
CHAPTER I

PRELIMINRIES

1.0 Introduction :
Bayes procedure for testing of hypothesis is a statis­

tical decision problem when parameter space and decision 
space contains only two points* In the present chapter 
it is emphasied that hypothesis testing is a decision 
problem. Also the analogue between MP test in a classical 
test procedure and Bayes test procedure when null and alter 
native hypothesis are simple is explained, with various 
cases arising. The same is explained with the help of 
examples on normal and binomial distribution in Section 1.3

As basic requirement classical testin aactien l.l.
procedures are discribed a in Section 1.2 general decision 
problems are discussed with illustrations regarding Bayes 
decision, Bayes risk and construction of Bayes decision 
function. In Section 1.2 it is shown that as the number
of observations increases the Bayes risk decreases. How-

/

ever, if the cost factor due to sampling is considered the 
may • certain

Bayes riskAtend to infinity as n » . In models
optimum sample size can be computed, corresponding to which
the Bayes risk is minimum.



P^ofcte-ns .
situations such as this do not arise in practical The 
procedure used in practice is to limit the probability 
of type I error to some preassigned level ct (usually 
0.01 or 0.05) that is small and to minimize the probabi­
lity of type II error.

To every S we assign a number <|>(x) , 0 < 9(x) <_ 1, 
which is the probability of rejecting that X^fw, 
w € W, , if xr is observed. If H. is true (j> rejects it with 

probability <_ a* We call such a test a randomized test 
function. If <j>(x) = I^x), <J> will be called non-randomized 
test. Consider e problso of fiodine 4 fo* * ,

** Wilt
In the subsequent, this problem be denoted by 

(a, W. , W0) and let <j> be a test function for the problem.
As a function of w, P(j)(w)\ is called power function of the 
test |>

P^(w) = Ew
= Pw{ Re3ect Hi} *» w&

Now let us formulate the problem.of testing of hypothesis
•s follows J~ind a test <J>(x) such that p^(w) < a 

for w£ W^, and P^(w) is maximum for w£ . Let <j>a be the

class of all tests for the problem where W^, W2
t ^ Iare singleton. A test 9 £ 9a is said to be a most powerful 

(MP) test against an alternative w £ W0
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for some k > 0 and o < Y"t x) < 1, is most powerful of

its size, fax testing HI* K2««ia&
In particular if k = « the test

f(*) =
1 if fx( x) = 0 

0 if fx(x) > 0
(1.1.2)

is most powerful of size Of«rr tasting KS*

Given a, 0 < a < 1, there exists a test of form (1.1.1) 

or (1.1.2) withY'(x) = t (constant) for which E <b(X) = a .
r 1 " iNote that MP test is not unique on the < X: f p( x) = kf^(x)j .

We now consider a problem of testing one-sided hypo­

thesis on a single real valued parameters. Suppose we 

wish to test w < w^ against the alternative H2:w > w^ 
or its dual H|: w _> w^ against w < w^. Here we consider 

a special class of distributions called family of distri­

butions having MLR property which is large enough to

include one parameter exponential family, for which a
considered above *

UMP test of a one-sided hypothesisAexists.

Let X^f,.,, w £ —CL _n_£R, where SfX has an MLRV- w t Wj

in T(x) (Refer defination 0.1). For testing H^:w < w^ 
against H2: w > -A- , any test of the form

1 if T(x) > t

K*> if T (x) = t( 

if T(x) < t

has a non-decreasing power function and is UMP of its size
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Moreover, for every 0 <: a <, 1 and every w^£ _TL 

there exists a tQ, < tQ < ", and 0 < Y“ < 1 such that 

the test described above is a UMP size a test of 

against H2.

By interchanging inequlaities throughout we see that 

it provides a solution of the dual problem H£: w > 

aginst H£: w < w^.

By restricting the class i of all tests of size a,
null

there do not exists UMP tests for many important^hypothesis.
dose not exists(0

For example the UMP testAfor testing < w < w2 and

w = w^ in case of one parameter exponential family.

