Chapter 4

SELECTION OF A BETTER COMPONENT IN

BIVARIATE LIFETIME MODELS

4.1 Introduction:

Stochastic orders are powerful tool of comparing two random variables or two distributions. In the present chapter we apply various orderings to select better component between the two components of a parallel system. Suppose we have a two unit parallel system having dependent lifetime distributions of the units. Suppose C_{1} and C_{2} are the units of parallel system and T_{1} and T_{2} are random variables denoting their respective marginal lifetimes. We assume that $F\left(t_{1}, t_{2}, \underline{\theta}\right)$ be the joint distribution of $\left(T_{1}, T_{2}\right)^{\prime}$ and $F_{1}(t, \underline{\theta}), F_{2}(t, \underline{\theta})$ be their respective marginal cumulative distribution functions. We assume that $\underline{\theta}$ is the vector of unknown parameter having dimension $p, p \geq 2$ and marginal distributions of T_{1} and T_{2} have mean θ_{1} and θ_{2} respectively. Where θ_{1} and θ_{2} can be real valued functions of
components of $\underline{\theta}$. The problem is to select better component between C_{1} and C_{2}.

Selection of better component for bivariate exponential distribution has been studied by Hyakutake (1992) and Hanagal (1997). In both the papers the criterion of betterness is studied with respect to the mean life of components. But we know that comparison of two random variables by some other criterion is more appealing. In the present study we give some other criterion and compare these criteria through the probability of correct selection for some bivariate models.

Section 4.2 of this chapter is devoted to the selection of better component through mean and stochastic orders. In section 4.3 we discuss procedure of selection of better component by counts. In section 4.4 we discuss selection procedure based on sample mean. In Section 4.5 we discuss the selection of better component by procedure based on maximum likelihood estimators. Asymptotic relative efficiency and example of BlockBasu's BVE Model are given in the last section.

4.2 Procedure based on mean and stochastic orders:

Betterness of component C_{1} with respect to C_{2} can be defined by number of ways. The some possible ways are as follows.

The component C_{1} is said to be better than component C_{2} if
(i) $\quad P_{\underline{\theta}}\left(T_{1}<T_{2}\right)<P_{\underline{\theta}}\left(T_{1} \geq T_{2}\right)$.
(ii) $\mathrm{E}\left(T_{1}\right)>\mathrm{E}\left(T_{2}\right)$, where $\mathrm{E}($.$) is the expectation of random$ variables.
(iii) $T_{1} \geq_{s t} T_{2}$. That is if $F_{1}\left(t_{1}, \underline{\theta}\right) \leq F_{2}\left(t_{2}, \underline{\theta}\right)$, where $\geq_{s t}$ stands for stochastically greater.
(iv) $T_{1} \geq_{h r} T_{2}$. That is if $r\left(t_{1}, \underline{\theta}\right) \leq q\left(t_{2}, \underline{\theta}\right)$, where $\geq_{h r}$ stands for greater in hazard rate order and $r(\cdot, \underline{\theta})$ and $q(\cdot, \underline{\theta})$ are hazard rate functions of T_{1} and T_{2} respectively.
(v) $T_{1} \geq_{l r} T_{2}$. That is if $\frac{f_{1}\left(t_{1}, \underline{\theta}\right)}{f_{2}\left(t_{2}, \underline{\theta}\right)}$ increases in t , where $\geq_{l r}$ stands for greater in likelihood ratio order and $f_{1}(\cdot, \underline{\theta})$ and $f_{2}(\cdot, \underline{\theta})$ are the density functions of T_{1} and T_{2} respectively.
(vi) $\quad T_{1} \geq_{m r l} T_{2}$. That is if $m\left(t_{1}, \underline{\theta}\right) \geq l\left(t_{2}, \underline{\theta}\right)$, where $\geq_{m r l}$ stands for greater in mean residual life order and $m(\cdot, \underline{\theta})$ and $l(\cdot, \underline{\theta})$ are the mean residual functions of the T_{1} and T_{2} respectively.
(vii) $\quad T_{1} \geq_{\text {disp }} T_{2}$. That is if, $F_{1}^{-1}\left(t_{2}, \theta_{2}\right)-F_{1}^{-1}\left(t_{1}, \theta_{1}\right) \geq F_{2}^{-1}\left(t_{2}, \theta_{2}\right)-F_{2}^{-1}\left(t_{1}, \theta_{1}\right)$, for $0<\theta_{1} \leq \theta_{2}<1$, where $\geq_{\text {disp }}$ stands for greater in dispersive order and $F_{i}^{-1}(\cdot, \underline{\theta})$ is inverse c.d.f. of $T_{i}, i=1,2$.

