum
|e=d(x)|>C
é(x)-C oo
- J P(e/x) de = [ P(e/x) de + [ P(e/x)de.
le - a(x)|>C oo d(x)+C

-C -
= ?(X) 1 exp - --!'--é(a-e(x))2 de

Von Oy 207
+ [ Lo exp - -ég(é-«RX))z de.
2n © 20
3 x)+C v i 1

Differenciating with respect to (w.r.t.) 9(x) and equating

to O we get

L exp - 2l d(x)-c-e(x)]? = =E- exp - -Lsla(x)4C-e(x)]%= 0
VZnoi 207 V2noi 207

: S | ce.(1.2.10)
That is [ ax) = C = o(x) J° = [(x)+ C - &lx)]?
That is &x) - C ;kx) =4+ [dx) + C - ;?x)]

For C > 0, a*(x) = ;zx) = posterior mean.

Differenciating one more time L.H.S. of (l1.2.10) and putting

21



a(x) = o(x) we get value of the expression positive.
Hence _J{ L(e, a(x))) P(e/x) de isvminimum at e(x).
Consider L(e,a) = (e = a)2
For that 3*(x) = e(x).
Now the Bayes risk corresponding to the square error loss

function denote d by JD* (n) = c% where G% = emEee-
o( x

If we do not take any observation
o*¥(x) =
*
The correppnding Bayes risk denoted by “F 3(0) is

E(e - )? =y = -1~ , = (0

1/

* * *
JZ(X)(n+l) <j:;(x)(n) ‘ f) °(0)

Hence Bayes risk is decreasing function of n. But

gives

in practice observations will add the cost so we have to
consider cost of sampling also.

l.2.f. Cost Function :

The cost of observing the value of X may depend on x
and the population from which it is drawn’that ié}population
parameter W. Let C(Ww, xl,x2,‘...,xn) be the cost function
when xl,xz,...,xn'observed and W is true value.

The total cost = EW,X[L(W, a(X))] + Ew’xfc(w,xl,..,xn)]

where the expectation is taken w.r.t. X as well as W.
et 'z ke the cost of an ehlnsztian.i
~WTOLal risk = P* + nc,

d (x)



Let us study the cost with reference to example (l.2.e).

Total cost = —==- +nc =C (say)

Assuming C is defined for n positive real numbers and

by differenciating and equating to O, we get,

2
- 1/c
....a.(.:._. = -..._-....9...- 2-]- c = 0.
on 1 n
(‘%-2*' -;2)
o
That is
1 n 2 1
((ofs + 05 )% = 2
127 g2 co”
% % >
gives n¥ = ¢Z-E— - === , optimum sample size. INote
‘n 2
that as expected n* is decreasing function of c. It 1is
observed that oc¢ < O for nin¥* and %% > C for n>n*, Thus
on

optimum value of n is decided by comparing the value of
C at n¥* and n*+1,

In particular, letsp” = 400, o2 = 4 and ¢ = 0.05
gives n* = 8,93+ 9

To sketch the graph of total risk as a function of

sample size when all other parameters are fixed we

cohpute it for different values of n.
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st as

Tbﬁtablo below shows tetal risk for differant values of n, for “f‘z;wz‘).
,: g? % and cw0, 0% (T‘f. exarmle 1.2.¢ )o v

*
n ,ﬁxx) C = Total risk
0 400 400
1 3.9604 4.0104
2 1.9900 12,0900
3 1.3289 1.4789
4 0.9975 1.1975
5 0.7984 1.0484
6 0.6655 0.9655
7 0.5706 0.9206
8 0.4993 0.8993
9 0.4439 0.8939
10 0.3996 0.8986
11 0.3633 0.9133
4 !

SARR. BALASAHEB KHARDEXAR LIBAAIY
ek ivaldl UNIVERSITY. KOLBAPUR,
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1.3 Testing As A Decision Problem :

le3.a. Statistical decision problem when L, D contains

two points :

Consider a statistical decision problem in which

e = {Wl’WQ} s D ={dl,d2}. The loss table is as below :

AP dy d,
Wy 0 a a; a positive known
’ constants.
w2 a, 0 ‘

Table (1.3.a)

For any decision function & let a(S) denote the
conditional probability that decision d2 will be chosen
when w = w;. Also let B(d) denote the conditional proba-
bility that decision dl will be chosen when w = Weye
That is a(d) and B(d) denote the probabilities of wrong
decisions when W = Wy and W= Wo respectiively.

I+ the prior distribution of w is

Pw=w) =€, (0<g<1) p(w=we)=1-§.

If € =0 or 'l then the solution is trivial.

