
CHAPTER - II
A STUDY OF DOWNTON'S AND HAWKES MODEL

2.1 Introduction
The bivariate exponential distribution is well known in the 

study of reliability and availability of systems. The effect of 
any correlation between variables on the total reliability of a 
system would be of great interest, when the actual form of 
bivariate exponential distribution is not important.

While studying the Downton's bivariate exponential 
distribution (DBVED), it is important to note the construction of 
Marshal1-01kin bivariate exponential distribution (M-0 BVED). It 
is obtained by supposing that failure is caused by three 
independent "Shocks” on a system of two component with arrival 
rates X , Xg and Xg respectively .

The bivariate exponential distribution of Marshall-01kin 
preserve the property of lack of memory that the residual life is 
independent of age. It suffers from a mathematical difficulty 
that, it is a mixture of singular distribution and continuous 
one. Marshal1-0Ikin model would be appropriate for situations 
where pairs of identical observations appear in the observed data. 
It also preserve weakened version of the lack of memory property 
of the univariate exponential distribution. However the
advantages of this property of BVED is not yet established. In 
situations where the failure of one component weakens a second 
component, M-0 model is not appropriate. Freund!1961) has 
proposed model for such situations. However Freund's model does 
not extend any property of the univariate exponential



distribution. Where as Downton's BVED is an extension of
univariate exponential distribution in which the concept of 
failure due to successive damage is generalised. First consider 
a single component which is subjected to shocks that occur 
according to a poisson process with failure rate X. Suppose 
further that the probability that a shock is "fatal" is t-i->, 
where 0< v <1 independent of previous shocks, then the number of 
shocks N till the component fails is geometrically distributed. 
The time to failure T has exponential distribution with parameter 
X = <t - u)fj. A proof of this result is given in Section 2.2.

Downton extended this idea to two component system in
which each component is subjected to the shocks. There are two

of sk&ck>!types say Type-1 and Type-2 arrive with random inter—arrival 
b

times C Xn, n > 1 > and C Yn, n > 1 > having exponential

distribution with means 1/X^ and 1/X2 respectively.

A Type-1 shock causes only failure to Component—1 and 
Type-2 shock causes only failure to Component-2. Let and

respectively be the number of shocks required for the
corresponding component to fail. Suppose that N^) have a

bivariate geometric distribution with joint probability
generating function j-|(z , z )- Also suppose that the two shock

12 Nt
processes are independent of each other. Let T = TX. andi VNa i=1
T - Y. be the failure times of Components 1 and 2 respectively

3

and the joint distribution function of the life times of the two 
components say F(t^, t ) is a bivariate exponential distribution.

Downton considered a particular form of p.g.f. of bivariate
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Tgeometric random vector (N^, N^) and the resulting bivariate

exponential distribution is called as Downton's model. Since 
Downton's model has only three parameters. It may not be fit for 
some data. It is necessary to construct another model for 
general distribution with more parameters.

Hawkes has considered a different bivariate geometric 
distribution. Suppose that P.. be the probability that the

first component is in state i and second component is in state j
with £P. = 1, where t,j e io, li. Note that *0' and *1' standsj ^
for component is in failure state and functioning state
respectively with P + P = P s P + P =P| Q » 1 - Pr 1110 11101.21 1

and Q = 1 - P .2 2

A sequence of shocks occur according to Poisson process with
: be the number of shocks required to cause failure of 

exactly one of the component and
s be the number of shocks required to cause failure to 

the surviving component.
Hawkes bivariate exponential distribution consists five 
parameters which are used in the construction of bivariate 
exponential distribution. By putting P^= P * 1-Q and taking

the limit as P —>Q in Hawkes model then it corresponds tooo
the same number of shacks having geometric distribution. The 
corresponding model is nothing but Downton's model.

In this chapter we discuss the concept of Downton’s<1970) 
BVED and Hawkes(1972) BVED with study of some distributional 
properties. In Lemma(2.2.1) a property of the univariate 
exponential distribution and specifications of Downton's BVED is
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discussed. In Section 2.3 the joint p.d.f. of vector (T , T )T
12

for Down ton's model is obtained. Section 2.4 deals with some 
distibutional properties of DBVED compairing with M-0 BVED. In 
Section 2.5 the Laplace transform of Hawkes BVED is derived. 
Section 2.6 deals with regression property of Hawkes model and 
finally in Section 2.7 it is verified that Downton's model is a 
particular case of Hawkes model under some conditions.
2.2 Specification of Downton's model

In this section we derive the bivariate exponential 
distribution which is due to Downton(1970). As a first step we 
give a property of the univariate exponential distribution which 
later is generalised to bivariate case. The fallowing lemma is 
useful in this context.
LenmaC2.2.1) Let N be a geometric random variable with
parameter v having probability mass funtion

, i/* 1 Cl - i;) 5 n > 1P C N = n 3 = |
r l 0 ; otherwise. <2.2.0)

Let ( X^, k > O } be a sequence of independent random variables

such that Xq = 0, <Xfc, k > 1 ) are i.i.d. having distribution

function F. Define
nS = r X ; n > O .n . ** l

1=0

If N and ( X. > are ind.pend.nt rando. variable, then the Laplace 

transform corresponding to the distribution function of SM is 

given by

Fg<s) * f F(s> <1 - if) >/fl - v F<s>>,
N

where F<s) is the Laplace transform of F.
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Proof : Let < Xfe, k > 1 > be sequence of i.i.d. random variables

having distribution function F. Let F be the Laplace transform 
of F, that is

F(s) = E Cexp(-s X^l 
co

= J exp(- sx) dF(x). (2.2.1)
o

Let N be a geometric random variable with parameter v having 
probability mass funtion defined in (2.2.0).

- EJ n E [**p<~* V1 N ] }v i*»i ■*

- }F(s) > , since X's are i.i.d.