In this case one has to look for a UMP test in a restricted 

class of test.

Defination :

A size a test <j> of H^: w £ against the alternative 

H2: w £ W2 is said to be unbiased if

Ew£(X) >, a for all w £ W2

Let Ua be the class of all unbiased size a tests of H^, if 

there exists a test ^>£ U that has maximum power at each
VA>

w 8 W2, we call a UMP unbiased size a test.

In case of exponential family with density defined in
Tt* UMP uribitsd test (et testing(0.2)TI* Hx: w = wx against H2: w 4= WjL the UMP

unbiased test is ®i*w* by .
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r 1 if T(x) < Cx or T(x) > C2

n. if T(x) = Cx

\ T2 if T(x) = C2
L 0 if Cx < T(X) < C2

and Ew [ 4>(X) ] = a.

— EVy[^(x) J / W = W, = 0 dW w

1.1.1 Example :
Let X^,X£»...,Xn be independent identically distributed 

(i.i.d) b(l,p) random variables and let p = p^, H2: P = P2> 
P2 ^ Pj* Then MP size a test of against H2 is of the 
form

i|>(xi t • »x^)—

lO ,

where ^X(x) = ^P01 1 (1-P0)

A(.x) = k 
Mx) = k 
Xx) < k

n- £x.

n
EX; n

n- Ex.Px 1 x (1-^)"“ i

In this case 'if' and k are determined by

C4>(x) ]*i a.

X(x) =
n

Po Ex.( p2 ) X 1 1-P0
**r>

n-
nn

And since P2 > P^, A(x) is an increasing function of Ex^, 
it follows that ^\(x) > k if an«L only if Ex^ > k^, where k^ 

is some constant. Thus MP test reduces to
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n
if

t(x)

^xi > ^1

n
Ex, K,T if

0 otherwise

In particular n = 5, P^= 1/2, = 3/4, a = 0.05 MP test

is given by

$>(x) =

0

n
if £x. > 

1 1
n

if £x. = 
1 x
n

if £xi <

where k and are determined by,

0.05 = a = 2 (l) (1/2)5+r(|) (1/2)5. 
k+1 r K

Thus the MP size a = 0.05 test is to reject p = 1/2 in
5

favour of p = 3/4 if £x. = 5 and reject p = 1/2 with
1 1 n

probability 0.122 if £x. = 4.

.let Xl,;<2f.........Xn be* l.i.d. b(ltp> random ver table*v tie UK* tent fo*
testing Hit pm pi agsln&t H2§ P V2 of *i*e fellows.

II. ,.iM. of *t 1* «i'*n W.
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we have fp(x) = {*) px (l-p)1"*, x = 0,1.

_ ,JU x log -E- + , log (1-p)
“ vx' e 1-p

Tl» ^rrotpoodi*” likelihood 1«|
f (x ) = it(l ) e log 1-p ^xi +vllog(l-p)

™* It in the f«r» of one parameter *xtx>mntUimmity (ref. o.«
ultk' T(x) = Ex.

1
Therefore UMP test is of the form.

4>(x)

1 , if T(x) > t(

f , if T(x)=t

0 if T(x) < t,

t and T are determined by

n-5

=p^[ <Kx) ] a.

for = 1/2, a a = 0.05 it follows that tQ = 4 and V~= 0.122.

Now let use consider the c ase where alternative hypo­

thesis is two sided.

H, p -*1 against Pb,: P ^ P^ the IMPU test is

n nf 1 if £X. < C. or EX. > C0.
1 JL ^ 1

n
J *1 if fXi » C1

11X-O \ 1
n\ ^2 if = C2

n
l 0 if C1 < 2Xi < C2*

where C, and C~ are determined
_■» *•* •- -•

for Xi^Bi (I0|p},n»12* <*0.05 as 40^'»«
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1.2 General Decision Problem :
1.2.a Bayes Risk And Bayes Decisions :

Consider a decision problem defined by a parameter
space ~/l_, a decision space D and a loss function L.
For any distribution P of the parameter W, let the
risk be f(P,d) for dS D where P(P,d)= / L(w,d)d P(w)