That is €= 0 we have P(W = w2) = lkdecision d2 is
correct decision,
The risk f(€,d ) of the decision function @ is
S(§,0) = gy« § -a(d) + a5.(1 -E)p(d)
= a.00(3) + b p(d ) where a = a,§ » b = az(l-g )
Here a and b are given positive constants.
Pfoblem is to find a decision rule 3% in D that minimizes

f(f »0); d€l where A is the class of decision functions.

e
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l.3.b. Hypothesis testing as a decision problem :

. Suppose Hl:‘Ne#ﬁ.against the alternative hypothesis
H2: wew2 (Wl and W, are two mutually exclusive sets of
the parameter space ~=). 1In this case D =.{dl,d2}
where dl means the decision thatxuﬁ&%.and d2 is the
decision that wG:WQ. That is there are just two possible
actions to be taken. This is why hypothesis testing is a
two decision problem, involving the two alternative deci-
sions d; and d,. Consider the loss table (table 1.3.a)
For such a loss function the risk function of the decision

rule (i.e. test ) 8, having the critical regions S, wil be,

a, J f.(x) dx, if wE w
f(W, 5) = 1 Sl W 1
a Sf £,0x) dx, if wE W,

2

where 52 = Si
Since 3(x) = dl if x€ 82 and
a(x) = d2 if xe Si .

For a given prior distribution, represented by the prob-
ability density function (p.d.f.)j& the average risk for dis

f(?, ) =w{ al[s{ £,(x) dx]E(w) dw +W.2f az[sg £,(x)dx]G (w)aw.

=S{f§(x)w{al fx(w)dw dx+s£f‘§(x)\,ﬁ]2fa2‘§x(w) dw dx

Here £§ (x) =.Air§(w) fw(x) dw and

[ Q%)
long!



In order to obtain a Bayes rule, we shall have to mini-

mize f(§ , )~ |

Obviously this can be achieved by taking’, for any given

x, the decision dl @r dz)(orﬂgquiv§lantly, deciding that

XE€S, or deciding that xes.}wmam",", % g, o0 wily) S

“x al j; (') fk-

Let A
Rl = Risk in accepting Hl

= [ a 'gx(w) dw, and (1.3.1)
Wy

R2 = Risk in accepting H2
= Ja, B (w) dw. (1.3.2)
Wl 1 X

If R, < R, decision d, should be chosen.
1 -2 1 (1.2.3)
If Rl R2 decision d2 should be chosen

In case if equality holds we may take either decision,
Equivalently, accept Hl based on x provided the postetior
risk (given x) in accepting Hy is less than that of rejecting
Hy (given x).
The nature of a B\ayes te;st may be seen to have a striking s:‘mitaa'ag
with that of an MP test for a simple hypothesis Hl against

a simple alternative H,. In case of an MP test, a given

| g%
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sémple point x is or is not included in Sl is decided

by keeping in view the relative magnitude'of the proba-
bility density of X under Hl and the probability density
under H2’ In the case of Bayes test, we consider a sort
of weighted average density under Hl and a weighted ave-
rage density under H2, both of which may be composite
hypothesis, condition (1.3.3) namely reject Hy if

J a, Ex(w) dw > J a; gx(w) dw

W2 Wl
Tay be token to be , 5
T TuT T Bayes critical region, @ For" 1oss table
defined in table (1.3.a), and for the hypothesis

‘-Hl:‘wewl against HQ: w€W2. That is |
. , ,
JE (w) dw > =2 JEo(w) aw (1.314)
w, X a ., X
2 1

If in addition Hl and H2 are simple hypothesis the

condition (1.3.a) takes the form,

£, (0 §luy > 2L g, G0 Flwp)

where Hl: W= Wy and H2: W= W

Here '§(wl) and §(w,) =1 ~'§(w1) are the prior proba-
bilities attached to wy and W, respectively. This is
exactly similar to the condition defining an WP test,
only, the g's are then ignored and the constant 3= is

determined by tne prescribed level of the test.




Since hypothesis testing is just a form of decision
"with its own special notation and calculations, we need
to make only a few changes, mos{lx notationzl., A
1. We shall suppose that the data X has been observed
so that the posterior probabilities P(w/X) are available.
2. The hypothetical states Hl and H2 are the possible
decisions ''accept' H; and reject H;''.
3. We shall abbreviate the loss function L(Wi’dj) to
115, where dj are decisions.
Now to generalise the testing problem we proceed as

below. Let Ll denote the average loss in accepting Hl

L; = P(wl/x)lll + p(w2/x) 121

Similarly the average loss in accepting H2 is
Ly = P(W/X) 1,5 + P(W,/X) 15,

«choose dl iff Ly < L2.

