CHAPTER - 11

A STUDY OF DOWNTON'S AND HAWKES MODEL

2.1 Introduction

The bivariate exponential distribution is well known in the
study of reliability and availability of systems. The effect of
any correlation between variables on the total reliability of a
system would be of great interest, when the actual form of
bivariate exponential distribution is not important.

While studying the Downton‘s bivariate exponential
distribution (DBVED), it is important to note the construction of
Marshall-0lkin bivariata exponential distribution (M-0 BVED). It
is obtained by supposing that failure is caused by three
independent "8S8hocks" on a system of two component with arrival

rates ki, hz and hs respectively .

The bivariate exponential distribution of Marshall-Dlkin
preservs the property of lack of memory that the residual life is
independent of age. It suffers from a mathematical difficulty
that, it is a mixture of singular distribution and continuous
one. Marshall-0lkin model would be appropriate for situations
where pairs of identical observations appear in the observed data.
It also preservs weakened version of the lack of memory property
of the univariate exponential distribution. However the
advantages'of this property of BVED is not yet established. In
situations where the failure of one component weakens a second
component, M-0 model is not appropriate. Freund(1961) has
proposed model for such situations. However Freund’'s model does

not extend any property of the univariate exponential



distribution. Where as Downton’'s BVED is an extension of
univariate exponential distribution in which the concept of
failure due to successive damage is generalised. First consider
a single component which is subjected to shocks that occur
according to a poisson process with failure rate M. Suppose
further that the probability that a shock is “fatal®™ is v,
where 0< v (1 independent of previous shocks, then the number of
shocks N till the component fails is geometrically distributed.
The time to failure T has exponential distribution with parameter
A =€ — v)u. A proof of this result is given in Section 2.2.
Downton extended this idea to two component system in
which each component is subjected to the shocks. There are two
typesftgbm?ype-l’and Type-2 arrive with random inter—arrival

times ( Xn, n =2 1 3} and { Yny n =2 1 having exponential
distribution with means llk1 and l/)\z respectively.

A Type-1 shock causes only failure to Component—1 and

Type—-2 shock causes only failure to Component—-2. Let N1 ‘and N2

respectively be the number of shocks required for the

corresponding component to fail. Suppose that (N’, NZ)T have a

bivariate geometric distribution with joint probability

generating function n(zz, zz). Also suppose that the two shook

N¢
processes are independent of each other. Let Ti==z:Xi and
N2z i=1

T2==E ije the failure times of Components 1 and 2 respectively
=1

and the joint distribution function of the life times of the two

components say F(tl, tz) is a bivariate exponential distribution.

Downton considéered a particular form of p.g.f. of bivariate
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geometric random vector (N:’ NZ)T and the resulting bivariate

exponential distribution is called as Downton's model. Since
Downton's model has only three parameters. It may not be fit for
some data. It is necessary to construct another model for
general distribution with more parameters.

Hawkes has considered a different bivariate geometric

distribution. Suppose that Pq be the probability that the

first component is in state i and second component is in state j

with Eptf 1, where i,j € {0, 1}. Note that ‘0" and "1° stands
ig]
for component is in failure state and functioning state

respectively with Pu + P“, = Pg; P“ + Po; = P2; 01 = 1 - F‘1

and @ =1 - P .
2 2

A sequence of shocks occur according to Poisson process with

Ni : be the number of shocks required to cause failure of
exactly one of the component and
N2 : be the number of shocks required to cause failure to
the surviving component.
Hawkes bivariate exponential distribution consists five

parameters which are used in the construction of bivariate

exponential distribution. By putting P£= Pz= P = 1-G and taking
the limit as P00~*ﬁﬂ in Hawkes model then it corresponds to

the same number of shocks having geometric distribution. The
corresponding model is nothing but Downton’'s model.

In this chapter we discuss the concept of Downton's{(1970)
BVED and Hawkes(1972) BVED with study of some distributional
properties. In Lemma(2.2.1) a property of the univariate

exponential distribution and specifications of Downton’'s BVED is
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discussed. In Section 2.3 the joint p.d.f. of vector (Tl, Tz)T

for Downton’'s model is obtained. Section 2.8 deals with some
distibutional properties of DBVED compairing with M-0 BVED. In
Section 2.5 the Laplace transform of Hawkes BVED is derived.
Section 2.6 deals with regression property of Hawkes model and
finally in Section 2.7 it is verified that Downton’'s model is a
particular case of Hawkes model under some conditions.
2.2 Specification of Downton’s model

In this section we derive the bivariate exponential
distribution which is due to Downton(1970). As a first step vue
give a property of the univariate exponential distribution which
later is generalised to bivariate case. The following lemma is
useful in this context.
LemmaC2. £2.1) Let N be a geometric random variable with
parameter » having probability mass funtion

n -

{v (1 - 321 0V

PLN=n 1=
r [¢] s otherwise. (2.2.0)

Let € xk, k 2 0 » be a sequence of independent random variables

i

such that Xo = 0, (Xk, k =1 ) are i.i.d. having distribution

function F. Define

I¥f N and ( Xi } are independent random variables then the Laplace
transform corresponding to the distribution function of S is

given by

Fgls) = « Fis) (1 - 1) /{1 - v F(s)),
N

where Fi{s) is the Laplace transform of F.