Li Is that m£X~
andtassumed it is finite for every d€ D. Then the
Bayes risk p*(P) = inf P(P,d). Any decision d* whose risk 

J d£ D y
is equal to Bayes risk is called a Bayes decision against
the distribution P if exists.

i.e. f(P,d*) = inf / (P,d)
. J d G D

1.2.a Example : : ̂ 0, lj.
D : ^All the numbers d, 0 < d < lj*

L(w,d) = |w-d|
Pr(W = 0) = 3/4; Pr(W = 1) = 1/4 
f(P,d) = L(0,d) Pr(W = 0) + L(l,d) Pr(W = 1)

= 3/4.d + 1/4 . (1-d)
= d/2 + 1/4

For d = 0, ^(P.d) is minimum.
.*. d = 0 is the unique Bayes decision with Bayes risk 
j*(P) = 1/4.

In this case, of the two possible values of the para­
meter, 0 is a logical estimate of the parameter which of 
course is the Bayes decision.If P[W=0j < P[w=l] then Bayes 

decision would be W = 1.
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thenIf D* = jo, lj*

£*(P) = inf f(P,d)
J d G D

= 1/4

Note that there does not exists a d* in D' = (0,1) for

which inf /(P,d) is attained i.e. Bayes rule in D’ does 
d £ 5' 

not exists.

1.2«b. Concavity of Bayes Risk :

Theorem : 1.2

For any distributions P^ and P2 of W and for any num­

ber a (0 < a < 1);

jKaP^U-a) P2] >°yJ*(P1)+(l-a) f*(P2)

Proof :

We have f(P,d) L(w,d) d P(w) for any d £ D

f [aP^l-a) P2,d] = « /(Ppd) + (1-a) / (P2,d)

Now,

J)*[aP1+( 1-a) P2 ] ^inf^ftaP^d-a) P2,d ]

This gives

s^inf^ [a /(P1,d)+(l-a)>/)(P2,d)]

P*[aP,+(l-a) P9] > a inf J^P-, ,d)+ (1-a) inf _P(E0,d) 
J 1 * d G D 1 d £ D 2

= a f*(PL) + (1-a) j>*(P2).
1.2.c. Randomization**^ mixed decisions :

Let d^,d2,.... be a sequence of decisions (i.e. the
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number of decisions are countable). Let us assign the

probabilities P]^^’**** to the sequence of decisions. 
d^£ D. The process of selecting one of the decision d^ 
on the basis of these probabilities is called mixed or 
randomized decision. Thus a randomized decision is not­
hing but a probability distribution defined on the 
decision space D.

CO
L(w,d) = £ P. L(w,d.) (1.2.1)

i=l 1 1
is the loss associated with the mixed decision d for 
w £. —,

Let M denote the set of all mixed*decisions/ in a 
given problem; where D is the class of pure decisions.

Y\ekoyr> I S «-g£. Jec'S'01^)
Trivially we can regard each pure decision*d as a mixed 
decision in which pure decision must be selected with 
probability 1. Hence DcM.

The loss function given above (1.2.1) for mixed

decision is weighted average of the loss functions defined
'V

for pure decision$ Therefore, whenever the risk^C?^)
for mixed decision exists its value must be the weighted
average of the risks P(P,d.) of pure decisions d..

Hence inf P(P,d) = inf P(P,d) = p*(p) d£ r d € D J
If follows that if the Bayes riskis finite and is
attained for a mixed decision in M then this risk must

be u>
also*attainAfor some pure decision in D. Hence when we
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come across twoor more pure decisions each yields a 
Bayes risk. It is advisible to perform an auxiliary 
randomization to select one of these Bayes decisions. / 
Randomization in this situation is irrelevant because 
any method of selecting one of the Bayes decisions is 
acceptable.
1.2,d, Decision Problem with Observations :