Above criteria can be used to select a better component between the two. In the following we discuss some procedures to select a better component. These procedures are extensions of work due to Hyakutake (1992) and Hanagal (1997).

4.3 Procedure based on counts:

Let $\left(T_{1 i}, T_{2 i}\right), i=1,2, \ldots, n$ be a random sample of size n from $F\left(t_{1}, t_{2} ; \theta\right)$. Suppose $n_{1}\left(n_{2}\right)$ be the number of observations such that $T_{1}<T_{2},\left(T_{1}>T_{2}\right)$ and n_{3} be number of observations such that $T_{1}=T_{2}$.

Let $P_{1}(\underline{\theta})=P\left(T_{1}<T_{2}\right)$ and $P_{2}(\underline{\theta})=P\left(T_{1}>T_{2}\right)$.

Hence

$$
P_{3}(\underline{\theta})=1-P_{1}(\theta)-P_{2}(\theta) \text { will be } P\left(T_{1}=T_{2}\right) \text {. }
$$

Rule \mathbf{R}_{1} : A component C_{1} is said to be better than component C_{2} if

$$
\frac{n_{1}}{n}<\frac{n_{2}}{n} .
$$

That is $\left(\frac{n_{2}-n_{1}}{n}\right)>0$.
We note that (n_{1}, n_{2}) follow Trinomial distribution with $n, P_{1}(\underline{\theta})$, $P_{2}(\underline{\theta})$.

Therefore

$$
P\left(C S / R_{1}\right)=P\left(\frac{n_{2}-n_{1}}{n}>0\right)
$$

$=P\left[\frac{\sqrt{n}\left(\frac{n_{2}-n_{1}}{n}-\left(P_{2}(\underline{\theta})-P_{1}(\underline{\theta})\right)\right.}{\sigma_{1}} \geq \frac{-\sqrt{n} \mu_{1}}{\sigma_{1}}\right]$
$=\Phi\left(\sqrt{n} \mu_{1} / \sigma_{1}\right)$,
where $\mu_{1}=P_{2}(\theta)-P_{1}(\theta)$ and $\sigma_{1}^{2}=\operatorname{Var}\left(\sqrt{n}\left(\frac{n_{2}-n_{1}}{n}\right)\right)$.

4.4 Procedure based on sample mean:

Rule \mathbf{R}_{2} : Select component C_{1} is better than component C_{2} if

$$
\overline{T_{1}}=\frac{1}{n} \sum_{i=1}^{n} T_{1 i}>\overline{T_{2}}=\frac{1}{n} \sum_{i=1}^{n} T_{2 i} .
$$

It is easy to see that since of T_{1} and T_{2} are dependent and

$$
\begin{aligned}
P\left(C S / R_{2}\right) & =P\left(\overline{T_{1}}>\overline{T_{2}}\right) \\
& =\Phi\left(\sqrt{n} \mu_{2} / \sigma_{2}\right),
\end{aligned}
$$

where $\mu_{2}=E\left(T_{1}\right)-E\left(T_{2}\right)$ and $\sigma_{2}^{2}=\operatorname{Var}\left(\overline{T_{1}}-\overline{T_{2}}\right)$.

4.5 Procedure based on maximum likelihood estimators:

Under suitable regularity conditions suppose $\hat{\theta}$ be the maximum likelihood estimator (mle) of $\underline{\theta}$. Hence $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be the mle's of θ_{1} and θ_{2} respectively.

Rule \mathbf{R}_{3} : Select component C_{1} is better than component C_{2}

$$
\text { If } \hat{\theta}_{1}>\hat{\theta}_{2} \text { or } \hat{\theta_{1}}-\hat{\theta_{2}}>0
$$

We note that $\sqrt{n}\left(\left(\hat{\theta}_{1}-\hat{\theta_{2}}\right)-\left(\theta_{1}-\theta_{2}\right)\right) \sim A N\left(0, \sigma_{3}^{2}\right)$.
σ_{3}^{2} can be obtained from the Fisher Information Matrix of order p .