13



Proof : Let ( Xk, k > 1 > be sequence of i.i.d. random variables

e ]
having distribution function F. Let F be the Laplace transform
of F, that is

F{(s) = E [expl{-s Xi)}

o)
_[' exp(— sx) dF(x). (2.2.1)
(s}

Let N be a geometric random variable with parameter v having
probability mass funtion defined in (2.2.0).

b 3
Consider F be the Laplace transform of SN. (fﬁen We have

5:, s ) {EN{ exst s’ } /N ]
Apf oees Ex0 } ]

Te _tn
z

N
= EN n E [exp{-s Xi}] N ] }
i=yq . .
N
= E n Fi(s) } s Since X's are i.i.d.
N - i
. A=y
~ N
= EN{ F(s)} - (2.2.2)

It may be noted that the right side of (2.2.2) is the

probability generating function (p.g.f.) of N evaluated at
Ny
F(s). 8ince the p.g.f. [J(z) of N is given by

ntz) = z(1 - )/ (1 - wz),

We get
“~ N e
FS(s)= [ F(s) (1 - v) 1/] 1 - v F(s) ]. (2.2.3)
N
Hence the lemma. o
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Theorem(2.2.1) If ( Xn, n>1 ) is a sequence of i.i.d. random

variables having an exponential distribution with parameter u and

i¥f N is geometric random variable with parameter » then the

N
distribution of Su = £ X is exponential with parameter pu(1-up).
izt

Proof : Since X{'s are i.i.d. exponential random variables with

parameter g, the Laplace transform of the distribution function

of X is given by

F(s) = E [exp{-s Xi)J
@
= f exp(— sx) dF{x)
o
®

= I exp(— sx) p exp(— ux) dx
o

o
= u f exp{ —-(u+s)x I dx
o

= /iy + s).
Now by lemma(2.2.1) we write
e
Fs(s) = pll ~ )/ ptl — ») + 5 ] (2.2.4)
N
Since the right hand side of (2.2.4) corresponds to the Laplace

transform of an exponential distribution with parameter

u€1l - »), by uniqueness theorem of Laplace transform; it
follows that the distribution of SN is exponential with

parameter (1l - w). o

In what follows is the generalisation of lemma(2.2.1) to two

variable case.

Theorem(2.2.2) Let (Ni, Nz)T be a vector follows a bivariate

geometric distribution with p.g.f. "‘21’ zz). So that
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n(zt, 1) = (1 - Pi)zil(l - P1 21)
and net, zz) = (1 — Pz)zzl(l - Pz zz)

The interval between the shocks are independent and

exponentially distributed with scale‘parametars k1 and Az for

each component respectively. The joint distribution of their

life times is F(ti, tz) and corresponding Laplace transform is
w(s1, sz). I¥ the probability generating function of
a bivariate geometric distribution is of the form
= + + + - - -
"(21’ zz) z .z, /€ 1 o 3 ¥ oz ﬁz2 re z, 3,
Where «, 3 and » all are non negative constants. Then the
Laplace transform w(st, 52) is given by
w(s‘, sz) = “1“2/{ (p1 + 51)(pz + sz) - p 5‘52},
= = + +
where M, k‘ltl + a+ y), “z kz/(l £ ¥Y)

and p={ ol + 0y +oy+p+ 3l +a+ )1 + 3+ ) 3.

Proof ¢ The probability generating function of a bivariate
geometric distribution is of the form

‘n(zi, zz) = zizz/{ 1 +a+3+ )y -~ az - ﬁzz -rz z, 2.
let T = (Tn’ Tz) be exponentially distributed random variable
with scale parameters A‘ and Rz respectively having the Laplace

transform w(si, sz), which is defined as

w(s‘, 52) = E [exp(—siT1 - ssz)] (2.2.3)
[+ (N o
= f j‘exp(—si—s{;)dmt,t).
o ° [ S § z 2 1 .2

Using bivariate geometric p.g.f. we write
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-4

w(s1, sz) = u‘wz {1 +a+p3+y —od -~ ﬁﬂz - yNiuz Yy o,

4
where W =IA/(n + s )] and W o= [A/(n + s )],
1 b 1 1 2 2 2 2
That is
s , 8 ) = AA LA +s )0 + s)1°*
1 2 1 2 1 ;3 2 2
{(1 +a+ 3+ y) - [kiltxi + 51)3

-1
~= B/ + s )] -y IR/ + s )IX /(K + s )]}
2 2 2 1 1 1 2 2 2

= A A {(1 + o+ F I + s M A + s )
12 1 1 2 2
-1
- o kitkz + 52) - ﬁmz(Ai + 51) - ¥ Rikz}
= kikz {%1K2 + (1 + 3 + y)K152
-1
+ + + + + + +
(1 o y)sikz {1 o 3 7)5152}
We multiply and divide by (1 + 3 + »)(1 + a + ») so that

= : _ -1
wis s 8,0 = K H, [ HH, T HS, Y s+ (1 p)sisz

where H, = hil(l + a+ ¥, H, = Kz/(I + 3+ )

and p={ o+ 8y +oy +y+y MU +a+ )1 +03+ )3 ",
Finally,

w(sl, sz) = #1“2/((”1 + 5‘)(;12 + sz) - g 5152). (2.2.6)

The Equation—-{(2.2.6) is called the Laplace transform of
bivariate exponential distribution due to Downton.

In order to have a proper generalisation of the property of
univariate exponential distribution given in Theorem{(2.2.1). We
need bivariate geometric distribution whose marginals are
geometric. Then we have to identify a bivariate p.g.¥f. n

such that, n(z‘, 1) and (1, zz) correspond to marginal p.g.f.'s
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and are of the form considered in the above Theorem(2.2.2). That

is
n(zx, 1) = (1 - Pi)zlitl - P‘z‘), (2.2.7)

and {1, z) = (1 - Pz /(1 - Pz). (2.2.8)

One such bivariate p.g.¥f.
n(zi, zz) = 2122/{ 1 +a+ 3+ )y - azl~ ﬂzz— yzizz}, (2.2.9)

Where o, 3 and » all are non negative constants.

In this case [z, 1) and n‘t, z)) are of the form
1 2
as given in (2.2.7) and (2.2.8) respectively with

Piz (o + p)/(1 + o + ) and Pz= {ax + 3)/¢1 + o+ 3). I¥

(Ni, Nz)Tis a vector having the p.g.f. given in Equation (2.2.9)
then N‘ and N2 have geometric distribution with correlation

coefficient p.

Let ( Xn } be a sequence of i.i.d. random variables bhaving

an exponential distribution with parameter H and ( Yh } be a

sequence of i.i.d. random variables having an exponential

distribution with parameter H,-

a2l n
Define T; =T X, T2 = Y . Then the joint distribution
1] i=0 * ™ izo A 8
T

of the vector (T =T , T =7 )" has a distribution with
1 IN 2 2N
exponential marginals and is derived in the following section.
2.3 The Property of the DBVED

We derive the distribution corresponding to the Laplace
transform obtained in (2.2;6). Hence we state the following

Lemma.
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Lemma(2.3.1). I+f ﬁbfbe the Laplace transform corresponding to ff;
That is

~ \ad '
Fj(s) = E lexp(-st)] = [ exp(- st) dF(t),

then o

w0
?{g - a) = j exp(— st) explat) dF(t).
0o

So that the inverse of the Laplace transform of g, Where
g(s) = f{s — a) is given by Ff(t)explat).