11 may be 
probability

noted that the right side of 
generating function (p.g.f.) of

(2.2.2)

(2.2.2) is the 
N evaluated at

F(s). Since the p.g.f. f|(z) of N is given by

p|(z) = z(l — v)/(l - vz),
We get

F (s)= [ F(s) (1 - v) ]/[ 1 - v F(s) ] . (2.2.3)

Hence the lemma. a

14



n> 1 } isa sequence of i.i.d. randomTheorem*2. 2. i ) If i X ,n

variables having an exponential distribution with parameter ^ and

if N is geometric random variable with parameter t> then the
N

distribution of S = T X, is exponential with parameter /j(l-y).hj . t V = 1

Proof : Since X/s are i.i.d. exponential random variables with

parameter p, the Laplace transform of the distribution function 

of X is given by
FCs) = E Cexp(-s 

co
X. )3

= J expC- sx) dFCx) 
o

CO
— J exp<— sx) fj exp(- /jx) dx 

o
00

= fj J* expt -(/j+s)x > dx 
o

= \-if (fJ + s).
Now by 1emma<2.2.1) we write

FgCs) » p(l - i>)/[ p(l - i>) + s ] (2.2.4)
N

Since the right hand side of (2.2.4) corresponds to the Laplace 

transform of an exponential distribution with parameter 
p(l - y), by uniqueness theorem of Laplace transform; it

follows that the distribution of S^ is exponential with

parameter p(l - v). o

In what fallows is the generalisation of lemma(2.2.1) to two 
variable case.
Theorem* 2.2.2) Let (N . N )T be a vector follows a bivariatei 2
geometric distribution with p.g.f. n<zt» z )- 80
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n<z,i> = <i-p>z/<i-p z )*» i it i i
and n<l» z ) * U - P )z /d - P z).

The interval between the shocks are independent and 
exponentially distributed with scale parameters X^ and X^ for

each component respectively. The Joint distribution of their

life times is Fft^, t^> and corresponding Laplace transform is

^(s^, s^). If the probability generating function of

a bivariate geometric distribution is of the form

f](z , z ) * z z /( 1 + a + /3 + y - az - /?z - yz z >,12 12 1 2 12
Where a, (3 and y are non negative constants. Then the

Laplace transform yds^, s^) is given by

¥><s , s ) = u u /{ (u + s )<u + s )1 2 12 l i *2 2 p s s >. 1 2
where u = X / < 1 + a + y) ,i i X /(I + ft + y) 2

and p = t a/? + f?y + ay + y + y >/t(l + a + yMl + ft + y) >. 
Proof : The probability generating function of a bivariate

geometric distribution is of the form
n(z,z> = zz/Cl-*-a + /?+y-az - ftz -yzz >.
■ * 1 2 1 2 12 12

Let T = (T , T ) be exponentially distributed random variable

with scale parameters X and X^ respectively having the Laplace

transform w(s , s ), which is defined as 12

u/(s , s ) = E Cexp(-s T - s T >3 12 11 22 (2.2.5)
00 CO .

= f f exp(-s t - s t ) dF(t , t ). J J 11 22 12
00 00r s

O O
Using bivariate geometric p.g.f. we write

/>
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y,'(s , s ) = WW C 1 + a + /? + y - aW -ftw - yW W > ,

where 

That is

W = CX /CX + s ) 3 andi ill W = CX /<X + s )3.2 2 2 2

u»Cs , s ) * XX CCX + s )<X + s >312 12 1 12 2
ici + at + ft + y> - o» CX /CX + s >3
^ * * ill

CX /(X + s >3 - y CX /CX + s )3CX /(X + s ) 3^
*22 2 '*ii 22 2j

- X X I
1 2 \Cl + a + /9 + y XX + s XX + s ) 1 * 1 12 2

a X (X + s > - /3X CX + s ) - y X xl
12 2 '21 1 * 1 2J

* X X lx
1 2 \ iX + (1 + ft + y)X s 2 12

+ (1 + a + + <1 + a + ft +

We multiply and divide by Cl + ft + yXl + a + y) so that

V(sif s2) = [ *itp2 + /it«2 + P2st + (1 - P>SlS2 ]"S

where = X^/Cl +■ a + y> , = X2/C1 + ft + y)

and p = < a/3 + /3y + ay + y yZ >C C1 +• a + y> Cl + /3 + y)> 

Finally,

u»Cs , s ) - u IJ /CCu + s Hu + s ) - p s s >. C2.2

The Equation—C2.2.6) is called the Laplace transform 

bivariate exponential distribution due to Downton.
In order to have a proper generalisation of the property 

univariate exponential distribution given in TheoremC2.2.1). 
need bivariate geometric distribution whose marginals 
geometric. Then we have to identify a bivariate p.g.f. 

such that, nczt, 1) and nC 1, z2> correspond to marginal p.g.f

l

i

-i

.6)
of

of
We

are

n
.' s
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and are of the form considered in the above Theorem<2.2.2). That 
is

n<v n = (i - P )Z /(i1 1 - P Z ),1 1 * (2.2.7)

and n(l, z ) ** 2 a (I - P )z /(I - 2 2 - P Z ) .2 2 (2.2.8)
One such bivariate p.g.f.

f](z , z ) = z z /( l+oi + /? + y-<xz--/3z-yzz>, (2.2.9) 12 12 1212

Where a, /3 and y all are non negative constants.
In this case jjCz^, 1) and j|( I, z^) are of the form

as given in (2.2.7) and (2.2.8) respectively with

*= (c* + yi/il + a + y) and P^ — (a + /?)/(! + « + /)). If
T(N^y N^) is a vector having the p.g.f. given in Equation (2.2.9) 

then and have geometric distribution with correlation

coefficient p.
Let C X^ > be a sequence of i.i.d. random variables having 

an exponential distribution with parameter ^ and { > be a

sequence of i.i.d. random variables having an exponential 

distribution with parameter
n n

Define T = r X.. T = r Y,. Then the joint distribution in ** i ’ 2n ** 1
t =o 1 = 0

of the vector ( T - T , T=T )T has a distribution with1 IN 2 2N
exponential marginals and is derived in the following section.
2.3 The Property of the DBVED

We derive the distribution corresponding to the Laplace 
transform obtained in (2.2.6). Hence we state the following
Lemma.



Lemma(2. 3.1 ). If l^be the Laplace transform corresponding to f^r~

That is

then

00
y£(s) = E Cexp(-st)l = J expC- st) dF(t)

00fffs — a) = J* exp( — st> exp(at) df( t).