Rule \mathbf{R}_{4} : Select component C_{1} is better than component C_{2} if for given values of T_{1} and T_{2},

$$
F_{T_{1}}(t, \underline{\theta})<F_{T_{2}}(t, \underline{\theta}), \quad \forall t>0
$$

In parametric set up, $F_{T_{1}}(t, \hat{\theta})$ and $F_{T_{2}}(t, \hat{\theta})$ be the respective mle's of $F_{T_{1}}(t, \underline{\theta})$ and $F_{T_{2}}(t, \underline{\theta})$ respectively.

Thus component C_{1} is better than component C_{2} if

$$
F_{T_{1}}(t, \underline{\hat{\theta}})<F_{T_{2}}(t, \underline{\hat{\theta}})
$$

It follows that
Then

$$
\begin{aligned}
\sqrt{n}\left[\left(\mathrm{~F}_{\mathrm{T}_{1}}\left(t_{1}, \hat{\theta}\right)-\mathrm{F}_{\mathrm{T}_{2}}\left(t_{2}, \hat{\theta}\right)\right)\right. & \left.-\left(F_{T_{1}}\left(t_{1}, \theta\right)-F_{T_{2}}\left(t_{2}, \theta\right)\right)\right] \\
& \sim A N\left(0, \sigma_{F_{T_{1}, T_{2}}}^{2}\right)
\end{aligned}
$$

where $\sigma_{F_{1}, r_{2}}^{2}$ is asymptotic variance of $\left(F_{T_{1}}(t, \underline{\hat{\theta}})-F_{T_{2}}(t, \underline{\hat{\theta}})\right)$.

Rule \mathbf{R}_{5} : Based on Hazard rates.

Let $r(t, \underline{\theta})$ and $q(t, \underline{\theta})$ be the hazard rate functions of T_{1} and T_{2} respectively. Then select component C_{1} is better than component C_{2} if
$r(t, \underline{\hat{\theta}}) \leq q(t, \underline{\hat{\theta}})$ for a given value of t .
Assuming $r(\cdot, \underline{\theta})$ and $q(\cdot, \underline{\theta})$ to be continuous function, $r(t, \underline{\hat{\theta}})$ and $q(t, \underline{\hat{\theta}})$ are consistent and asymptotic normal estimators of $r(\cdot, \underline{\theta})$ and $q(\cdot, \underline{\theta})$ respectively.

Hence

$$
\sqrt{n}(r(t, \underline{\hat{\theta}})-q(t, \underline{\hat{\theta}})) \sim A N\left(r(t, \underline{\theta})-q(t, \underline{\theta}), \quad \sigma_{r, q}^{2}(t, \underline{\theta})\right)
$$

where $\sigma_{r, q}^{2}(t, \underline{\theta})$ is asymptotic variance of
$\sqrt{n}(r(t, \underline{\hat{\theta}})-q(t, \underline{\hat{\theta}}))$.
Similarly we can formulate rules related to likelihood ratio order, mean residual life order and dispersive order.

4.6 Asymptotic Relative Efficiency (ARE):

The probability requirement based on the selection procedure R_{i}, is
$P\left(C S / R_{i}\right) \geq P^{*}$ where $\frac{1}{2}<P^{*}<1$ is fixed constant.
$P\left(C S / R_{i}\right) \geq P^{*}$ or $\Phi\left(c_{i}\right) \geq P^{*}$ or $m_{i} \geq \sigma_{i}^{2} Z_{p}^{2} / \mu_{i}^{2}, i=1,2,3$,
where $Z_{p} \Phi\left(c_{i}\right)=P^{*}$.

The minimum sample size required for the $i^{\text {th }}$ selection procedure R_{i} is $m_{i}=\sigma_{i}^{2} Z_{p}^{2} / \mu_{i}^{2}$.

The ARE of the selection procedure R_{i} with respect to the selection procedure R_{j} is given by

$$
\operatorname{ARE}\left(R_{i}, R_{j}\right)=\frac{\left(\sigma_{j} / \mu_{j}\right)^{2}}{\left(\sigma_{i} / \mu_{i}\right)^{2}}
$$

A rule R_{1} is said to be better than R_{j} if

$$
\left(\sigma_{i} / \mu_{i}\right)^{2}<\left(\sigma_{j} / \mu_{j}\right)^{2}
$$

In the following we discuss rule R_{3} for bivariate exponential model due to Block and Basu (1974).