Theorem (2.3.1). The joint density function corresponding

to the Laplace transform w(sl, sz) obtained in (2.2.6) is given

by

f(ti, tz) = u1“zl‘l - p) exp{ - (“1t1 + pztz)/(l - p)}

_ -1 12
1244 -p) " Cppptt) "],

with g , g4 > 0 and 0 < < 1. Where 1 is the modified
1 2 P o

Bessel function of first kind of order zero.
Proof : Consider the Laplace transform given in (2.2.6)

= + ) + - ¢
w(st, sz) “1“2/((“1 s, (pz 52) 23 5152)

+ + + -
“1“2/(“2(“1 51) H=, =52 P 5152)

= “1“21{‘“1 + 51)p2+ L u1+ (1 - p)s1 ]sz}.
That is

w(si, Sz) utyz/El {(“{ + 51)p2/E1 + sz}, (2.3.1)

.

where E1 = B + (1 - p)si. Inverting w(si, 52) with respect

to s, by treating s, as a constant, we get the inverse Laplace

transform with respect'to sz as follows

-1
= — -+
L (sz) “1“2151 exp{ [(p1 s‘)pzlEl ]tz}

p p, /EL exp{} Bl t }, (2.3.2)
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Where Bl

#

(p1 + sl)pzlEl. Now Bl can be simplified as
B1 ={é2/(1 - p)}{l - [ppllf(l - p)Qﬂ/(l - p) + 59 }]}
= pzl(l - p) - [p,uiyzlt(l - p)‘)‘Dl 3},
Where D1 = piltl - p)y + s, - So that L—‘(sz) is to be writen as

—1 - _ - -
L8 ) = p u /EL axp{( M/l — p) + [pu p, /01 p)D1 }])tz}

{P:”z/{(l - 2) Dl}} exp{ - yztz/(l - p)}
exp{ [{py1uztz /(1 -~ p?’i ]/Dl}.

= _ N _ -1
= ”1“2/(1 e) exp{ yztzl(l p)} { D1 exp(c&tzlbl) }
where a = p”t“z/(l - pd%/'By using Lemma—(2.3.1), we write

exp{:p&t‘/(l - p)} f(tx’ tzl = p‘pzltl - p£) exp{% p2t2/(1 - p)}

L"‘{ D1 ! exp( o t_/D1 )}.
1 2
That is
f{ti, tz) = p‘pz/(l - p) exp{ — (;.e’.‘t1 + pztz)/(i - p) }
-1 -1

L { D1 expl oatz/DI )}.
Using Erdelyi et al.(1954, p.245, Equation 33) we have
4‘f(t1, tz) = y1u2/(1 - p) exp{} (plt1 + pztz)/(l - p)}

I[2¢1 - p Y op pt £ YT,

172714 2

(2.3.4)
The Equation (2.3.4) gives the density of the bivariate
vector corresponding to Downton’'s model. In this way

the marginals are exponential and hence we call the distribution

a bivariate exponential distribution .
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In the faollowing section we will study some properties of
Dawnton’'s model and compare with Marshall-0lkin model.
2.4 Properties of DBVED

In this section some important properties of DBVED are
given. That is, we obtain correlation coefficient, ku‘order

conditional moment about zero of T: given Tz= tz’ conditional
expectation of T1 given T2 = t2 for DBVED and the same for

M-0 BVED .

Theorem(2.4.1). If (Tz’ Tz)T is a random vector having the

DBVED. Then we have

-4

_ - 1 - 2
E( Tx) = H, s E( Tz) pz sy Vart Ti) 7]

1 L]

-2

Var( Tt) = H,

- and Corr( T:’ Tz) = p
Proof : Consider the Laplace transform given in Equation (2.2.6)
= + + -
w(si, 52) “1“2,((“1 51)(p2 sz) fad 5152)

We know that

2, _ a2 r
E( Ti) = (—1) aw(st, sz)la'.:';,L H E( Tt) = 8 w(sz, 52)/&3'«5,t 3
= A2
and E(T1 Tz) 8 w(si, sz)laslosz
are evaluated at s = (4] 3 i = 4, 2
. - _ 2
Since dw(si, sz)/asi = ‘ﬂ“z(“z + (1 p)sz)lv ’ (2.4.1)
. _ 2
au(si, 52)1652 = ;ayz(ul + (1 p)si)/V . (2.4.2)
2 _ 2,,3
az‘,:,«tsi, s )/8st =2 pp (o (1~ p)s )PV, (2.4.3)
2 2,9
y = + - .4.8)
02,;:(51, s 0/8s) = 2 pplp + (1 - prs )PP, (2.4
and
= TRTE ' Iy} _— _~ s - ~
622;:(51, 52)/051052 2,_11,.,2,;11,_:2 + ,_‘1(1 ,.,)52 $ ;‘2(1 r_,)51
(1 - p? 5152}/\1‘ (2.4.5)
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Where V = (;_:1 + 51)(;_12 + 52) - psS,. On simplification we

i

. _ = _ -2 .
write E( Ti) = Hos Vart Tt) H s i 15 2

- ~-1 =1
and E(T1 Tz) = (1 + p) H OB, -
Thus we get

-1 -4
1 M2

it

Cov(Ti, Tz) = and Corr( Ti, Tz) fa (2.4.6)

a

Theorem(2.4.2). Let w(si, 52) be Laplace transform given

in Equation (2.2.6). Then

 J Pk
ETLT |t.3 =°f E(T |t,) exp(- stydt ,

Where E‘[T:ltzl is the kLh order conditional moment about zero o¥f
T given T_ = t . That is
3 2 2

k _k k - k -
(-1)° 8% wis , s )/8s = E [T, expt— s T )]

s = o
1
_ & _x
= n, E {Til( B+ sz)}

S _ . _ k,, k Kkt
and  ELT |t3 = (k !) [t(1-p) + pp ] /lu  t, 2.