So that the inverse of the Laplace transform of g, Where
*vg(s) = f(s - a) is given by f(t)exp(at).

Theorem (2.3.1). The joint density function corresponding

to the Laplace transform ^(s^, s^> obtained in (2.2.6) is given
by

f(ti# t2) - p^/d " P> ®*p| " <P4t + p t )/<l - p) i 2 2 }
Io[2 (1 - p )“4 ( 3 .

with u , u > O and 0 < p < 1. Where 1 is the modified^2 O

Bessel function of first kind of order zero.
Proof" : Consider the Laplace transform given in (2.2.6) 

y/(s . s ) = p p /€(p + s )(p + s)~pss>r £ 2 j, 2 ^ i i 2 2 12

= U U /C fj (p + s ) + p s + s s - p s s >* 2 ~2 * 1 1 1 1 2 12 12

p p /€ (p +s)p+Cp+(l- p)s Is >, 12112 1 12
That is

u/(s , s ) = p p /El i(p + s )p /El + s i,* 2 12 l 1 ‘ 2 2J (2.3.1)

where El = p^ + (1 - p)s^. Inverting y»(s4, s^) with respect 
to sz by treating s^ as a constant, we get the inverse Laplace

transform with respect to s^ as follows

L~4(s2) = p^/El exp|- [(p4 + s^/El 3 \}

.{- B1 },= p^p2/El exp< — B1 t2 (2.3.2)
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Now Bl can be simplified asWhere Bl = (p + s )p /El.1 1 2

Bl “|^M2/(1 " p>}{l ~ IPU/III ~ P>Ct*/U - P> + sp >] J

= p2/(l - p) - [pp^pCd - p)^Dl >] ,

Where Di*u/(l-p)+s. So that L-1(s > is to be writen as 
*1^1 2

L"1Cs2> « p^/El exp|(- P2/<1 “ P> * [pp^/Kl - pl*Hoi >]>tj 

* jp^/ftl “ P> Dl}j exp| - p2t2/(l - p)J

[ <PPi

»{- ^2V(1 - *»} {D1"‘

expj ,P t /<1 2 2
p)V ] /Dl J.

" PtP2/(l “ P> expj" Pata/Cl - p) exp (a t /D1 )i 2 }
where ot = pfj /j /(I - p). By using Lemma-(2.3.1), we write1 1 2
eKp{ ~ p>} f<ti , tp = PtPz/< 1 - p> BXpj- P2t2/Cl ~ p){-".V‘i - p’}

L_1|^ Dl-1 exp( c^WDl )J.

That is
f<ti* t2> = ~ p> exp* _ + tJztzi/il ~ p> *

Dl-* exp< ot t /Dl ) 12
}■

Using Erdelyi et al.<1954, p.245f Equation 35) we have
f<ti# t2) - P4P2/< 1 - p> exp£- + M2t2)/<1 ~ p>|

Io[2Cl - p l^Cpp^t^^2 ] .

(2.3.4)

The Equation (2.3.4) gives the density of the bivariate 

vector corresponding to Downton's model. In this way 
the marginals are exponential and hence we call the distribution 

a bivariate exponential distribution .
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In the fallowing section we will study some properties of
Downton's model and compare with Marshal1-01kin model.
2.4 Properties of DBVED

In this section some important properties of DBVED are 
given. That is, we obtain correlation coefficient, klh order 

conditional moment about zero of T given T^= t^, conditional

expectation of T given = t for DBVED and the same for

M-0 BVED .

TheoremC2.4.1 >. If (T^, T^)1” *s a random vector having the 

DBVED. Then we have
E( T ) = u~\ E( T ) » p“4, VarC T ) = p~2,1 1 Z 2 1 1

VarC T ) =* u~2 and CorrC T , T ) * p

Proof : Consider the Laplace transform given in Equation <2.2.4) 
w(s , s ) = u u /CCp + s Mu + s > - p s s >1 2 12 i i 2 2 12

We know that
EC Tt) « C —1) dy/Cs^ 

and ECT T )i 2

are evaluated at s =t
Since du/Cs , s )/ds = 12 1

te(s , s )/ds = 12 2
S , S ) / !?S2 s=

” 1 * 2 1
tfVcs , s >/<?s2 = 12 2

and
s y?Cs , s )/3s tJs 12 12

S

O

2

2

)/ds 5 EC T2) = d2y/Cs , s >/3s2
2 t t 12 t

2d w(s , s )/ds ds 12 12
S i = 1, 2.

p p Cp 12 2 + Cl - p)sz>/V2, C2.4.1)

p p Cp1 2 1 + Cl - p)st>/V2, C2.4.2)

Kill (<î2 + C1 -- p)sz>2/V3, C2.4.3)

p p Cp 12 1 + Cl - p)Si>2/Va, C2.4.4)

2 ̂  {/jfi + p C1 - p)s + p C1 - p> s1 2 1 2 1 2 2 1
Cl - p)2 s s }/V* C2.4.5)12

f
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Where V = + s ) - p s^b^. On simplification we

write E( T. > = p-*, VarC T ) = u~2, i = i, 211 1 i
and E(T T > - < 1 + p> p-ip-1 .12 1 2
Thus we get

Cov(T , T ) = p p^p-1 and Corrt T , T ) ■ p (2.4.6)
a

Theorem(2.4.2). Let yCs^, s^> be Laplace transform given 

in Equation (2.2.6). Then

E*CTilV = / e<tTIV s£dVoo

Where E*CTk|t 3 is the kth order conditional moment about zero of 
11 2

T^ given T^ = t^. That is
(-l)k dk yfiu , s )/dsk 

12 1 s = o 1
= E [f exp(- s T )] 1 1 2 2 J

“ ^ E*[t‘|< s2>]