It may be possible to observe the value of the 
random variable or a random vector which gives informa­
tions about the value of W gm|: helps in taking good 
decision. Let S be the sample sapce of all possible valu­
es of the observations X. The decision chosen depends 
on observations; so for each possible value xGS a deci­
sion d(x)€D. The class of all decision functions d will 
be denoted by A. .
For any g.p.d.f. J of the parameter W and any decision 
function d£^ the risk

/(f ,d) = E L[W, d(X) ]
= //L(w,d(x)J f(x/w) <f(w)-n-S ... (1.2.2)

Assume for each value w G -A- the function L[w,d(.)] is 
measurable and integrable over the set S. For any parti­
cular value of w G.-A_ , denote5the risk of the
decision function when W = w •*** 9iwn fey 1
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Uw,d) =/ L[w,d(x)] f(x/w)di4 (1.2.3)
S

/(? ,d)= //(W,d) S(w) dw (1.2.4)

Let d* € D s.t.

J(1 ,d*) - inf (5 ,d) = P*(f ) (1.2.5)
d £ A J

Then d* is Bayes decision against ^ and ) is

Bayes risk.

1.2.e* Construction of Bayes Decision Function :

We have by (1.2.2)

/(I 3) = I I L[w,d(x)] f(x/w)f(w) dxi*>

Since the loss function is non-negative or a bounded 

function the order of integration in the above integral

e«i t* interchanged -

fCf , d) - {l[w,6(x)] f(x/w) J(w) dw j- dx

... (1.2.6)
For each value x £ S let d*(x) = d* where d* is any

decision in D which minimizes the integral.

/ L(w,d) f(x/w)T;(w) dw (1.2.7)
~n_

Let f^ is the marginal g.p.d.f. of X the value of f^(x) 

can be 0 only on set of points x which has probability 0. 

fi(x) = / f(x/w)'S(w) dw (1.2.8)
**" -ft-.

Now, instead of finding a decision d* which minimizes 

(1.2.7) we can find equivalently a decision d* which 

minimizes*
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(1.2.9)/l(w,o) [ fisMJiiindd 
-n- fx(x) i

which is the conditional expectation can be written a§
A

E[L(w,d)/x). Therefore, any minimizing decision d* is 

simply a decision which yields the smallest expected 

loss under the conditional distribution of W when the 

observed value X is x. In statistical decision problem 

the marginal distribution of W is called the prior 

distribution of W. Because it is distribution of W 

before X has been observed. And the conditional distri­

bution of V»: when the value of X is known is called the 

posterior distribution of W because it is the distribution 

of W after X has been observed.
_ . i .. 0 At »n mu»tratft»A eoesi<fcr tin following sxtwrpitbXa!npli'fe 1 »# 6 • ;

'Let X^,X2»-» • • »X be i.i.d. normal variates with
pmean e variance aQ and the prior distribution of e be

2normal with mean p and variance1^ . Let the loss function 

be given
f 0, if I e - a| <C 

L(e, a) = \
'-If if |e - a | >C.

where C: is positive and known.

Let 3C'2f**fxn k>e observations denoted by x=(x^,x2>.•>xn) 

tThe posterior distribution of e is normal with mean e(x) 

and variance cr^ where
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and

e(x) (^5 + 2
1

1 _ 1 , n“2 - qr2 + ~~2al T ao

For each given x we are interested to find that d(x) 

for which
/ L(e,d(x)) P(e/x)de is minimum.

-A-

That is / P(e/x)de should be minimum
| e-d( x) | >C

d(x)-C 00
/ P(e/x) de = / P(e/x) de / P(e/x)de.

|« - d(x) [>C d( x)+C

= f(x)-C - exp - x))2 de
f2it a± 2o£

+ /
d(x)+C

--- exp - -i*(e-e(x))2 de, 
Y"2ii o> 2of

Differentiating with respect to (w.r.t.) d(x) and equating 
to 0 we get
--- exp-- d(x)-C-e(x)]2------- - exp----73[ d( x)+C-<ef( x) ]2= 0
f2it0£ 2of f2% a± 2a f

••.(1.2.10)
That is [ aC*> - C - e(x) ]2 = [d(x}+ C - e{x)J2 
That is d(x) - C - e(x) = + [d(x) + C - e(x)]
For C > 0, ^*(x) = ®|x) = posterior mean.