Proof : In order to obtain E‘[Trgtzl, we have to consider

the Laplace transform given in (2.2.6). By differentiating

Equation (2.2.3) with respect to s, on both sides we get

: -2
- - + -
{ HH, (;_:2*- {1 £) 52)}{;1‘ (,uzé- sz) + s H, {1 e) sisz}

=—E{T exp(—~ s T -—sT)}.
1 1 1 2 2

Putting s, = O we get

-2
{-—- “1“2(”‘::* (1 - ,‘:»)52)}{;.1"(;.(2 + Sz)}

= - E{ T exp{— s T )}. (2.4.7)
1 2 2
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Consider right hand side of (2.4.7)
E{ Tt expl(— squ)}

r
EL E [T;_exp(— ssz)‘T2 = t ] ]

R.H.S.

i

2

o0 s 43
= g‘ £ texpl - s t ) £(t , t) dt dt

ft

o ©
J {expt- s t ) £t [t ft | t) dt‘} dt
2 2 2 1 1 2 1 2
O o L
w0

J U FCE) ECT [t 1 exp(~ s t ) dt .

o 2 1t 2 ’ 2 2 2

]

Hence Equation (2.4.7) becomes

~2 //
+ —
{&1“2(#2 (1 p)sz)}{yiﬁ(pz-&- sz)}
w
= [ U £t ) E(T |t ) 1 exp(- s t ) dt . (2.4.8)
. ° 2 1 2 z 2 2
Therefore
0w .
f U FCt ) E(T |t ) 1 exp(- s_t ) dt
o 2 1 2 z 2 4

w
=y, ! exp(— [y, + s 1t) E(Tlltz) dt_.

Thus

- X
E{:T1 expl sszl} = u, E (Tli(pz + Sz))' (2.4.9)

=\
(./“2/“'91>3
Hence Equation (2.4.7) becomes EEW \//aii
' | S
= - L N
ECT Jtu + 5.3 = {(u +5 (1 ~p)+ppk {p&)a +5) //
(2.4.10)

Now differentiating Equation (2.4.7) with respect to s, and
putting 5= 0 we get

Z
{éuipz [yz + (1 p)sz] }
-3
+ -
{“1(“2 + 52) S H, + (1 [=) 5‘52}
= - E{ T° exp(-sT-sT {} (2.4.11)
1 L N § 2 2
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That is

Hy (21 [, + 50U = p) + p 1% [ + 50717

L

2 2
— — -+
{—1) H, E( |1' (pz 52})

Therefore

X, 2 2 2 8, %
(T + 3) =(2! + - +
E 1!{;_:2 s, ) =2 (uz 52)(1 2+ p ,uz} [;_11(;_:2 52) 1
(2.4.12)
In general if we differentiate the Laplace transform given in
Equation (2.2.6) with respect to s, 3 k times we get

-1k akzp(sl, sz)/os': = (-1)%K

s=0
1

k
E[T‘ expl ssz)}

By comparing Equations (2.4.10) and (2.4.12) we write

- (k1 - k
E (Txl(,uz + 52}) = (k') [(pz + 52)(1 p)y + p pz]

k ke | —2
+ -
[ v, tp, +s) ]

(2.4.13)

By substituting H, + s2 = t2 in Equation (2.4.13) it reduces to

x _ . _ k k kv, -1

E (Tiltz) = (k!) [tz(l o) + p “z] [y1 tz 1 - (2.4.14)
Hence the result follows. o,

Now we obtain conditional mean and conditional variance of

T1 given T2 = t2 in the following Theorem.
Theorem(2. 4.3). I¥ w(si, Sz) is the Laplace transfaorm given in

(2.2.6) then the conditional expectation and conditional variance
of T1 given T2 = tz is given by

_ _ ~1 -1
E(Tzltz) = (1 p) M, teou, tz H,

~1 ~1 -1
and Var‘(Tzltz) (1 p? H, {(1 o) oo 2 p H, ‘!:2 H, }

respectively,

24



Proof : Consider Equation (2.4.8) which can be written as

) L,
i + _
{“z;ﬁ[puz Q@ p)(“z+sz)]}[“1“z+ "11521 //
o :
= _[‘ h(t) exp(- s _t ) dt,
0 £ £

Where hit) = f(t ) E( T |t )} . Hence
2 142

-1 —1 -1 —1, 2
(1 = plp " [ptp + s) }’_pul ot +s) 7] }

o0
=_['h<t) exp(— s t ) dt
o 2 2 2
That is ‘
2
-1 ¥ -1 %
(1 - p)p, u+{pu1 K

© »*
} = j‘ h(t) @ dt ,
o
Where p‘ =fuluy +s )~‘] and @* = exp(—- s t ) .
2 T2 2 1 2 2
By inverting with respect to s, we write
-1 —~4, 2
= - - + - 3
h(t) (1 ) H, [pz exp{ (pztz)}] P H, {pz expl (pztz)},

| -1 2
= (1 - ) H,&oH, 1 + p HW H, 1.

Where 21 = exp{- (pztz)l

That is
_ _ -1 -1
H, 21 E(Tiltz) = {(1 pY p .~ *p H, “ztz} H, 21
Therefore
N -1 ~4
E(Tiltz) = {(1 o) Ho *pp pztz} (2.4.15)

Now differenting Equation (2.4.1) with respect to s, on both

sides yields

2
{Zuiyztuz + (1 - pl)s )] }

-3
+ + + -
{“1 { 'uz 52) 51‘“: {1 ~) 5152} .-
1

0
= - E{ T2 exp(- sT-sTHl. (2.4.16)
1 11 22
Compairing with right hand side of (2.4.8) we have
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o ‘
2
{c L) BT |t) 1 expl— s 1 ) dt,

2
-z X |
=2p1p{(1-’p)+pp}.