* v k Ir le+4and E*CTkjt23 = <* !> [^(1-p) + ppj */<p* t* S,

Proof : In order to obtain E CT !t 3, we have to consider1 * 2

the Laplace transform given in (2.2.6). By differentiating
Equation (2.2.5) with respect to s^ on both sides we get

p(p+(l-p)s ) Up (p+s)+sp + <1 - p) ss
2 2 2 A 4 22 12 2 2

-2

exp(- s T — s T ) v.11 2 2 J
Putting s * 0 we get

W “ - '”‘2’H'Vf'2 - VK".'".+ v}
{ ti ®2v} (2.4.7)
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Consider right hand side of (2.4.7)

R.H.S. = e| exp(- SoT )|

- E[E —p‘- st2>it2 - y ]
00 00

* f ft exp( - s t ) f(t , t ) dt dt
J J 1 22 ± 2 12
O O

00^ 00 x
« f •|exp( — s t ) f(t > f t f(t | t ) dt l dt 

J I 22 2 " 1 1 ' 2 if 2O V O /
00

= f C f(t ) E(T Jt ) 3 exp(- st) dt .
J 2 1*2 22 2

Hence Equation (2.4.7) becomes

~ '3>Sz,}{u,(V ■*’}
co

a

f C f(t ) E(T It ) 1 exp(- s t ) dt . J 2 1*2 22 2 (2.4.8)

Therefore
oo
f C f(t ) E(T It ) 1 exp(- s t 1 dt 
J 2 1*2 22 22 2

OO
/j( f exp(- Cp + s 3t ) E(T It ) dt 
• 2 J * 2 2 2 1L ■ 2 2

Thus

+ s >) 
2

(2.4.9)
\

{T* ««p<- .,!*»} - ^ E*<Ti|<^

I>v
Equation (2.4.7) becomes IL \/ ^

E*<TijCp2 + s2» - Uti* + sz)(l - p) + p [pj^2 + VO ^

(2.4.10)

Now differentiating Equation (2.4.7) with respect to s^ and

putting s *= 0 we get

{2pi^a CP2 + <1 ~ P>«23 *}
{ + S2> + S^/U2 + ( 1 - p) S r3s >1 2J 5 = 0

1

exp(- s T - s T )i 1 2 2
}• (2.4.11)
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That is
P2 C2!) f <R, + s2)(l - p) + p ^g2 + s2>3] 1

= <-l)Z U E*< T2I Cu + s >) 
r2 1 I r2 2

Therefore
-t,T2 La, -iE il€#ia + S2}> =C20[<^ + s2><! ~ pi * p UzV * V’3

<2.4.12)
In general if we differentiate the Laplace transform given in
Equation <2.2.6) with respect to k times we get

<-l)k dk«/<s , s )/dsk 
12 1 5=01

<-l)zk E[Tk exp<- s T )] 
1 1 2 2 J

By comparing Equations <2.4.10) and <2.4.12) we write

E*<Tk|{p2 + sz>) « < k! ) [ + * )<1 - p) + p pz] k

r k . . .kti , -i[ ^1 <P2 ®2> ^ *
<2.4.13)

By substituting + s2 = *2 in Equation <2.4.13) it reduces to
E* < Tk 11 ) = <k! ) [t<l -p) +pu]k [pk tk+i] 1. 

1 « 2 L 2 M ^ ^2J 1 2 J <2.4.14)

Hence the result fallows. a
Now we obtain conditional mean and conditional variance of 

T^ given T2 = t2 in the following Theorem.

Theorem<2.4.3). If s^) is the Laplace transform given in

<2.2.6) then the conditional expectation and conditional variance 
of T^ given Tz = t2 is given by

E<T,IV - (1 - p» * p ^ t2 p~l

and Var<TJt2> = (1 - p> p~‘ /< 1 - p) p~‘ + 2 p p2 t2 p~‘j

respectively.
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Proof ; Consider Equation (2.4.8) Mhich can be written as

- //
CD

{'iJ)J»J2 + ~ p>‘k2 + V1} Ip.p, + p,s2]
» f h(t) exp(- s t ) dt J 22 :

Where h(t) - fCt ) E< T It ) . Hence2 1*2

( 1 ~ p)p * [p (p + S > *]*1 *• 2 *2 2

That is

,{P ^ ^2 + S'"12}

00
= f h(t> exp( — st) dt J 22:

Cl - p) p | * J hit) Q4 dtz>

Where p* = fp (p +• s ) *1 and Q* = exp(— s t ) .
2 2 2 1 2 2

By inverting with respect to sz we write

h(t) - (1 - p) p~* [p2 exp(- Cp2t2)>] + p p“*{p2 **P€~

= (1 - p) P2 Z1 + p p^1 p* Zl.

Where Zl = expC- (u t )>
2 2

That is
p2 Zl E(Tjt2> = |<1 ~ P> if1 ♦ P p ‘ptl

i ^2 2/ p Zl 2
Therefore

E(TJV - {«* - p> ^7 ♦ p pIV.} (2.4.15)

Now differenting Equation (2.4.1) with respect to s on both
sides yields
{*•p2[p2 + (1 - p)s2] ■}

{^1^2 + %) + S1^2 + ^ s= 0i
i< TZ exp(- s T — s T )1. 
\ i ^ it 2 2 Jexp(- si

Compairing with right hand side of (2.4.8) we have

(2.4.16)
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COf C f(t ) E(T2|t ) 1 exp(- s i ) dt J 2 1 1 2 22 2O
- z aT2 p* |< i

That is
P> P P

^2C1 - p)2 p^ p*J + {2p2 p"2 p**}

+ |4p(l - p) p42 p* | = Jh(t) Q* dt2.