That is P(Wy/X)( 1p= 1o5) < P(W,/X)(C 15 = 111)

The bracketed quantities are called regrets ri and Toe
That is r; = 4, = 1,

Ty = 1y = oo
Thus ry is the extent to which 112 exceeds lll that is
extra loss incurred by the wrong decision when Hl is true.
Similarly I, is the extra loss incurred by wrong decision

when H2 is true,

Therefore accept Hl iff



p(wz/x)r2 < P(Wl/X)rl.

P(W2 /X) Iy
That iS ------- < - —— - »
P(Wl/X) Ty
P(W,) P(X/W,) b o
that is P T

P(wl) P(X/Wl) T,
P(W
that is %nggz- < Py (1.3.5)
P(X/Wy) TP (Wy)

(1.3.5) is called as Bayesian likelihood criterion.

This criterion is certainly reasonable because we are
accepting H; if P(X/Wz) is sufficiently less than P(X/Wl)
which makes the likelihood ratio small enough.

Now let us consider a case in which regrets are equal.
and the prior probabilities are also equal then right hand
side (r.h.s.) of (1.3.5) becomes 1. Thus H, is accepted if
the likelihood of W, penerating the sample P(X/Wl) is great-
er than the likelihood of W2 generating the sample P(X/WQ),
otherwise H2 is accepted. We accept whichever hypothesis
is more likely to generate the obegrved X as whown in

(fig.l.3.1).
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P(X/M))

P(X/Wz)

)
Criticaf{value
]

Accept Hl if X is E Accept H2 if X is
observed in this § observed in this
range. ; range.
(fig. 1.3.1)
Now let Us make assumption that the two density functions
centered on Wl and W2 have the same symmetric and unimodel shape

then (1.3.%) reduces to very reasonable criterion as shown in

(fig. 1.3.2)

w ; W,
Critigal value

Accept Hl iff X is observed closer to Wl than Wz. This can be

interpreted even for n observations. Let us assume that X based on



n observations drawn from population with variance 62, and
an unknown mean of either By OT W, (between which we have to
decide). Then X is approximately normal (by central limit
theorem) with variance az/n. Let Hy ¢ p =gy Hy 3 B = oo

So criterion for accepting Hl becomes

W T— A - — Y - S S S @) S —— e > o —

That is X < -= + log [ ==—==2- ]

By arranging

where k = log [ ==-=-=-- ]

Assume that the regrets are equal and prior probabilities
ANL
P(pi)%flso equal. Then criterion for accepting Hl reduces to

| . oz . P1tho
accept H; if X < ~=5=" .

kst
Since ==-=& is the halfway point between By and Bo it is
similar to the criterion for accepting Hl that we have seen

in preceding case.

Remark (1.3.1) :

Although Bayesian methods are more complicated than
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classical methods they are often satisfactory. A Bayesian test
thet 13 uged ,
uses all the informationﬁin a classical tes?]and also explecits
the prior distribution P(W) and the loss function. A classical
test sets the level of significance at 5 A or 1 A, sometimes
arbitrarily, sometimes with implicit reference to vague conside-
rations of loss and loss belief. Bayesians would argue that
these considerations should be introduced explicitely with all

assumptions exposed, and open to criticism and improvement.

Example (1.3.,1) :

Let X be a normal random variable with mean e and var-
iance cg (known) and the prior density of e be normai with
" mean p and variance‘T‘Q. Then the posterior distribution of

: . , - . 2
e is normal with mean e(x) and variance ol where

o(x) = ( =p + =5~ ) o3
w2 cg 1
, -1
2 _ 1 n
and ol = ( =5 +;2..)
¢

when Xy9XpgeeesXy is observed,

Consider the problem of testing Hl: e £ O against H2: e > 0O,
based on a single observation x. That is Wf(~w, 0) and

W, = (0, ). From equation (1.3.3) the Bayes rule for the
problem is accept Hl if Rl S R2. The loss considered here
assumes regrets ry = and Iy =-@

Therefore -

0
Ry = of Iy p(e/x) de.

fw e ple/x)de.
o}

I



and R, = fo(-e) p(e/x)de .

We have, accept Hl if R1~R2 < 0.

Ry-Ry = J e 1. . exp = A (e - 5‘(x))2 de.
- Yon o 20’%
= o(x)
_ , X 2

Therefore accept Hl if

x < = qgf . ci
observe as %‘2 -3 o the prior distribution tends to
a uniform distribution (uniform over ==, »), Thus an
expected Bayes rule will be, accept Hl if X < 0. This
procedure can be represented in the form of classical
test procedure as
: 1, if x L0
b(x) = {
o, if x 20
Example (1.3.2) :

Suppose that Xl,Xz,...,Xn is a random sample from
a normal distribution with an unknown value of the mean e
and an unknown value of variance l/c‘. Suppose also thmt
the prior joint distribution of e and 1/65 is as follows 3
The conditional distribution of e when ¢' = o(c > 0) is a
normal distribution with mean p and variance lfpg wuch that