That is

3
{2(1 - 2 ”12 “t} . {?p? “12 “t }

- ‘2 0 »
+ {4p(1 - P pp } = [ htt) Q dt..
[+ ]

By inverting with respect to s, we get
2 -~z 2 —2 a 2
{(t) = - +
hit {2(1 e) H oM, 71} {e H K, Zl‘tz}

2

+ {4p (1 - p) ,u: ;.1: 71 t).

That is
2
H, 1 E(Tgltz)
_ -2 _ 2 2 2z .2 _
= pzZl H, {?(1 et o+ g K, t2 + 45 (1 .p) H, tz}.

That is

2 -2 2 2 2 .2
E(Tiltz) H, {é(l p)® + o H, tz + 45 (1 J=3 pztz}

(2.4.17)

Therefore after simplification we get an expression for the

conditional variance of T1 given T2 = t2 as

_ _ -1 _ ~1 -1
var(Ts’tz} = (1 o) H, {(l o) Hoo* 2 p 1, t2 H, }

(2.4.18)

a]

In order to study some properties of M-0 BVED. We obtain
first Laplace transform for M-0 model and we derive the

conditional expectation for the same in following two Theorems.

Theorem(2.4.4). I¥ (T, Tz)T is a random vector having the

M-0 BVED with parameters xg, Kz and Ka respectively. Then the
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Laplace transform is given by
wu(si, Sz’ = { “1“21((“1 + 51"“2 + szi} {1 + p(,u1 + uz)
s s ;f’,ﬁ(p+p+(1—p)(s + s 3
172 F1 T2 1 2 1 2
Where M= kl + ks’ H= xz + ks and p = Ks/k.

Proof : Let (Tx' TZ)T is a random vector having the

M-0 BVED with parameters h‘, kz and hs respectively having

survival function E(tg’ tz)' By Equation (2.2.5) we write

wu(si, Sz) Ef exp(- s;n_— ssz)}

an
-—=j'j‘ exp(-st - s t ) dF (t, t)), (2.4.19)
1 1 2 2 M 41 2
Lo I o
Where .
exp {-Ax ¢+ - x t - Xt 3 s if t > t
- E S § 2 2 3 1 1 2
F(t, t) =
1 2
exp { -At — Xt -2 t> 3 if t < t ..
i 41 2 2 3 2 2

Note that Young(1917) has given the result on integration by
parts in two or more dimensions. Here we state that result as
fol lows

1¥ G(O, tz) =0 = B(ti, 0) and 6 is of bounded variation

i

on finite intervals then

w0 o _ 00 o
f fﬁ(ti, t)) dF(e, t) = f f Fee, t) dB(t , t)) .
o ) ) 1)
This change is of particular use, when G(t1’ tz) is
absolutely continuous and E(t‘, tz) is easy to compute.

To satisfy the conditions for G, we replace exp(-— sit1 - sztz) of

the Laplace transform by
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G(ti, tz) = {1 - exp(- sltg)} [1 - exp(- sztz) .

By using result due to Young(1917) in Egquation (2.4.19) the
Laplace transform of M-0 BVED becomes
wu(51, 52) = ¢(51, 52) - $lew , 52) - ¢(51"” ) + 1, (2.4.20)

Where ¢(Sz’ 52), Pl , Sz) and ¢(51’ © ) are given by

w0

¢(51, s,) = j; _L{l - exp(—szti)] [1 ~- exp(— sztz)} dF(t‘, t2>

o0 o
=[ f Ft, t) s s expl-st - s t)dt dt
1 2 1 2 1 41 2 2 1 2
s o]
oD
= s szfexp(— s t) dt
(s
m—
cht,t)'exp(—stxdt
5 1 2 z 2 2

o ®©
=s s, { £ {‘i exp(— aztz) dtz } exp(- a t ) dt
1

x tz 1 1
+ J‘ {_f exp(~ a t ) dt, exp(- a t ) dt*J,

S J

Where a = x + A + s , a =i + 8, a =x +s5 , and
2 3 2 2 1 1 ] 2 2

a =X +Xx_+s . That is
4+ 1 3 1

0
= -1 —
P, 5) =5 s {.an1 {exp( bt) dt

) o
-1 -1
+ a £ exp(— b t) dt - a { exp(- b t ) dt‘},

Where b =X +s5 +s , b =x +x +s8 and A =x + X + x .
1 1 2 2 1 3 1 1 2 9

Hence

#ls, s) =85 s, { a b:’ + a;‘ [ a;‘— b:i ] }



Thus

_ -4 o1 =%
¢(51, sz) =s s, a b1 a, [ b‘ + xa ]- (2.4.21)
Now
@lw, 8 ) = lim [Ps , s )] = s_/ a
2 1 2 2 i,
5 ——>00
1
¢(51, ) = lim [¢451, sz)] =s, / aa,
s, T
By substituting ¢(51, Sz)’ ¢, sz) and ¢(51, ® in

Equation (2.4.20) we get

%és‘, s)=a'p?

-1
a [b(ss —as-asg +aa )+irss ]
2 1 1 3 1 12 3 2 1 1 9 3 1 2

1

On simplification it reduces to

y(s ,8)=a'bta[C(r +2)(x +Xx)b +2x_ s s_ ]
M 1 2 1 1 3 1 3 2 a3 1 g 1 2

o
= + + +
[“1 H, b1 s, S, AS] [(;& 51)(;.:2 52) b1]

(2.4.22)

Where H, = h‘ + Aa and H, = hz + Aa.

The equation (2.4.22) can be written as

- -4 -1 —1~4
wutsi, 52) B H, [‘F&* 51)(;.12 + Sz) ] {l + o 5.5, A H, H, bi}

(2.4.23)

Consider

b/x = (0 + XA )¢ A + a0t
3 3 b ]

-1
(s1 +52) A +1

-1

+ 113
1 + (1 + p)(s1 sz)(p1 + ”2)

=[u, +p, + 1+ p)s +5)]tp + pz)"‘.