By inverting with respect to we get

h(t) - <2(1 - p>2 p~2 p 21} + {p2 p"V Z1 t2}
12 12 2

+ <4p <1 - p) p 2 p2 Zi U.12 2
That is

p Zl E(T2It )*2 1*2

- ^zi »?{

That is
E(T2Jt2> = p"2 ^2(1 - p>2 + p2 p2 t2 + 4p (1 - p) p2t

2(1 - p)2 + p2 p2 t2 + 4p (1 - p) p t 2 2j

J
(2.4.17)

Therefore after simplification we get an expression for the 
conditional variance of T given T - t asi 3 2 2

Var(Ti|t2> = (1 - p) p"‘ |(1 - p) p^ + 2 p pz t2 p“‘

(2.4.18)
□

In order to study some properties of M-O BVED. We obtain
first Laplace transform for M—0 model and we derive the
conditional expectation for the same in following two Theorems.
Theorem(2.4.4). If(T,T)T is a random vector having the12
H-O BVED with parameters ^ and X, respectively. Then the
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Laplace transform is given by
s2* = | + s^)(p2 + s2 »}{' + p(pt + p2>

5 S fj I ( p + 
1 2 'i 2 1 + (1 p) (S 1

Where p = X + X , p = X + X and p = X /X.i 1 3 * *2 2 3 ^ 3

TProof : Let (T , T ) is a random vector having the12

Pi—0 BVED with parameters X^, X2 and Xs respectively having

survival function F(tt, t >. By Equation (2.2.5) we write

V5!’ V * Efe*P<“ *Jl " ®2T2>3 

00 00
= f f exp(-5 t - s t ) dF (t , t ), (2.4.19)J J 11 22 M 1 2O O

Where

F (t t ) 2

exp -Xt-Xt - Xt >1 1 2 2 3 1 i if ft
9*

> t2

exp l -xt-xt-x t>1 1 2 2 3 2
i .if ti < t . 

2

Note that Young(1917) has given the result on integration by
parts in two or more dimensions. Here we state that result as
follows

If 6(0, t) = O = G(t , O) and G is of bounded variation * 2 1*
on finite intervals then

00 00 00 00
f f G(t , t ) dF(t , t ) = f f F(t , t ) dG(t , t ) .** ** i 2 l 2 1 2 1 2O O DO

This change is of particular use, when G(t , t2> is

absolutely continuous and t^) is easy to compute.

To satisfy the conditions for G, we replace exp(— - s2t2> of

the Laplace transform by
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6<t , t ) = [ 1 - exp( — s t )] [ i - expC— s t ) ] .12 1 1 1 J L 2 2 J

By using result due to Young<1917) in Equation <2.4.19) the

Laplace transform of M-0 BVED becomes

yy <s , s ) = #<s , s ) - #<oo , s ) - 0<s , t» ) + 1, (2.4.20)
el 12 12 2 1

Where ^(s , s ), $<oo , s) and $<s , co ) are given by 
12 2 1

CO 00
0<S . s ) 1 2 “ J J [1 “ exp(-s t )] [1 - exp<- s t )] dF<t . t >

o o
CO 00

= f f F<t , t ) s s exp<-s t - s t ) dt dt 
J J 1212 11 22 1 2o o

00
= s s f exp<- s t ) dt 1 2 J 11 1O

J* ^^l* *"2* ®KP*~ S2^2^ ^^2 |

^ Si S2 ^ J* | ^ ®*P<~ a^t^) dt^dt > exp<— a t ) dt 
2 I 2 1 1

f / f 2 exp(- a t ) dt 1 exp(- at) dt 1,

ill 32 2 J 41 */
Where a = X + X + s, a = X. + s , a = X + s . and

1 2 3 2 2 1 13 2 2

a =X + X +s. That is
4 13 1

<2>(s , s ) = s s 
12 12

exp<- b t ) dt it l{-r /v o
_ OD _ 00 v

a 1 f exp<- b t ) dt - a 1 f exp(- b t ) dt V,
3 J 2 1 1 s J 1 1 ij*

Where b = X + s + s , b = X + X + s and X = X + X +• X .
1 12 2131 123

Hence
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Thus

^(s , s ) = s s a 1 b 4 a 4 [ b + X 1
~ 1 * 2 12 1 1 3 1 1 3 J (2.4.

Now

s ) = lim [<£(s , s )]
s —>ooi

<£(s , oo ) = lim [<£(s , s )] = s / a
1 _ 12 1 3 aS---->00

2
By substituting <£<5 , S ).

1 2 tpiWf s ) and 
2

S a 00)

Equation (2.4.20) we get

y/(s,s)~a ba [b(ss - as-as + aa ) + X s
iSl 1 * 2 1 13 1 1 12 32 11 13 31

On simplification it reduces to

w (s , s ) = a-1 b“4a-4 [ ( X + X > ( X + X > b + X s s
r 12 113*" 1 3 2 31 312

[/K u b + S S X] f (p + s Xu + s> 12 1 1 2 3 'l 12 2 b J 1
—1

(2.
Where u = X + X and p = X + X .'l 1 3 *2 2 3

The equation (2.4.22) can be written as

w v = t * s’ j“{l + p s s X 12
-1 ~1p p 'i '-*2

(2.
Consider

b/X= (X + X )( X + X ) 4(s + s ) X-4 ■§• i
1 3 3 12

=l+(l+p)(s + s )(p + p )
1 2 1 2

-1

= [p + u + (1 + p)(s + s )] (u + u ) 
*• *1 *2 ^ 1 2 J1 2

-1

By substituting in Equation (2.4.23) we get

XU (S a S ) Vt 1 * 2
{p,M

2/[ (p4 + s4)(AJ2 + + P <Pt + P2>

s +■ p + (l
2 12 1 2

p)(s + s ) 1 2

(2.

Hence the result fallows.

21)

3

4.22)

4.23)

1

4.24)

29



In the following, using the Laplace transform of M-0 BVED as 
given in Equation (2.4. ), we can easily obtain conditional
expectation of given = t^.

Theorem(2.4. S>. If (T , T )T is a random vector having thei 2
M-Q BVED with Laplace transform given in Equation (2.4.24).

Then the conditional expectation of T given *= t is given by

E(Tjt2> = (1 + p) Cpr p
{P + P2>2 0i1P2<l + P} EPj- P P23) 1

expC- [<^-p P2>/< 1 + P>] tpj.