- < 4 < o and'T > 0 and marginal distribution of 1/o¢' is
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gamma distribution with parameter a such that a > O.
Then the posterior joint distribution of e and 1/¢’ when

Xy = x4 (i =1,2,..,n) is as follows :

The conditional distribution of e when 1/c' = 1/0 is a

normal distribution with mean p' and variance 1/(*" +n)o .

where p' = ~-BEINX_ And marginal distribution of 1l/c

T+ n
is a gamma distribution with parameter a«. In particular

T = 1. The marginal posterior density of e is given by

fo/x) = S Llntlle o (l#n)o (o )2 30, o-l 4o
o V2n|a 2
1
Vn+l ad o=
f(e/x) = =mem= o [ 79[ Qil.(e - p')2+l}. o 2 do.
Yor[a o 2
Take S = Egi (e-p')2+l
Therefore f(e/x) = ==== [ e . S 245,
Yor[a o
Put So =2
Sdo = dZ
do = dz/s.
Therefore v 1
n+l ad Qs =
f(o/x) = === [ e (%) 2 %
Von[a o S S
1l 1l
Vn+l 0o Q= = a+ =
= e [ el z 2 ( é ) 2 az,
Vor[a ©
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_ Yl e g -l L (1/s) 2 az
Vor[a o
1 =
= Y.-?.t_ ia + .]; (l/s)a+2
Vonla 2
S ~(3g£L
Vor[a 2 2
2041
Yn+l 20+1 a(n+1)(e-p')? -("%i-)
= 14 - ]
Vonr[a 2 2a

Therefore f(e/x) follows { t distribution with 2a¢ degrees
of freedom (d.f.) location parameter p' and scale

parameter === N

Consider the problem of testing H;: e £ 0 against
H2: © > O based on n observations. The regrets given are
ry = e and I, = -e.

Following the notations in equation (1.3.2).

R, = f?e +f(e/x) de and
o
Ry = fo(~e) f (e/x) de.

Accept Hl iff R, < R

1
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Therefore accept Hl iff
M+nX
———-— < 0.
1 +n

That is X < - p/n.

Example {(1.3.3) :

Let XLr»Bi( k, ), k(known) prior distribution of e
is Beta (a,b). Then posterior distribution of e is Beta

n
(a+T, b+nk-T) for a sample X1#Xpseee,X, Where T = IX,
11

Consider the problem of testing of hypothesis
Hy : o< 1/2 against Hyo : @ 2 1/2 where the regrets
r, =e - 1/2 (for e > 1/2) and Ty = 1/2 - e (for e < 1/2).
Following the notations of equation (1.3.2) and (1.3.3)
we get
1
R = J (e - 1/2) g(a+T, b+nk-T) de.
1 1/2

1/2
Rop 3.(ml)f (e -~ 1/2) P(a+T, b+nk-T) de.
0

Consider
1
Ry = R, = JS (e = 1/2) B (a+T, b+nk-T) de.
(s
a+T
N V-
a+b+nk

We have by equation (1.3.3) accept H, iff R} =R, <O

That is -2*¥I_ _1/0¢ o0
a+b+nk
gives T < PRink-a
2
For a=b>b nk
T < -
2

BARK. BALASAHEB KHARULKAG i)
SMIVAJI UNIVERSITY. KOLHaFU R,
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Mathematical Result :

Suppose f is symmeiric about m and unimodal.
Consider Lz(y)-L

Ly(y) =0 for y2-a and

Ll(y) = L2(—y) with a = O consider a problem of
testing Hy 3 m £ O against H, : m > O,
In this case L1 can be interepreted as a losé in accept-

ing Hy and L, a loss in accepting H,, where f as

posterior density function. ‘ ‘
p ' Lewma D Ra < &y \{- ffh>/b
y Gy K22 R it mso.
*
L2 Ly I
-a 0 a m 2ri+1

R, = jPLQ(y) f(y) dy.

*
Lo (m+y) = Lz(m-y) for all v,
put y = m-X.

Therefore

Ry = S L; (m+x) f(m+x) dx since f(m+x) = f(m-x)
{o o]

Put m+x = t

-]
Therefore R, = L; (t) £(t) dt.
-0
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We have Lp(t) < L,(t)  for all t, m 2 O.

Therefore wa; (t) £(t) dat < J?Ll(t) £(t) dt.

-0 -l
That is R, £ R
Similarly it can be proved for case {ii)
In example (1.3.1) and (1.3.2) the lemma can be
applied directly, since the posterior density is normal

and t which is symmetric and the terms Rl and Rz are

nothing but risks in accepting Hl and HQ.