By substituting in Equation (2.4.23) we get

w“(si, sz) = { ”1“2/[(#1 + sﬁ)(,u2 +‘sz)]}{1 + p (p1 + uz) s,

w1 =1 -
S, M H, (p1 + pz+ (1 p)(s‘ + Sz’j}

(2.4.24)

Hence the result follows. fa]



In the following, using the Laplace transform of M-0 BVED as
given in Equation (2.4. ), we can easily obtain conditional
expectation of Tl given T2 = tz'

Theorem(2.4.5). If (Tg’ Tz)T is a random vector having the
M~-0 BVED with Laplace transform given in Equation (2.4.24).
Then the conditional expectation of T1 given T2 = t2 is given by
= _ ~1
E(T1|t2) = {1 + p) [p1 ) sz
~ 2 - —1
{p (a, + p )" (up (1 + p) Lp = ppd)
- - + .

exp(— [ ( H,~ P pz)/( | p)]tzi}

Proof : In order to obtain conditional expectation, we

differentiate the Laplace transform given in Equation (2.4.24)

with respect to s, and letting s, = 0. Thus
-1
aw“(si, 52)/651= { “1”2,‘“2 + szl } { 6(g1+ s‘) /as;}
-1
+ {F‘#‘+ pz)szl(p2+ sz)} 0/651 Sg[(p1+ st){K‘ + (1 + p)I] }

evaluated at s.= 03 Where K‘ =p ot H, + (1 + p) s,-

Therefore
By, ls,. 8,)/8s = {pt;.lzl(,uz + 52)} {-— (u, + 51)'2}
+ {k(p’ + pzfszitpz + 52)} H:’
Where H = { [ K+ (uil +p) +K) s + s: (1 + p)]
= s [p (1 +p) +K+ 201+ p) 51]}

-2
2
{?1K1+{p1(1 4+ p) + Kl}s1 + s, (1 + p)} -

(2.4.25)



Putting s = O then Equation (2.4.25) we write

= — 4, % —-1 .
aw“(si, sz)lasi = H, {le(yz + 52)} { PH,H S,

s = 0
.
. _1
+ - -
{ (u 52)(p2 + 52) ) }, (2.4.26)
Where yu' = (u1 + pz)/(l + p£). Now consider
52/8;1'-0- s Mu, + 52)}= {A/(u"+ s 0} + {B/tu, + )}, (2.4.27)

Where A and B are arbitrary constants. Thus

2z

s, = A (u, +5) +B (u+s) (2.4.28)

Substituting s, = "M, and s, = -4’ in (2.4.28) respectively we get

- - . — ’ [ - -+ P
A o /(p2 u) yz(l é)/‘“x puz)
and

Y | Y} = ) + s - -
B pzl(p “z) (#1 ;..z)l(p1 ppz)

By substituting the values of A and B in Equation (2.4.27) and

using this expression in Equation (2.4.26) vyields

awu(sl, sz)las1 = - pz(l + p)/{(p1 - ppz)( H, * 52)}
2
3 —_
+ {p(u;+ yz) /(“1(1 p)(p£ ppz)]}
-1
- + + + .
{(y1 ppz)/(l p) (uz sz)}

Using the form of Equation (2.4.3) the above expression can
written as

2 o]
-j‘cut)E(T [t.)) 3 exp(—- s 1 ) dt
o 2 1 4 z 2 2

= - yz(l + p)/{(;u1 - ppz)( H, + 52)}
2
¥) s — 4
el g )/ (1 o)l = pp )3}
-1
- + + + |
{(p1 ppz)ltl e) (pz szh

By inverting with respect to s, we write
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£OE) E(T Jt) = (1 + plexpl— po M/ u = pu,)

= fptut p 0 (1 + el - pp )1}

exp{-[(p‘ - ppz)/(l + p) + pz]tz}.
Therefore

E(T1'tz) = (1 + p)/(p1 - ppz)
2
.{p(y{+ pz) /[gi(l + p)(p1 ppz)]}

exp{-[(,u1 - ppz)/(l + ) ]tz}. (2.4.29)
The Equation (2.4.29) gives the required expression for

conditional expectation of T‘ given Tz = t2 for M-0 BVED wmodel.

In the following we will discuss about the Hawkes model.
2.5. DERIVATION OF HAWKES BVED.

We have discussed the probability generating function of
bivariate geometric distribution in Section 2.2. Using the form
of probability geherating function as given in Equation (2.2.9)
containing five parameters, Downton used that form of p.g.f.which
reduced into distribution which has only three parameters.

Hawkes used following idea for consruction of BVED.

Let us define two events &‘ and &z with joint probabilities

given by
A 8
1 S
A P P P
2 14 o1 2 (2.5.1)
a P P Q
2 10 00 2
P Q
1 1 3
where P + 0 =P +08 = 1.
1 1 2 2
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There are number of independent trials denoted by T
3
{ { = 1,52. ) which are completed up to the first occurence of the

event & and A .
4 2

In this Section we derive the bivariate exponential
distribution which is due to Hawkes(1972). First step is to
aobtain Laplace transform ¢H(s‘, sz). As we discussed in

Equation (2.5.1) the p.q.f. is given by

ntz,. z) =zz {P +P Pz (1 -012)?t
4 2 4 2 11 10 2 2 2 2

+P Pz (1 -Qz)*s+pP "(z s Z )}. (2.5.2)
0f £ 1 11 o0 1 2
That is
-4 L
n(zi, zz)[l Poo] = zlzz{(l szz) (1 Qiz‘) }
*® {[P (1 - Q272 )1 -Q@z)] + [P P =z
114 2 2 11 10 2 2
(1 - @ 23] +[(1 —-QZ)IXP P2 ]}.
1 1 2 2 ot 1 1
That is

Mz,, z) =z zf1 -P 31 a-@z)"a-az)*
1 2 1 2 o0 2 2 i 1

{Pii B zicpi.tui - POi Pl) - zchssuz B PiOPZ)

- zz (P QP +PPD-—PQG)}. (2.5.3)
12 10 1 2 1 01 2 11 1 2
s ]
In the following we obtain the Laplace transform for Hawkes
BVED.

Theorem(2.5.1) 1§ (Ti, TZ)T is a random vector with p.g.f. given

by the Equation (2.5.3). Then the Laplace transform for Hawkes

BVED is given by
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vxﬂ(sl, 52) = {”1“2/““1 + 51)(“2 + 52)}}

+ - - - ( +
{1 [P~ (1 -P)1-P)] ss (u +Ps)

e
(“2". PZBZ) IM!.MZPIZ)O) }

Where ,u‘__=l'k.,L Pi. s 1 = 1, 2.