Proof : In order to obtain conditional expectation, we 
differentiate the Laplace transform given in Equation (2.4.24) 
with respect to s^ and letting s^ = 0. Thus

6hft (s , s )/ds = i u* l' 2 * \ fj /(p + S2 *2 2
) J d(p4+ s^) 4/dst|

+ ^p(p4+ p2,s2/<P2+ **>} ®t>€Ki + (1 + p)>] 4|

evaluated at s = Os Where K - u + u + (l+p)s.1 1 *1 *2 ^ 2
Therefore
%|S>' V'4*,* {"tV"* + V} {- ‘K, + V *}

+ |fi(u + U )s /(ti +5)1 H
lr 1 2 Z 2 2 f 1

Where H = I [u K + (u (1 t p) + K ) s + s2 (1 + p)] 
l ^ 1 i *i it l

- s4 [pi(l + p) + Kt+ 2(1 + p) sj J

(1 + p) + K >s + s (1 + p)^ li l
(2.4.25)
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Putting s = O then Equation <2.4.25) we write

dyt <s , s )/<9s i 2 i 5 = 0 1 '
P /(/Li + S )1 ^2 2 }{ P Pj P

c <p' + S2>(P2 + *2* )4|i <2.4.26)

Where /j' = (/j^ + p2)/( 1 + p). Now consider 

S2/g/Li'+ s2)(p2 + s2)>- <A/</u' + s2)^ + <B/<Ai2 + s2)^ <2.4.27)

Where A and B are arbitrary constants. Thus
s = A </u + s ) + B </u'+ s ) <2.4.28)2 2 2 2

Substituting s “ and S2 *» -p' in <2.4.28) respectively we get

A * - fj’/if.J2 - /Li') * - + p)/<p “ PP2J
and

8s" P2/(P'- P2> * (Pt + P2>'<P4 ~ ^2K

By substituting the values of A and B in Equation <2.4.27) and 
using this expression in Equation (2.4.26) yields

(s s )/ds 2 1 s1 0 “ P2<1 + P>^<Pt ppi2)< Ai2 + s2)}

+ {pip* P2)2/CAii<l + p) <P4 ~ PP2>3>

<</Ui - P/Liz)/<1 + p) + <P2+ S^)}"*

Using the form of Equation (2.4.3) the above expression can 
written as

ao
-ft f<t ) E(T It ) 3 exp<— s t ) dt J 2 1*2 22 2O

= - P2<1 + p)/{<p4 - PP2>< P2 + s2)>

+ {pip* p^/Lp^il + p)<^ - PP2>3*

i</Li4 - pp2)/<i + p> + <p2+ s2>r‘.

By inverting with respect to s2 we write

be
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f(t ) E(T It ) 2 i I 2 P2(1 + P>exp(- P2t2>/<Pt “ PP2>

- P2>2/Cpt<l + pMpt - ppz>3>

exp|-[ (p4 - pp2>/(l + p> + P2] t^J..

Therefore
E(T4|t2> = (1 + p>/<Pt ~ PP2>

~ <P<P4+ ^2>2/C^4<1 + PP2>3>

exp|-[ - ppz>/(l + p) ] t2J. (2.4.29)

The Equation (2.4.29) gives the required expression for 
conditional expectation of T^ given T2 = t2 for M-O BVED model.

In the following we will discuss about the Hawkes model.
2.5. DERIVATION OF HAWKES BVED.

We have discussed the probability generating function of
bivariate geometric distribution in Section 2.2. Using the form
of probability generating function as given in Equation (2.2.9)
containing five parameters, Downton used that form of p.g.f.which
reduced into distribution which has only three parameters.

Hawkes used following idea for consruction of BVED.
Let us define two events A^ and A2 with Joint probabilities 
given by

A Ai l

A P P2 1 1 Ol

A P p2 io oo
P Ql i

(2.5.1)

where P + Q * P + Q = 112 2

t
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There are number of independent trials denoted by T
( i = 1,2. ) which are completed up to the first occurence of the
event A and A .1 2

i

In this Section we derive the bivariate 
distribution which is due to Hawkes<1972). First 
obtain Laplace transform ^ (s , s ). As weH 1 2
Equation (2.5.1) the p.g.f. is given by

, z ) *= z z 2 12 h + P P z <1 1 lO 2 2 Q Z ) 2 2

exponential 
step is to 

discussed in

That is

n(v V[1

+ P Pz(l-Qz)“‘ + P
Olll 11 00**1 2 J

P ] ■ 2 z (d - Q Z )'* (1 - Qz )"‘\ 
oo 12V 22 1 i J

(2.5.2)

x (1 - Q Z )(1 - Q z )] 2 2 11
+ [P P Z lO 2 2

That is

n'v V

(1 - Q I >] + [<1 - Q Z > P P ! ]1
1 1 J 1 2 2 Oi 1 1 J'

z z Cl - P 3 1 (1 - Q Z )-1 (1 - Q z )_1
2 2 111 2 OO

Ip -z(p q -p p)-z(F»a-F*P}
^11 1 11 1 01-1 2 11 2 lO 2

-zz CP QP + PP □ - P OQ)l
1 2 v lO 1 2 1 Ol 2 11 1 2 'J (2.5.3)

In the following we obtain the Laplace transform for Hawkes
BV/ED.
Theorem (2.5.1 ) If (T , is a random vector with p.g.f. given

by the Equation (2.5.3). Then the Laplace transform for Hawkes 
BVED is given by
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w (s , s ) = -Io u /iiu + S M/J + S >vl 1 2 Kr 2 1 1 ^2 2 J