Differentiating one more time L.H.S. of (1.2.10) and putting
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d(x) = e(x) we get value of the expression positive.

Hence / L(e, d(x))) P(e/x) de is minimum at e(x).
2

Consider L(e,a) = (« - a)

For that <y*(x) = e(x).

Now the Bayes risk corresponding to the square error loss 

function denote d by /a(x)
o o

(n) = cr^ where =
_i_+ _2_
~T2 a2 

1 o
If we do not take any observation

d*(x) = M-
The correppnding Bayes risk denoted by d(O) is

gives

E(e - n)2 =-p2 = --- 2 = f*6(0)
i/t

f (n+1) < f* (n) < f d(o) 
-'d(x) d(x)

Hence Bayes risk is decreasing function of n. But 

in practice observations will add the cost so we have to 

consider cost of sampling also.

1.2.f. Cost Function :

The cost of observing the value of X may depend on x

and the population from which it is drawn^that is^population

parameter W. Let C(W, .. ,xn) be the cost function

when x1,x0,...,x„ observed and W is true value.12’ n

The total cost = Ew xIX(Wf d(X))] + Ew,X^W,Xl ’ ’ ’ »Xn^

where the expectation is taken w.r.t. X as well as VV.
let *e* ** the of an obearvatlon.

•'’’Total risk =’ P* + nc



Let us study the cost with reference to example (1.2.e).

Total cost = ------- + n c = C (say)
JL + 2— 
m2 °o

Assuming C is defined for n positive real numbers and

by differenciating and equating to 0, we get,
.2

— + c = 0.
dC “ 1/^ao

dn (-~2+ 2-2) 
'f 2 a2

,.2

That is

( f + f ’ ccr

gives n* = , optimum sample size. Note

that as expected n* is decreasing function of c. It is

observed that -- <0 for n<n* and >0 for n>n*. Thus 
dn

optimum value of n is decided by comparing the value of 

C at n* and n*+l.

In particular, let'-'p2 = 400, a2 = 4 and c = 0.05 

gives n* = 8.93 'o 9

To sketch the graph of total risk as a function of 

sample size when all other parameters are fixed we 

compute it for different values of n.
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Tilt table below shows total risk for different values ef n, foxT *400g 
/o2* and e*O.05 (ref* «xm1« 1.2.• )• <

*

n
jkx) C = Total risk

0 400 400

1 3.9604 4.0104

2 1.9900 2.0900

3 1.3289 1.4789

4 0.9975 1.1975

5 0.7984 1.0484

6 0.6655 0.9655

7 0.5706 0.9206

8 0.4993 0.8993

9 0.4439 0.8939

10 0.3996 0.8986

11 0.3633 0.9133

9 A
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1.3 Testing As A Decision Problem :
1.3.a. Statistical decision problem when-fl-, D contains
two points :

Consider a statistical decision problem in which 
|w,,w0l , D =fd,,d0}. The loss table is as below :

a, a2 positive known 
* constants.

For any decision function S let a(£) denote the 

conditional probability that decision d2 will be chosen 
when w = . Also let p(d) denote the conditional proba­
bility that decision d^ will be chosen when w = w^.
That is a(d) and p(d) denote the probabilities of wrong 
decisions when w = w^ and w= respectively.

14 the prior distribution of w is

AD di d2
wi 0 al
w2 a2 0

Table (1.3.a)

P(w - wx5 - If » {° < % < l) *
If 1 = 0 or 1 then the solution is trivial. 

