
CHAPTER - IV
ESTIMATION FROM HYPOEXPONENTIAL DISTRBUTION

4.1 Introduction
In earlier chapter ms HaVe studied some important properties 

of hypoexponential distribution and its relationship with some 
standard bivariate exponential distributions. In this chapter we 
consider the problem of estimation of the scale parameters of the 
hypoexponential distribution. Section 4.2 deals with some 
standard definition and important results which are used in later 
sections of this chapter. In Section 4.3 we obtain the 
likelihood equations. However, the likelihood equations can 
not be solved analytically therefore we are in need of some 
alternative methods to obtain the solution of the likelihood 
equations. In Section 4.4 we use Newton-Raphson iterative method 
and method of Scoring to obtain the solution of the likelihood 
equations. In Section 4.5 numerical comparisons of maximum 
1ike1ihood estimators by Newton-Raphson method and method of 
Scoring are discussed.
4.2 Preliminary results
DefinitionC4.2. ID Fisher Information 1(6) is given by

)/<962J,

Where f(x|6) is the probability density function of X and 6 e &

and it satisfies regularity conditions ( we refer Zacks(1981)).
Remark : 1(6) is expected amount of the information about 6

contained in single observation X. If X , X , X, .... X bei*2 3 ’ m

random sample from distribution whose p.d.f. is f(x|6). The 
expected amount of information about 0 contained in a random

1(6) » log f(x|6)/66 J * - E^jtf2 log f(xj6



m 1(d).sample of size m is denoted by I <f?) and we have, I (d) = K 1 m m
Theorem (4.2.1) let T be a random variable with p.d.f. given in 
the Equation-(3.2.1) then the Information matrix in single 
observation is given by

I (r>, K ) * m

K<Z ~ 2jj>
T) (? ~ T)»

(? - TJ) Y> ^M S

-2<? - T?> - T) ? *

T)<T) ~ 2?)
2 2Z <Z - r> >z

4- Y% ^ MS

Where ^ = 2 (? - r>> * CC3» Z'<Z ~ ?>>)
and C(3, £/(? - ?)>) is a generalised Zeta function.
Proof : In order to find Information matrix, we have to find

E^log f (t; n, £)/dT)2j, E^log f(t; v, ?)/d*2|,

and E^j^log f(t; », £)/ch?d£^, where f(t; r), ?) is the probability

density function of T as given in Equation-(3.2.1). Now taking
logarithm of Equation-(3.2.1) on both sides we get
log f(t; T), ?) — I°gj?r) lZ ~ )))"‘|

+ |log[ expC- nt> - expC- £t>]^-. (4.2.1)
By differentiating Equation-(4.2.1) partially with respect to j) 
and f respectively yields

-i]{'a logf(tj yt, K)/dn - {£[»(? - »>] ^ t expC- T?t>
[expC- r)t> - expC- ?t>] ~4| (4.2.2)

and
a logf(t; n, ?)/ajf ~ »>] t expC- ^t>

[expC- ?)t) - expC— ft)] —i (4.2.3)
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Again differentiate Equation-<4.2.2) and (4.2.3) with respect to 
Y) and f respectively we write

^logf<tS 7), ?>/3T)2 - ~ ~ 2t>)[7)C? - 7)>]"2j

t expf- (Y) + ?>t>

[exp (- Y)t> — expf- £t>] ■} (4.2.4)
and
d2logf(tj t), ?)/d?2

1 -{2?)[?(? - 7))] - < t* expf- (7? + ?)t>

[expf- Y)t> - expf- £t>] “2J. (4.2.5)
Let us differentiate Equation-(4.2.2) with respect to £ we get 
d2logf(tj 7), Z'tdZdv, « d2logf(t| 7), ?)/W?