il + [P - <1-P)<i-P)]ss ((ti + Ps)
\ 1 OO 1 2 J 1 2 v ”i ii

(jj+Psl-uuP )
*2 22 12 OOy

Where u = X P - i = 1, 2.
t i i

Proof s By definition of u/ (s , s ) we write r 1 ’ 2

w (s , s )= E< exp4— s T — s T vl 
”h 1 * 2 l 11 2 2 J

= n /<x + * >, x /(x + s >\
11 l * 1 1*2 2 2/

by making use of fj = X^ P , t = 1,2 we get

u/ (s , s ) = NUMERATOR / DENOMINATOR”h l* 2 (2.5

Where

NUMERATOR = |x /<X + s >\ ix /<X + s ) 1
\ i i 1 / l 2 2 2 J

fp - X /(X + s )(P Q - P P ) - X /(X + s >
[ 11 1 1 1111 011 2 2 2

CP Q - P P ) - X /(X + s ) X /(X + s >
v 1 1 2 lO 2? 1 1 1 2 2 2

CP OP + PP Q - P 0 Q )L
v lO 1 2 1 Oi 2 11 1 2'J

L1<X X[P -PQ + PP - P G + P P
C 1 2 11 111 Ol 11 112 10 2

PQP-PPQ+ P Q Q ]
lO 1 2 , 1 Ol 2 11 1 2J

XsCP - P Q + P P)
1 2 11 11 1 Ol 1

+ X sCP -PQ + P P + s
2 111 11 2 lO 2

S P
1 2 11 J
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where

Hence

L‘ = xx <x + s >”2<x +t i i i e —J '' y

{NUMERATOR = LI { X X [P P (i - Q ) + P P CP + P )]
12 11 2 1 2 O* lO

+ K*P(P +P ) + X s P (P +P ) + s s P \ 
12 iv ti Oi' 2 1 2 v 11 icr 1 2 llj

{*vLI ifi u (1 - P ) + u s P + u sP + s s P1 - 2 OO ~i 2 2 2 1 1 1 2 11

{Li < ti U + U S P + li S P + S S PP 
1 1 2 1 2 2 2 1 1 1 2 1 2

PP S S /Li Li P + S12 12 12 OO
S P \

1 2 llj

= Li lr (u + s P > (li + P s ) - utiP ]
C 1 1 1 2 2 2 1 2 OO

+ s sP -PP ss \ 
12 11 12 12 J

Multiplying and dividing by P P we get1. 2

NUMERATOR = ( }j jj [</j + sM/j + s)]"1 
1 1 2 1 1 2 2

t (X + s > (X + s 112 2 > ] *Pt>

(u + Ps) - ul/P ] + ssP -PP SB 1 (2.5.5)
~2 2 2 rl,2 OOj 12 11 12 1 2 J

And

DENOMINATOR = f [ 1 -OX /(X + s >1 [ 1 - Q X /(X + s )]
l 111 1 22 2 2

f (1 - P ) X /<X + S ) X /<X + B >]\
OOll 1 2 2 2 J J

(XP + s ) (X P + s ) F (X b > (X s )] 
% %. i. 2 2 2 1 1 2 2

-2

x £XX + s X + X s + sb — P X12 21 21 12 OO 4
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= (p P [ (*j + s X*j + s >] [ <*rv+ P s X p + P s ) ] *\
( 1 2 l 'l 1 'z 2 1 ri\ 1 1 ~2 2 2 J J

X \ (u + s P ) (u + P s ) - u u P i, 
1 1 1 1 2 22 12 OO J

Where fj, = X. P. , i = 1,2 , that is ^ /P = X. , i = 1, 2itt lit
Thus
DENOMINATOR = (u + s Xu + s )i i 2 2 Xu + P s HX + s )2 2 2 4 1Xu + S P ][ i 14

(X + 5 )1 /(u + S P ) (u + P S ) - U U P 1
2 2 J l1 11 2 22 12 OO j

(2.5.6)
By substituting (2.5.5) and (2.5.6)

Ul (s , S ) = I li (J /{iu + s Xu + H i* 2 \ H1H* 1 1 HZ

<Cp + P s 31 4 1

Uf (s , s ) *= u /€(u + s Xut 2 [1^2 1 ^2

in (2.5.4) we write

s )}\ fl + s s [ P - P P ] 
2 * J 1 1 2 1 11 1 2J

C/u +• P s 3 - /j/jP )_1\
*2 2 2 2 OO 7 J

S )\ |l + [P - (1-P)
2 j I 1 OO 1

(1 ~ P X 2 J isXu + P s ) (u1 2 1 i i 2 P s ) 2 2 fJ (J P )12 OO
-1

(2.5.7)
Hence the result follows.

a
In the next section we will study regression property for 

Hawkes BVED.
2.6 Regression property of Hawkes model

In previous two Sections we have studied regression property 
for DBVED and M—0 BVED. In this Section we study the regression 
property of Hawkes BVED. So we prove the following Theorem. 
Theorem(2.6.1) If (T^, be a random vector having Hawkes
BVED with Laplace transform given in (2.5.7) and E*CTjs3 be
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the Laplace transform with respect to t^ of the conditional
expectation ECT^Jt^. Then
E*ET Is3 = f u (Q - P )] 1 fp Q s 1 - <P - Q Q )

i« 1*1 2 oo J \ il z oo i z

<1-P >[P (u CQ - P 3/P + s )1oo 1 z v^z z oo z I

Where E*CT I s3=— u 1 d «/ <s - s — u )/ds l* *2 ”h i * z i s = Oi
Proof : We substitute s = s — u in the Laplace transformz z
given in <2-5.7).

By differentiating <2.5.7) with respect to s^ on both sides

and it is evaluated at s = O .i
& fit <S , S - Lt )/{?S 1 2 1 s = 0 1

u u_1s-1+ [ <P - QQ )<s - u )u 1 'z'i 1 OO 1 2 2 2

£/js(/j + P<s-p)-pP }]1 v,2 2 2 “z OO

utw<s,s—u )/ds
2 H 1 2 1 S = O 1

p^s'1 + /j 61 fj~* P~‘{s CG2 + S3} 1 - ei^1p2 <G2 + *>)■ 1»

Where 61 = P - Q Q and 62 = u <Q - P ) POO 12 *2 2 OO Z
-1

That is
-iU d f (s , 5 - ti )/d S 2 H 1 2 1 s = 0l

* p”1*”1 + p 61 fj 1 P 1 {s 1 62 1 — £6 <62
Hz z \ ' z s)>

61 [ fjp <62 + s )] —i

* P Q [p <Q - P ) s]t 2 2 OO J
-1

- 61 <1 ~ P ) r <Q - P ) u <62 + s )1OO 1 2 OO 'l J
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On simplification we get

E*CT |s3 » [ u CQ - P )1 "*1/p Q s 1 — CP - OO )
i1 1 2 OO J \ 1 2 OO 12

(1 - P ) [p/ CQ - P 3/P + s 3 _1\
OO *• *2 2 OO 2 J J

(2.6.1)
Hence the result follows. □

In order to obtain conditional expectation of T given

= t for Hawkes BVED. We prove the following Theorem.