That is | = 0 we have P(w =s w2) = 1 decision d2 is 
correct decision.
The risk f( , d ) of the decision function d is

J*( ^ fd) — • cc( d) + a2. (l —^)p(d)

= a.a( d) + b p( d ) where a = a^js , b = a2(l-f ) 
Here a and b' are given positive constants.
Problem is to find a decision rule 5* in D that minimizes 
f(1j >d)f d&A where a. is the class of decision functions.
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1,3.b. Hypothesis testing as a decision problem :

, Suppose w£W^ against the alternative hypothesis 
H2i w£ W2 (W^ and W2 are two mutually exclusive sets of 
the parameter space -/V) . In this case D = .£d^,d2j- 
where means the decision that w£.W^ and d2 is the 
decision that w£ W2» That is there are just two possible 
actions to be taken. This is why hypothesis testing is a 
two decision problem, involving the two alternative deci­
sions d, and d0. Consider the loss table (table 1.3.a) 
For such a loss function the risk function of the decision 
rule (i.e. test ) d, having the critical regions wil be.

/(w, d) *1 $ fw<x> dx» w £S1
io / f,„(x) dx, if w £ WQ

where S2 =
Since d(x) = d^ if x£ S2 and 

d( x) = d2 if x£ Sx
For a given prior distribution, represented by the prob­
ability density function (p.d.f.) ^ the average risk for dis

/(I. d) = / a^ / fw(x) dxjj§(w) dw + / a2[ / fw(x)dx]J (w)dw.

= /f^(x) «/ax ^fx(w)dw dx+ /£§(*) «^a2?x^w^ dw dx
sr wi S2 ■ w2

Here f- (x) = /^(w) f (x) dw and
“ -n~



-
|(w)fw(x) 
f-§ (x>

In order to obtain a Bayes rule, we shall have to mini­

mize f (| j»

Obviously this can be achieved by taking*, for any given 
x, the decision d^ (or d2j(or equivalantly, deciding that 

X£S2 or deciding that x £

Let
R^ = Risk in accepting

= / a0 ||Y(w) dw> and (1.3.1)
w ^ A

7*4

R, Risk in accepting H2

/ a-
W,

,(w) dw. (1.3.2)

If R^ < R2 decision d^ should be chosen. 

If Rj, > R2 decision d2 should be chosen
(1.3.3)

In case if equality holds we may take either decision. 

Equivalently, accept based on x provided the posteiior 

risk (given x) in accepting is less than that of rejecting 

(given x).

The nature of a Bayes test may be seen to have a striking 

with that of an MP test for a simple hypothesis against 

a simple alternative H2. In case of an MP test, a given

Ia-v >tg



sample point x is or is not included in is decided 
by keeping in view the relative magnitude of the proba­
bility density of X under and the probability density 
under H2. In the case of Bayes test, we consider a sort 
of weighted average density under and a weighted ave­
rage density under H2, both of which may be composite 
hypothesis, condition (1.3.3) namely reject if

/ a0 |Y(w) dw > /a, <§Y(w) dw
W2 A W1 ^

a»y be taken to b*- ' -i Bayes critical region, ‘ FOS“ loss table
< • ' )

defined in table (1.3.a), and for the hypothesis 
■H^: w € Viagainst H2: w€w0. That is

Q/fY(w) dw > -i /IY(w) dw
W, 2 W.

(1.3i4)

If in addition and H2 are simple hypothesis the 
condition (1.3.a) takes the form,

f„2(x) ?(w2) > !i fWi(x) I(*p

where H^: w = and H2: w = w2.
Here 'f’(w^) and ]j(w2) = 1 - If(w^) are the prior proba1
bilities attached to w^ and w2 respectively. This is
exactly similar to the condition defining an MP test,

alonly, the «'s are then ignored and the constant — is
a2

determined by tne prescribed level of the test.
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Since hypothesis testing is just a form of decision 
with its own special notation and calculations, we need
to make only a few changes, mostly notational.