= - <* ~7))Z + ^tZ expf- (7) + f )t)

[expf- 7)t> — expf- ?t>] (4.2.6)

First we obtain expectation of Equation-(4.2.4) as follows
2IE^log f(tj 7), K'f&n )

{?<? ~ 2t))[7) (? - 7) )]"2| - e| T2 expf- (7) + f)T>

[expf— 7)T> — expf— £T>] ’}■ (4.2.7)
Consider 

r2E^f expf- (77 + £>T> [expf- tjTJ - expf-*T>] 2|

00f{t2 expf- (77 + £)t> [expf- 7>t> - expf- 3ft>J 2j- f(t; 7)* f) dt

00
[ fr)(f - 7)> *] I t2 [expf ft) - expf Y)t>] * dt. (4.2.8)
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((

00flet = | t2 [ exp{ £t> - exp{ ?)t>] * dt

00

-l o-t exp€- £t> < 1 - expf- <£ - 7))t>l dt}
Setting (f - j))t * yj on simplification we get

oo
It = <? - Y)> *J y2[ expf — ?<? - r?) 4>y] [ 1 - exp€~ y>] dy C4.2.9)

To evaluate the integral in the Equation-(4.2.9) we define 
generalised Zeta function as follows.
DeflnitionCA. 2. 2} For s > 1 we write

oo -s£<s, v) = U (y + a) ,i> ** 0, 1, 2......  It satisfies the
n=o ' 1

functional equation and
m- -i _

r<s, y) = yls, «' + v> + £ <u + n) s, m' = 1, 2, 3,...
n=0

For real s > O and real v > O we know that
oo

Tz = s J* yZ 1 exp€- sy> dy

and

<v + n) Ts

That is

oo
_ f s-i- Jy expf - [y + nly > dy,

0

oo
C<s, .. - J v" expf- yy> [1 — expC— y>] dy. <4.2.10)

By compairing the right hand side of the Equations-<4.2.9) and 
(4.2.10) we write
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and

It - n> 9 T3 CC3* Z'<Z - r>)),

- 2 - T>)~S C(3, ?/<? ~ r}>).

Substituting value of the integral in Equation-(4.2.B)

using corresponding expression for expectation in

Equation—(4.2.7) yields
E^log f(tj rt, £>/c?T?2j

= - |c<C - 2r))[rj(? - - |2<?-»>““ T)f CC3* C'<C “ ?)>>}

= - |c<C - 2»)[77<C - r))]'2| - 7>c <^if (4.2.11)

where ^ = 2 (?-7))-4 7)C CC3* ?/<C - 7>)).

Similarly we obtain the expectations of the Equation(4.2.5) and 

(4.2.6) as
E|d2iogf(t| £)/$c2j - - |r)<7> - 2?) [?(* - r))]"2J “ nz ^

(4.2.12)
and

7?* C )/$»$£ 7). Z'i'dK&ri}
= - (C - 7) )'2 + 7)C ^ (4.2.13)

respectively.
Now Information matrix is given by

- E [ d?logf(t5r),C>/dy)2] - E [ *2logf (tjr*,? 1

I«7), C> =

- E [d2logf(t5r),C)/dCd>7] - E [*2logf(tir)f?)/d?2]

Substituting expressions for all these expectations as obtained 
in Equations—(4.2.11), (4.2.12) and (4.2.13) we get
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I<7>. ?>

Z<Z - 2T7)
;------- , + v Z 4>t - r>> - v K 4>

7)~iZ - r)>2 1

<? - 7)>“2 - 7) ? ^
7)<T7 ~ 2? )

„2 , „ .2£ <£ ' 7} >
N

(4.2.14)
CorollaryC4.2.13 If T^, T , -.., are independent and 
identically distributed random variables Mith distribution given 
by Equation—(3.2.1). Then Information matrix corresponding to a 
sample of size m is given by Zacks(1981) as

I <77, = m I<r), £) so that 0)

I <7?, Z > “ "»

Z(Z ~ 27))~------, + 7) z 4>. <Z ~ T)> - 7) z 4>
7)2<Z - 7>>2

<? " 7>>"2 - 7) Z
7)<7> ~'2g>

~ 7) >2 7) Z 4>±
a

(4.2.15)
4.3 Maximum likelihood estimation C M. L. E. 1 for the parameters of 

Hypoexponential distribution
Let T^f T^, ..., are independent and identically

distributed random variables Mith distribution function F(t,6) 
(either continuous or discrete) Mhich depends on a unknown 
parameter &.. Let Q be the parametric space which is assumed to

kbe subset of E ,the k dimensional euclidean space. Let f(t,d)
be the probability density function or probability mass function
corresponding to F(t,6). Then f(t,t, ..., t | 6) wheni 2 m
(t^, t^, ..., t^) is fixed gives likelihood of observating