Example 4.1: The random variables X_{1} and X_{2} follow Absolutely Continuous Bivariate Exponential (ACBVE) distribution having survival function

$$
\begin{aligned}
& \bar{F}\left(x_{1}, x_{2}\right)=P\left[X_{1}>x_{1}, X_{2}>x_{2}\right] \\
& =\frac{\lambda}{\lambda_{1}+\lambda_{2}} \exp \left[-\lambda_{1} x_{1}-\lambda_{2} x_{2}-\lambda_{3} \max \left(x_{1}, x_{2}\right)\right]-\frac{\lambda_{3}}{\lambda_{1}+\lambda_{2}} \exp \left[\left(-\lambda \max \left(x_{1}, x_{2}\right)\right]\right.
\end{aligned}
$$

where $\lambda=\lambda_{1}+\lambda_{2}+\lambda_{3}$. The probability density function of X_{1} and X_{2} are given by

$$
f\left(x_{1}, x_{2}\right)=\frac{\lambda_{1} \lambda\left(\lambda_{2}+\lambda_{3}\right)}{\left(\lambda_{1}+\lambda_{2}\right)} \exp \left[-\lambda_{1} x_{1}-\left(\lambda_{2}+\lambda_{3}\right) x_{2}\right] \quad x_{1}<x_{2}
$$

$$
=\frac{\lambda_{2} \lambda\left(\lambda_{1}+\lambda_{3}\right)}{\left(\lambda_{1}+\lambda_{2}\right)} \exp \left[-\lambda_{2} x_{2}-\left(\lambda_{1}+\lambda_{3}\right) x_{1}\right] \quad x_{1} \geq x_{2} .
$$

The marginal probability density function of X_{1} and X_{2} are given by
$f_{1}\left(x_{1}\right)=\frac{\lambda\left(\lambda_{1}+\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}} \exp \left[-\left(\lambda_{1}+\lambda_{3}\right) x_{1}\right]-\frac{\lambda_{3} \lambda}{\lambda_{1}+\lambda_{2}} \exp \left(-\lambda x_{1}\right), \quad x_{1}>0$
and
$f_{2}\left(x_{2}\right)=\frac{\lambda\left(\lambda_{2}+\lambda_{3}\right)}{\lambda_{1}+\lambda_{2}} \exp \left[-\left(\lambda_{2}+\lambda_{3}\right) x_{2}\right]-\frac{\lambda_{3} \lambda}{\lambda_{1}+\lambda_{2}} \exp \left(-\lambda x_{2}\right), \quad x_{2}>0$
respectively.
The marginal distributions of X_{1} (or X_{2}) is now not exponential but the weighted combination of two exponentials with weights $\left[1+\frac{\lambda_{3}}{\lambda_{1}+\lambda_{2}}\right]$ and $\left[-\frac{\lambda_{3}}{\lambda_{1}+\lambda_{2}}\right]$.

By taking likelihood function we obtain the Fisher information matrix $I\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ has elements given by Hanagal and Kale (1991).
$I_{11}=\frac{1}{\lambda^{2}}-\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}+\frac{1}{\lambda_{1}\left(\lambda_{1}+\lambda_{2}\right)}+\frac{\lambda_{2}}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)^{2}}$,
$I_{22}=\frac{1}{\lambda^{2}}-\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}+\frac{1}{\lambda_{2}\left(\lambda_{1}+\lambda_{2}\right)}+\frac{\lambda_{1}}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)^{2}}$,
$I_{33}=\frac{1}{\lambda^{2}}+\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)}\left[\frac{\lambda_{1}}{\left(\lambda_{2}+\lambda_{3}\right)^{2}}+\frac{\lambda_{2}}{\left(\lambda_{1}+\lambda_{3}\right)^{2}}\right]$,
$I_{12}=\frac{1}{\lambda^{2}}-\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}, \quad I_{13}=\frac{1}{\lambda^{2}}+\frac{\lambda_{2}}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)^{2}}$ and
$I_{23}=\frac{1}{\lambda^{2}}+\frac{\lambda_{1}}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{2}+\lambda_{3}\right)^{2}}$.
The selection procedure based on counts is the selection between the two independent components. Hence selection procedure R_{1} is not appropriate to use in Block-Basu model. The asymptotic normal distributions of $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ and $\left(\hat{\lambda}_{2}-\hat{\lambda}_{1}\right)$ can be obtained. By central limit theorem
$Z_{2}=\sqrt{n}\left[\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{2}\right] / \sigma_{2}$ and $Z_{3}=\sqrt{n}\left[\left(\hat{\lambda}_{2}-\hat{\lambda}_{1}\right)-\mu_{3}\right] / \sigma_{3}$
have $\mathrm{AN}(0,1)$, where
$\mu_{2}=\frac{\lambda\left(\lambda_{2}-\lambda_{1}\right)}{\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{2}+\lambda 3\right)}, \quad \mu_{3}=\left(\lambda_{2}-\lambda_{1}\right)$,
$\sigma_{2}^{2}=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{2}\left[\left(\lambda_{1}+\lambda_{3}\right)^{2}+\left(\lambda_{2}+\lambda 3\right)^{2}\right]-\left[\lambda_{1}\left(\lambda_{2}+\lambda_{3}\right)-\lambda_{2}\left(\lambda_{1}+\lambda_{3}\right)\right]^{2}}{\left[\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{2}+\lambda 3\right)\right]^{2}}$
and $\sigma_{3}^{2}=I^{11}+I^{22}-2 I^{12}$,
where $I^{i j} ; i, j=1,2,3$ are $(i, j)^{\text {th }}$ elements of the inverse of the Fisher information matrix, $I^{-1}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is obtained for different
values of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and ARE of the selection procedures in BVE of Block-Basu model is given below.