\

1. We shall suppose that the data X has been observed
so that the posterior probabilities P(w/X) are available.

2. The hypothetical states and are the possible
decisions ' ' accept' and reje.ct H^' ' .

3. We shall abbreviate the loss function L(w. ,d.) to*** J
1.., where d. are decisions.ij J
Nov/ to generalise the testing problem we proceed as 

below. Let denote the average loss in accepting
lx = poyx)^ + p(w2/x) i21

Similarly the average loss in accepting H2 is
L^PCWpx) 112 + P(W2/X) l22

Ichoose iff < L2.
That is P(W2/X)( 121- 122) < P(WX/X)( 112 - ln)

The bracketed quantities are called regrets r. and r,JL <£
That is 12

l21
L11
l22*

Thus r^ is the extent to which *12 exceeds 1^ that is 
extra loss incurred by the wrong decision when is true, 
Similarly r2 is the extra loss incurred by wrong decision 
when H2 is true.
Therefore accept iff
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That is

P(W2/X)r2 < P(W1/X)r1. 
P(W2 /X) ^ rx

that is

P(wx/x) r2 
P(W2) P(x/w2)
P(wj p?x/w1)

that is
P^/W2) r1P(W1)

(1.3.5)
P(X/WX) r2P(W2)

(1.3.5) is called as Bayesian likelihood criterion.
> v . ............ —.... .......

This criterion is certainly reasonable because we are 
accepting if P(X/W2) is sufficiently less thaa P(x/W^) 
which makes the likelihood ratio small enough.

Now let us consider a case in which regrets are equal 
and the prior probabilities are also equal then right hand 
side (r.h.s.) of (1.3.5) becomes 1. Thus is accepted if 
the likelihood of generating the sample P(X/W^) is great­
er than the likelihood of W2 generating the sample P(X/W2), 
otherwise H2 is accepted. We accept whichever hypothesis 
is more likely to generate the observed X as whown in 
(fig.1.3.1).
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pCx/v^)

P(X/W2)

X
Critical

Accept if X is 
observed in this 
range.

value
Accept H2 if X is 
observed in this 
range.

(fig. 1.3.1)
Now let us make assumption that the two density functions 

centered on and W2 have the same symmetric and unimodel shape 
then (1.3.5) reduces to very reasonable criterion as shown in

Accept iff X is observed closer to than Vf2. This can be 
interpreted even for n observations. Let us assume that )£ based on
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n observations drawn from population with variance cr , and 
an unknown mean of either ^ or (between which we have to 
decide). Then % is approximately normal (by central limit 
theorem) with variance a /n. Let : \i = ^ H2 : \i = ^2*
So criterion for accepting becomes

e-n/2cr2 ^ rjP^)
e-nr2P^W

„ *1*^2 a<Z/n r rlp^l) ,
That is Z < -±~= +---- log [ ------ ]

2 p«2 r2p^2^
By arranging

2 2
x < -i---- ± +

cr2/n
k2^2"^1^ (m«2~^i)

r2p(^2^
r 1 '• X- iwhere k = log L ------—J

Assume that the regrets are equal and prior probabilitiescV-C-
P(u.) also equal. Then criterion for accepting H. reduces to

K- - H+^2accept H, if X < .
^14^2Since --- - is the halfway point between and ^ it is

similar to the criterion for accepting that we have seen 
in preceding case.
Remark (1.3,1) :

Although Bayesian methods are more complicated than
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classical methods they are often satisfactory. A Bayesian test 
uses all the information

i

the prior distribution P(W) and the loss function. A classical 
test sets the level of significance at 5 */* or 1 m/it sometimes 
arbitrarily, sometimes with implicit reference to vague conside 
rations of loss and loss belief. Bayesians would argue that 
these considerations should be introduced explicitely with all 
assumptions exposed, and open to criticism and improvement. 
Example (1.3.1) :

Let X be a normal random variable with mean e and var- 
2iance aQ (known) and the prior density of e be normal with

omean p. and variance t/p . Then the posterior distribution of
y 2e is normal with mean e(x) and variance where

in a classical test and also exploits

o

when xi,x2,...,xn is observed.
Consider the problem of testing e < 0 against H2: e > 0.
based on a single observation x. That is W|(-<», 0) and
W2 = (0, °°). From equation (1.3.3) the Bayes rule for the
problem is accept if R^ < R2. The loss considered here
assumes regrets r^ = e and r2 =-e
Therefore °°