(t , t . .... t) at &. i 2' m
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Thus for fixed (t , t , ...f(t , t , t i &)i 2 — m t z n
is a function of 3 and is called the likelihood function. The 

likelihood function is denoted by L(S I t . t , .... t ) and• | 2 III

is given by

L(0lt , t , ..., t > * fCt , t , ...» t 5 3)*i 2 m 12 'hi*
m

* j|f(t.,0>.
i=l

Suppose that there exist a value of 3% say 0 e 0 such that

LC0jt , t , .... t ) ■ Sup L<e|t , t , ...» t )1 i* 2* m r A * i* z ’ n
AThat is 3 maximises likelihood
XX

function at (t , t1 2 1 • * ., t >. m
Note
XX XX

that 3 depends on (t^, t^, X"%c
•pm•••

<

thus infact

0 - 0<t a t , ..., t). Also12 m 6 may not exist for every

(t f1 t. .... t ) £ ; where ft is2 m * sample space. If it exists

for every (t^f t^, ..., t^) e 0 then we say that 3 i ft —> <9 is
/VM.L.E. of 6 (provided that 3 is random variable).

In order to obtain the maximum likelihood estimates of the 
parameters of hypoexponential distribution, first we obtain the 
likelihood equations for the probability density function given 
in the Equation-(3.2.1>.
TheoremC4.3.1) If T , T , ..., T are independent and identically1 2 A

distributed random variables with probability density function 
given in the Equation—(3.2.1). Then maximum likelihood

XX XVestimators (7), ? > of (■*), If) is given by the solution of the two 
equations.
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«" 7) me - »)]_1
** E ^t. expC — (t. }[exp{- — exp{- (t. )] (4.3.1)

and
«•?[))<?- T))]"1 

m f
- E 1* i=iA fc

Proof : Given that T ,T .....T are i.i.d. distributed random12* m

variables from hypoexponential distribution with parameters 77 and 

f having p.d.f. given in the Equation-(3.2.1). The joint p.d.f.

expC- T)t >[ expC-i 7)t. > expC- K t.>] ‘ (4.3.2)

of T , T , T is12 m

Hy), £ |t> = - 17) *]m [expC- T)t> - expC — ^t>]“.

Then the log likelihood function is

log L(y>, ? ;t) = m log[7)£(£ - 7}) *]
m

+ £ log[expC- y)t > - expC- ?t.j] (4.3.4)
t = 1 1 1

Differentiating partially with respect to 77 and £ respectively 

we get
m *

dloq L(7), % ,1)/&o = m £ [ t><£ - T))3 _1 - E | t. expC— 57 t >
i=il 1 v

[expC- yjt > - expC- £t. >]-1i (4.3.3)
V V j

and
m

dlog L(t| 7), *)/$* - - m 7? [£(* - 7))] «- £
i = 1

[expC- Tjt^y - expC- ^ti>]”1J-. (4.3.6)

The second order partial differentiation of Equation-(4.3.4) with 
respect to r? and £ respectively gives

t. expC-
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^log L(t; Y)f ?>/(?r)2

= - «. - 2>j>[r?<? - T)>]"2} “ E jt2 exp€ — (7) + ?>t.>

[ expt- - expO fft.>]“2J {4.3.7)

and

^log L(t; r), f)/df2

= - m - 2£)[?<? - 7?)]"Z| - E expC- (7) + C>t.>

[expC- Y) t.> - expf- ? t.>]_2|. {4.3.8)

Me observed in Equations—{4.3.7) and {4.3.8) that the value of 
these equations are negative. by equating (4.3.5) and (4.3.6) to 
zero Me get

« K ly)<Z ~ »>3
m f

= E exPt- Y)t.>[expC- r)t. >t = £ V. V 1 1
expt- £t »]

and
« u IZ<K - «>3

(4.3.9)

» r~ E !*• exPt- ft, )[exp{- T)t. > - expC- £t. >]I t— V 1 \l =r i V

Hence the m.l.e.'s are the solution of the Equations-(4 
(4.3.10).

(4.3.10)

3.9) and

Note that both the equations are not possible to solve 
analytically therefore we have to solve these two simultaneous 
equations. In order to obtain m.l.e.'s of parameters r> and £ in 
the following we have used iterative methods namely 
Newton-Raphson method and method of Scoring.
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4.4 Newton-Raphson and Scoring Iterative method
In statistical problem solution of maximum likelihood 

estimates (m.l.e.'s > are essential. That is, to obtain certain 
points e « ez, m m m y 3 )T such that a log likelihood (log L )

function is maximized.
In a few situations m.l.e.'s can be found analytically. But

there are some situations for which, we can not find solution of
likelihood equations analytically. Therefore, we use some
iterative methods which are available in statistical literature.
One of them is Newton-Raphson Iterative method. The procedure
for obtaining 3 for which log L is maximum by Newton-Raphson
Iterative method is given below.