Proof : By definition of wﬂ(si, «:-.2) we write
wﬂ(si, sz)= E{ exp{- siT‘ - ssz}}
=n{k/()&.+s),k/()\+s)}
1 1 1 2 2 2

by making use of K= )\i P , i = 1,2 we get

i

Vi ( S,» S, ) = NUMERATOR / DENOMINATOR (2.5.4)

Where

NUMERATOR = {% /(x + s )} {% JOn + 5 ) }
1 1 1 2 2 4

{é -2/ +sXP B —P P)- A/ +s)

‘11 1 1 i 11 1 o1 1 2 2 2

(P Q -P P)Y-Xx/( +5) A/ +5)

14 2 10 2 1 E S 1 2 2 z

(P QP +PP @ - P u(:)}

10 1 2 i 04 2 11 1 2

= Lx{i A[P -P @G+P P -P @ + PP
i 2 i1 114 1 o1 11 11 2 10 2

-P QP -PP O + P QG]
10 1 2 . 1 04 2 14 1 2

+xs(P -P @ +P P)
i 2 11 11 1 01 1

+ A s (P —PQ+PP+5$P)},
2 1 11 11 2 10 2 12 1
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£y -2 —2

- * :

where L1 l).‘lk.()“. + 5‘) (,,,“l +w3‘)/ j»,\ s
Hence

NUMERATOR = L1 { )gi)\.z[li'ulﬂz {1 -~ 01) + Pzpz_ (_Po¢ + Pxon

+hs P(P +P Y+As P (P +P Y+s s P |
1 2 1 21 o1 2 1 2 i1 10 1 2 11

J

l

- + + + )
L1 {;.: M1 TP s P Y sR Ssszpu}

it

+ + +
L1 { HeHa “152!:2 H 251P1 %52 Pin

- P - P + P
Pt 2 5152 'utpz o0 5152 11}

= + + -
L1 {[ (;_:1 5‘P1) (;_:2 stz) “1“2'300 ]

+ssP —-PP g5 }
172 11 12 "1 2
Multiplying and dividing by P1P2 we get

== f 13 41 -1
NUMERATOR = § o ;o [(p + s M+ s )]

{

-1
[(k1+ 51)0\24- 52) ] } {[ (u1+ siPi)

+ - - .5.
(u, + Ps) - ppP ] +ssP —PP 5152} (2.5.5)

And
DENDMINATDR={[1~QA /(O + s )] [1-QGx /7Z7(W + s )]
; 11 1 1 2 2 2 2
f(1 - P ),\/(,\+s)2ﬂ‘/()‘+s)}}
o0 1 1 1 2 2 2
-2

= (AP +s5 )XP +85 ) {(+s )Mx +s5 )]
11 1 2z 2 2 1 1 2 2

x{)\.?x + 55X +A 85 + 885 -P KR}
1 2 2 s 2 1 12 o0 1 2
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= 1 TN + -2
{P1P2 [lu v s du,e 5,1 [ (u;“\-v..,Pxix_” He, stz) ] }
x { (y1+ slPi) (;Jz + stz) - ,ulszoo },

Where “i =Xx P ,i=1,2 , that is Fﬁlpi =N S, i=1, 2

1

Thus
DENOMINATOR = (g4 + s ) (u + s ){(p +sPlyg +P s )+ s )
1 Y 2 2 1 14 z 2 2z 1 1
-1
. \ + _
sz+ 52)} {(,_:1*' siP‘) (pz stz) ;_fiszoo}
(2.5.6)

By substituting (2.5.35) and (2.5.6) in (2.5.4) we write

= + + + —
vls,s 8,0 {pt;_:z/{(p‘ s My, sz)}} {1 ss, [P - PP.]

-1
([p1 + P1 51] [pz+ stz] Lﬁ”zpoo b} .

U

i s 3 I -+ -+ —— a——
wa(si, sz) {;tgzl((pz + 51)(;_:2 52)} {l [PO0 (1 Pz)

—1
-— <+ ——
(1 Pz)] 5152((“1 P‘si)(uz + stz) Lﬁykpoo) }
(2.5.7)

Hence the result follows.
o]

In the next section we will study regression property for
Hawkes BVED.
2.6 Regression property of Hawkes model

In previous two Sections we have studied regression property
for DBVED and M-0 BVED. In this Section we study the regression
property of Hawkes BVED. So we prove the following Theorem.

Theorem(2.6.1) I¥f (Tx’ TZ)T be a random vector having Hawkes

BVED with Laplace transform given in (2.5.7) and E‘[T1|5] be
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the Laplace transform with respect to t:2 of the conditional
expectation E[T’.‘tzj' Then

e*rr |s3 = [p@ -P 3 {Pus"»w -8 Q)
1 1 2 o0 1 2 00 i 2

-1
(1 =P ) [P, (u [Q ~P 1/P +s)] }

% . | _
Where E [Ti‘ s) = H, 8 zpﬂ(sl, s ,uz)lasl L,: o
1

Proof : We substitute s, =S~ 4 in the Laplace transforms

given in (2.5.7).