- f r^. p(e/x) de.
° ~

= / « p(e/x)de.
o
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and

(+ “2” ^ a‘T CT

Therefore accept if

X < - -K* . ol 2 O
2observe as ^ —» «> the prior distribution tends to

a uniform distribution (uniform over •»). Thus an 
expected Bayes rule will be, accept if X < 0. This 
procedure can be represented in the form of classical 
test procedure as

1,
«J)(x)

0,

if x < 0 

if x > 0
Example (1.3.2) :

Suppose that Xj_,X2,... ,Xn is a random sample from 
a normal distribution with an unknown value of the mean e 
and an unknown value of variance l/o"1. Suppose also tbrat 
the prior joint distribution of e and l/aA is as follows : 
The conditional distribution of © when o' = a(a > 0) is a 
normal distribution with mean ji and variance 1/p a wuch that 

< |i < 00 and 'T > 0 and marginal distribution of 1/cr* is
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gamma distribution with parameter a such that a > 0.

Then the posterior joint distribution of e and l/a* when

Xi = Xi (i = l,2,..fn) is as follows :

The conditional distribution of e when l/a* = l/o is a

normal distribution with mean p,' and variance l/(T +n)c

where n1 = —22L. And marginal distribution of l/a 
T + n

is a gamma distribution with parameter a. In particular 

T = 1. The marginal posterior density of e is given by
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Therefore f(e/x) follows ( t distribution with 2a degrees

of freedom (d.f.) location parameter p,’ and scale
parameter -i~ 1

a(n+l)

Consider the problem of testing e < 0 against 

H2: e > 0 based on n observations. The regrets given are 

r^ = © and r2 = -e.

Following the notations in equation (1.3.2).
CO

R, = / © +f(e/x) de and
o

o
Ro = / (-«) f (e/x) de.

Accept iff R^ < R2
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Therefore accept iff 
jj.+nx- - - - - -  < o.
1 + n

That is x < - p,/n.
Example (1,3.3) :

Let B^( k, ©) , k(known) prior distribution of ©
is Beta (atb). Then posterior distribution of e is Beta

n
(a+T, b+nk-T) for a sample xltx2,...,xn where T = IX^

Consider the problem of testing of hypothesis
: © < 1/2 against H2 : © >, 1/2 where the regrets

r, = © 1/2 (for © > 1/2) and r0 = 1/2 - © (for © < 1/2).
Following the notations of equation (1.3.2) and (1.3.3) 
we get 1

r s / (© - 1/2) p(a+T, b+nk-T) d©.
1 1/2

1/2
r2 as (-1)/ (© - 1/2) P(a+T, b+nk-T) d©.

Consider
R, / (© - 1/2) p (a+T, b+nk-T) de.

1/2.a+T
a+b+nk

We have by equation (1.3.3) accept iff - R2 < 0
__a+T_ 
a+b+nk 
b+nk-a

That is - 1/2 < 0

gives T < 

For a = b nkT < ---.
2
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Mathematical Result :
Suppose f is symmetric about m and unimodal. 

Consider L2(y) 4-

Lo(y) for y > -a and
L^(y) = L2(-y) with a = 0 consider a problem of 

testing : m < 0 against H2 : m > 0.
In this case can be interepreted as a loss in accept­
ing and L2 a loss in accepting H2, where f as

Cti>

r2 - / l2( y) f(y) dy-

»j. o
i VVj < CD

•ft

L2 (m+y) = L2(m-y) for all y,
put y = m-x.
Therefore

°° *
R2 = / L2 (m+x) f(m+x) dx since f(nrt-x) = f(m-x)

Put m+x = t
Therefore R2 = / L* (t) f(t) dt.
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We have L*(t) < L^(t) for all t, m > 0.

CO oo

Therefore / L0 (t) f(t) dt < f L,(t) f(t) dt.
—OO mmCO

That is R2 <

Similarly it can be proved for case (ii)

In example (1.3.1) and (1.3.2) the lemma can be 

applied directly, since the posterior density is normal 

and t which is symmetric and the terms R^ and R2 are 

nothing but risks in accepting and H2.