Let LCQ , 0 , ..., ) * L(9) be the likelihood function1 2 r
defined on the parameter space O. Consider the situations in 
which point 3 at which L(S), and so log L(6), is maximum and 
(satisfies the likelihood equations

GM0) = 9 log H3)/93i - 0, i - 1,2, ...r (4.4.1)

and 0(d) = [ Q (0), Q (0), ..., Q (0)]T, the r x 1 vector is12 r

called the score vector at 3.

Suppose that 3q is a initial guess at 3 and expand each of
the functions Q (0) in a Taylor series about 3 . The first orderi o
expansion gives

Q(0) = 0(0 ) + R(0 ) [6 - 3 ] , (4.4.2)o o 1 oJ
Where R(d) is the r x r matrix with entries 

R..<3) * d2 log L<3)/93 93.
i r. j

Since 3 satisfies Q(0) * O, The Equation—(4.4.2) gives the
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(4.4.3)
approximation

& * e - q<© )/R(© ). o o c
ATo obtain B we use Equation-(4.4.3) iteratively. The right hand

Aside of Equation-(4.4.3) gives a second approximation & to B\ 
this is in turn inserted in the right hand side of (4.4.3) to 
give a third approximation, and so on. This method is called 
Newton—Raphson method, provided that log L(0) is well behaved at

B and the initial value Bq is chosen appropriately the sequence
Aof approximations generated will converge to B.

The Scoring method has convergence property similar to 
Newton-Raphson iteration and gives a simpler looking algorithms 
than Newton-Raphson method. The method of Scoring! we can 
describe as follows.

In Equation-(4.4.3) if we substitute - 1(d) for R(d), the
negative of the expected information matrix given in
definition(4.2.15), which is a minor adjustment to the
Newton-Raphson method the resulting procedure is known as the
" Scoring method ". The Scoring method also yields the estimated
value of B. To develop the Computer program in FORTRAN-77 for
Newton-Raphson method one has to find R 1(d ) and Q(& ).o o
Now we differentiate the Equation-(4.3.5) with respect to £ 

we get
d^log L(t), £, = i^log L(y), ?, t)/d»df

m .» - m (£ - t, )"* + £ j*Z <7? + ?)t. >
i=4 v 1 1

[expf- j}t. > - expC- £ t. >]

(4.4.4)
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If we write

Ml - if [7) it - T)>]~\ M2 - 7) IK - r> >]~S
H3 » (£ - 2rj>[r? €4T - r? >3"*},

M4 = | -0 (» - 2?)[? (£ - y> )]'*}, MS - (£ - r))~2,

•
51 * £

i = l
52 = £ it. expC— (t, > [ expC- yjt, > - expC- fft >]

i = t V
m ,

53 = £ |tz expt- (?) + ()t. ) [ expC- r)t. > - expC- ft, }]
i = l *• 1 1 1 1

then Equations—(4.3.S),(4.3.6),(4.3.7),(4.3.8), and (4.4.41

becomes

{t, expe rt. >t [ expC- ?) t >i expC- ft^J]

Mog L(?>, ?,t)/*?) = m HI - SI, 
tflog L(11 ?), Jf)/d£ = - m H2 + S2, 
d^log L(t; ?), f>/0?)Z = - C* M3 + S3), 
d^log L(t* ?>, ?)/3£2 « -Cm M4 + S3),
«*Zlog L(?), ? , t>/«?Cd?) * d^log L(?>, ff, t)/*?)<>ff

Therefore
m H5 + S3 .

(4.4.5)
(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

Q(&)
OlogL(y),^ i t)/dr>

01ogL(»,£ |t)/dff

m HI - SI

S2 — m H2
(4.4.10)

and

R(8) *
[dzlogL(r), t)/*?)2] 

[d2logL(n, ?5 t)/^d?)]