Table (4.1): ARE for different values of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ as given in Hanagal (1997).

λ_{1}	λ_{2}	λ_{3}	ARE $\left(\mathrm{R}_{3}, \mathrm{R}_{2}\right)$
0.1	0.16	0.02	0.9840
0.11	0.15	0.02	0.9948
0.12	0.14	0.02	1.0023
0.13	0.14	0.02	1.0041
0.1	0.16	0.03	0.9775
0.11	0.15	0.03	0.9932
0.12	0.14	0.03	1.0060
0.13	0.14	0.03	1.0090
0.1	0.16	0.04	0.9665
0.11	0.15	0.04	0.9920
0.12	0.14	0.04	1.0107
0.13	0.14	0.04	1.0150

Conclusion: It is observed from above table (4.1) that the selection procedure R_{3} based on MLE's performs better than the selection procedure R_{2} based on sample means when λ_{1} closed to λ_{2} otherwise the selection procedure R_{2} performs better. We also observe that the selection procedures R_{2} and R_{3} are equally good.

Scope for future study: As a future research work, we propose to compare various selection criteria as given in section 4.2 for various bivariate lifetime distributions by using probability of correct selection. Simulation study will be conducted to compare various procedures.

Appendix:

' C ', Program for lower tolerance limits.

\#include<time.h>
\#include<conio.h>
\#include<stdlib.h>
\#include<math.h>
\#include<stdio.h>
void main()
\{
FILE *fp;
int $\mathrm{i}, \mathrm{j}, \mathrm{n}=100, \mathrm{k}, \mathrm{l}$;
float [100], thet $=25.0$, theta[5000], u,temp, sum,tavg, L, $q=0.05$,thetahat;
fp=fopen("rmm1.x|s","w");
randomize();
clrscr();
for $(l=1 ; 1<=1000 ; 1++)$
\{
for $(k=1 ; k<=n ; k++)$
\{
$u=$ (float) random(RAND_MAX)/RAND_MAX;
$t[k]=-t h e t^{*} \log (1-\operatorname{pow}(u, 1.0 / 5.0)$);
printf("ln t[k]=\%f", t[k]);
\}
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$)

```
    {for(j=i+1; j<=n;j++)
    { if (t[i]>t[j])
            { temp=t[i];
                    t[i]=t[j];
                    t[j]=temp;
    }} }
sum=0.0;
fprintf(fp,"\n %f",theta[1]);
    t[0]=0.0;
for(k=1;k<=n;k++)
    {
            sum=sum+(n-k+1)*(t[k]-t[k-1])/n;
            fprint((fp,"\n %f",theta[k]);
        }
            tavg=tavg+sum;
print(("nn simulation No.=%d",l);
    L=L+((-2*n*}\operatorname{log}(1-q))/(156.4321472))*sum
    fclose(fp);
        }
printf("\n thetahat=%f",tavg/1000);
    L=L/1000;
    print("\ln L=%f",L);
getch();
    }.
```