By differentiating (2.5.7) with respect to z-'.1 on both sides

and it is evaluated at s, = o,
l -4 -1
P E-— S 3 ¢ & —_ — N
a z,uﬂ(si, s ,Jz)lési }§= o B S [(Poo 0102)(5 ;_:2);_.2]
1
-1
+ —_ —
[us (u+ P (s = p)) = pP Il
-1
- i ywils , 5 —u )éds
2 H 1 2 t le=o0

1

o et e
=p s +p B op

-1 -1 -1
R P s [62 + s1} G1{u P (B2 + s)} ,

Where G1 =P - QQ_ and 62 = 4 (@~ P_) P,
o0 1 2 2 2 [alal 2

That is

—1
,uz 8 wﬂ(si, =3 uz)la 5‘

s = 0
1

- §

— -4 et S | -1 -1 _ 1
=H,s Y 61 H, Pz {s G2 {Gz (G2 + s)} }

-1
— ‘ 3
61 | ,JiPz (62 s )]
-1
= P102 [,uitﬂz Poo) s])
-1
G1 (1 Po’ [(0z Poo) ;_41(62 + s )]
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On simplification we get

EYT |s) = [p @, - P )]”‘{PQs“‘—(P - aaQ)
4 i 2 jatsl i 2 fade] i 2

-1
(1 POO} [;% [Qz Poo]/Pz + 5 ] }
(2.6.1)
Hence the result follows. o

In order to obtain conditional expectation of Tn given
Tz = t2 for Hawkes BVED. We prove the following Theorem.
Theorem(2.6.2) If the Laplace transform given in (2.5.7). Then

the conditional expectation of T1 given T2 = t2 is given by

—— w— -l — ——-—
E[T |t] = [pt@, - P )] {P‘Qz (- 08)

s
(1 ~P_ P, }exp{-— (u, L@, - P_ /P ) tz}

-1 —1 -1
+ - - P P - ) Y
= p {1 Ci F’1 [1 (1 ) 2 expd \zpz tz,]},

Where (C1 = is the c¢ross ratio in the

P P~ P P
00 41 01 10
probability ratio given in (2.5.1).

Proof : Differentiating the Laplace transform given in

Equation (2.5.7) with respect to 5, we get

awutst, 52)/051

- Mt | -1 -1
= pz,_zl (pz + 52) + ,ui,uz G1 52(;_:24- 52)

)_2

+ ] — $ _— ] & I3
{(,u1 F'if_-si)(,.f2 + stz) p1p2P°° 51 {P,.(,_,'2 stz)]}{(;‘x + '.-31

-1
+ -
[(,u1 sz1)(“z + stz) Lﬁpépoo} }

5 = 0
i

Where Gl = P - Qa.
oo 1 2

38



- ~ —y -y -4 —
= - ( + ) + + + )
Mo s, pzﬁl H, Pz {?z(“z 52) (G2 s, },

_ (2.6.2)
Where G2 = (1 - P_ ) P *. Consider
o0 2
-1 e gt § e 3
s (u +s) B2 +s) =A(y +s) ' +B (G2 +s) (2.6.3)
2 2 2 2 2 2 2
That is s = A (G2 + s) * + B (u+ s) * (2.6.4)
2 2 2 F 4
By substituting s, = - G2 and S5 T M, in Equation (2.6.4)
respectively we get
A=-P /(@ -P ) and B = (1 -p /@ -P_ ).
1 o0 [ols] 1 00

Now substitute values of A and B in Equation (2.46.3) then the

Equation (2.6.2) can be writen as

dwﬂ(sl, 52)1051
5;= o

-

-4 et
- + + + -
H, #1 (uz 52) {l GII(G2 P )}

1

- { G61/(Q@ - P )} G2 (G2 + s )
2 o0 2

~1

]

e s §
po @ - P_ ) {éz P, +s) (P__~QQ)

- -1
x (1 =P )P T [p Q@ P /P 4+ (u + s)] }.
(2.6.5)
Compairing with right hand side of (2.4.8) we write
oy
f L £(t) ECT |t ) 1 exp(— s t ) dt
o 2 1 2 2 2 2
=y g i@ -P )Y MNE Py +s)' - (P -00)
2  § 2 o0 2 8 2l 2 o0 1 2
(1 =P HIYP [pu@ ~P_ )P + (u +5s )]"}. (2.56.86)
[ale] 2 2 2 o0 2 2 2
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By inverting the Equation (2.6.6) with respect to s, we get
ELT | t1=[pt@-Pp )]_I{PG - _-@@)1 ~-pP ) P*
1 2 1 2 oo 1 2 oo 12 oo 2
exp {- (1I8 - P 1/P + ) tz}}. (2.6.7)
Hence the proof. {a ]

Now we simplify again the Equation (2.6.7) as follow

ECT |t 3 = ;f’{[cp +P XP_+P P ']
1 4 1 10 11 10 00 10

g -1
(@-P_0Q (1 -P )P *P" exp{- (xzpmtz)}}

-1 i i
E 2 — —-—
= “1 {1 [ Pﬂ.POOPiO POil [ Pﬂ.POOPiO PO!.]

o -" —
(1 Poo) Pz exp {- (AP t )}}

3 - 3 et §
= {1 +CLP 1~ -P P expi- APt }}.

(2.6.8)
Where Cl =P P - P P . The Equation (2.4.8) gives required

o0 11 01 410

simplified form of conditional expectation of T given T_ = t_.
1 2 2

In the following section we discuss the Hawkes model is a
generalisation of Downton’'s BVED.
2.7 Downton's model is a particular case of Hawkes wmodel

In order to verify that Downton’'s BVED is a particular case
of Hawkes BVED we proceed as follows.

Theorem(2.7.1) I+ P =P =pP=1-Q and as P -— @ in
1 2 on

Equation (2.5.7) then resulting Laplace transform is given by

( )}y = / + ) + - )
yis _,s, H.H, {(,u1 51 (uz sz) Q s 5,

Proof : Let us consider Laplace transform given in

(2.5.7). Letting P£= Pz =P =1 -0Q and as Poow» Q we write,
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2
= + + + - -
wﬂ(sz, 52) {?1p2/((y1 51)(“2 52)} {1 {a (1 P)"]
-1
+ ) -
»s£sz ((p‘ P1s1 (pz-f- stz) ;.:1;_:20) }

= B {é‘pz(l - Q) + p1P5z + sz s, + @ s,S,

St §
- +

s.5, + 2P 5152} P {%1(“2 sz)pzsi + P s‘sz} .
Where B = “:“z/{(“‘+ 51)(p2+ sz)}. Thus
wﬂ(si, sz) = B ((p1 + 51)(;.:2 + 52)}

~1
+ + -
{ (pt 51)(;_12 52) Q 5‘52}
= p‘pzlt(pi + sx"“z + 52) - a 5152}. (2.7.1)

The Equation (2.7.1) is Laplace transform of Downton’'s model.

ST T el T 1
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