[/TogL(r), f i t)/«*7)«JC]’ 

[dHogL(?), ?| t>/d?5
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' - [m M3 + S3] [S3 - m M5 ]

[ S3 - m MS] - [m M4 + S3 ]
(4.4.11)

Hence the Inverse of R(d) is given by

R 4(e> « 1 /DET
- [» H4 + S3] [a MS - S3]

<4.4.12)
[ra MS - S3] - [m M3 + S3]

Where DET = m2 (M3 M4 - MS2) + # S3 (M3 + M4 - 2 MS). Using
Equation-<4.4.10) and (4.4.12) we develop the computer program

A Ain FORTRAN-77 to obtain 77 and ( from Newton-Raphson method 
and method of Scoring will be supplied in Appendix-I(A).

In order to obtain m.l.e.'s of 7? and generate m
observations from hypoexponential distribution with known 
parameter values 77 and (. By using the computer program for 
these iterative procedures, first we need to obtain initial

A Avalues of 7) and ( and it is denoted by 7) and by the method of
moments. Let t.t, .... t be a random sample of size m12 m
drawn from a population whose density function given in 
Equation-(3.2.1). Now from Equation-<3.2.5) we write

t = I/7) + l/( (4.4.13)
and S2 = 1/t)2 + l/(2, (4.4.14)

_ m m _where t = V t /m and S2 = V <t - t)2/(m - 1).. i t “ it = i t = 1
2Therefore t = l/r)2 + l/(2 + 2/[t>(] -
2That is t = S2 + 2/[t>(] -

This implies 7)i = 2[Jf(t-S2)] *.

Substituting in (4.4.13) we get
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2
<¥ - S2) if2 - 2 ? t + 2 = 0,

which is a quadratic equation in £. On Simplification we write

£ a(t+ [2 8j - t] 1/2)/Ct - S2)

-1
= 2 (t - [ 2 S2 - t® ] 1/2 ) .

Again substituting in Equation—(4.4.13) we get

_ _2T? = 2 (t + [2 S2 — t ] 1/25 .

Hence required estimates of f} and £ by method of moments is 

given by
^ _ -1
Vq = 2 (t ± f 2 Sj - t2] 1/2 ) (4.4.15)

and
ZQ “ 2 (t - [2 S2 - tV/Z) l- (4.4.16)

2 -*A. A
Now if t > [2 S2 - IT ] 1/2f we substitute each pair <T)q9 from

Equations-(4.4.15) and (4.4.16) into the likelihood function 

!_(•»), fj t ) and choose as our starting values of that pair which
2 A2R mmm 4 mgives the likelihood and if t < [2 - t ] , we use - 2/t,

#\ .A*
the successive pairs (« . ? ),(?),? ),..., («.f ) are then't ,2 * s 2 m tn

obtained iteratively by either Newton-Raphson method or 

method of Scoring.

4.S Numerical comparisons of the nul.e. *s by Newton-Raphson 

method and method of Scoring.

In the following the numerical comparisons of m.l.e.'s of 

"0 and ? by using Newton-Raphson method and method of Scoring are 

obtained. We performed a Monte Carlo study of the two iterative 

procedures. We obtained three different estimates of j) and £ by
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repeating the process 100 times for different sample sizes from 
the following methods

i) the method of moments estimates 
ii) the Scoring estimates 

and iii) the Newton-Raphson estimates.
The results are given in the following Table.

TABLE £4.3.1)
u

Estimates of ^ = 1 , £ = 1. Method of moments,Newton-raphson and 
Scoring for 100 samples of m = 200 and m = 500 respectively.
aiHaiaHHMMMHunnHBHHiaaiaiiBuiaMHiBniiiiBMHia

Average sample statistics.

For m ■ 200
Method of moments Scoring Newton-Raphson

✓V
>7 0.7964075 0.8002702 0.7974517

A
K 1.414065 1.295997 1.411505

For m ■ 500
Method of moments Scoring Newt on-Raphson

Ss.

r) 0.8258979 0.8285895 0.8262493

A
VS 1.319038 1.278176 1.318527

■MwaiaiaBBaiBaiHaiaiwwBBaBaiBaiBaiaiaiBBBHaiHaiaiMaiaBBBWaiaiaiBBBBHBHaiaiHMaiaiaiBBaiai

Me observed that the method of moments estimates are not too 
unreasonable except for the bias in the estimates for both the 
Newton-Raphson method and method of Scoring.

■■■OOaaa
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