Theorem(2.6.2> If the Laplace transform given in (2.5.7). Then

the conditional expectation of T^ given T^ = t is given by
E[ T It] = [pi (Q - P )]“l fp 

l1 2J 1 *i 2 oo J Q - (P - Q Q )
12 OO 12

(1 - P ) P 
OO 2 } e,,p{' (pi CQ - P 3/P ) t

vf2 2 OO 2 '

pT1^! + Cl P ‘ [ 1 - (1 - P__) P~* exp]— X P tj] }•
10 OO 2 2 lO 2

Where Cl = P P - P P is the cross ratio in theoo n oi 10

probability ratio given in (2.5.1).
Proof : Differentiating the Laplace transform given in
Equation (2.S.7) «ith respect to ^ »e get

&w (s , s )/ds
H 1 2 1

S = O 1
u pi *(pi + s ) 1 + pi pi G1 s (pi s ) 1 
“2 1 2 2 1 2 2 2 2

{ IfJ + P Sl 1 11 ) (/J + Ps)~ Lt U P ~S [ P ( pf +
2 2 2 1 2 OO 1 *• 1 *2

P S ) ] \{ (U + S ) 
2 2 J 'i 1

—2

Where

[ (pi + P s ) (pi + Ps)-ptpiP ] H 1 1 1 2 2 2 1 2 OO J
G1 = P - Q Q .

OO 1 2

s = 01
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That is

&w (s , s )/ds
H 1 2 1 s = O 1

= - u u ±lu + s > 1 + u G1 u 1 P
~ ' 2 2 2 1 2 ^Z 1 s (u + s ) 1 (G2 + s ) r, 

2 2 2 2 '1’

(2.6.2)
Where G2 = (1 - P ) u POO *2 2 Consider

s (u + s ) *(G2 + s ) 1 = A (/j + s ) 1 + B (G2 + s ) 1 (2.6.3)
2 2 2 2 2 2 2

That is s * A (G2 + s )_1 + B (u + s )-i (2.6.4)
2 2 2 2

By substituting = - B2 and s^ - ^ in Equation (2.6.4)

respectively we get

A = — P /(Q -P ) and B » (1 - p )/(G-P ).1 1 oo oo 1 oo

Now substitute values of A and B in Equation (2.6.3) then the

Equation (2.6.2) can be writen as

dw (s , s )/c?s 1 2 1 5=01
- p u + s )_1 + ^1 +G1/(Q - P )

2 12 2 I 2 OO

- fj /lT*(Q - P ) 1
2 1 2 OO

{

-{

{Q P
\ 2 1

}
G1/(Q - P )\ G2 (G2 + s )

2 oo f 2

(/J + s )2 2 (P - Q Q )
OO 1 2

X (1 - P__) p1 [ - P__)/P^ + (^ + s2)] _1|.
OO 2 2 2 OO 2

(2.6.5)

Compairing with right hand side of (2.4.8) we write

00
f t f(t ) E(T It ) 1 exp(— s t ) dt J 2 1*2 22 2

fj fj * (Q - P )
2 1 2 OO

"‘Jo P
\ 2 1 (u + s ) 2 2

-1 (P -00)
OO 1 2

(1 - P ) P 1 Xu (0 - P )/P + (u + s )]
OO 2 L *2 2 OO 2 ^2 2 J

“}■ (2.6.6)
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By inverting the Equation (2.6.6) with respect to s^ we get

-1 {p Q - (P - QQ HI — P )1 2 OO 1 2 OOE CT 1 t 3 = [ (J (Q - P )] ,1*2 1*1 2 OO J | 1 2 OO 1 2 OO 2

exp 4- fu CO - P 1/P + s) t n. (2.6.7)v 2 2 OO 2 ' 2' J

Hence the proof. t

Now we simplify again the Equation (2.6.7) as fallow

ECT It 3 - (P + P )(P + P P 1 11* 2 *1 lO 11 lO OO IO J

- (Q - P )QQ (1-P ) p“4 P~4 expl- CX P t2 OO 1 2 OO 2 iO 1 x 2 iO 2'"f

- ^_4(l + [P P P~4 - P ] [P P P-1 - P ]
1 1 *■ li OO IO 01J *■ 11 OO iO oiJ

(1-P ) P~4 exp {- (X P t »l
OO 2 P 1 ' 2 iO 2j

m /J_i|l + Cl P~4 [1 - (1 - P )P~4 exp4— X P t
1 1 IO OO 2 2 IO 2 J

(2.6.B)
Where Cl * P P-PP . The Equation (2.6.8) gives requiredOO 11 oi IO 3
simplified form of conditional expectation of T given = t^.

In the following section we discuss the Hawkes model is a 
generalisation of Downton's BVED.
2.7 Downton’s model is a particular case of Hawkes model

In order to verify that Downton's BVED is a particular case 
of Hawkes BVED we proceed as follows.
Theorem(2.7.1) If P » P = P = 1 - Q and as P —> Q in12 OO

Equation (2.5.7) then resulting Laplace transform is given by

wl s ,s ) = u u /iiu + S ) ( Li + s)— Qss>12 12 1 12 2 12

Proof : Let us consider Laplace transform given in
(2.5.7). Letting P=P * P * 1 - Q and as P —> Q we write,12 oo *
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Vs!’ V = ^1Vc<#Ji+ *1>«Ai2+ s,)} |i + [Q - (1 - P>2]

s s (C fj + P s ) (ji/ + P 5 ) — ^ ju Q) 4V12 1 2 22 12 f

{-6 <p Cl -Q) + fj Ps + p P s + Qss1' 2 12 '2 1 1 2

- s s + 2 P s 1 2 •“«} p"‘h (Li + 5 )li S 2 2 2 + P S S i 1 1 2j

Where B=uu/C(u + s )(u + s )>. Thus 12 1 1 2 2

US (S , S ) = G t (Li + S ) (Li + s )>1 * 2 ^1 1 ^2 2

[Co ■*■ s ) (u +s)-Gss] 1 1 1 2 2 1 2J

u u /€<u + s )(u + s)— Gss>. (2.7.1)12 1 1 2 2 12

The Equation (2.7.1) is Laplace transform of Dowiton's model.
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