CHAPTER-II
 FIXED-WIDTH CONFIDENCE INTERVALS :
 PURELY SEQUENTIAL PROCEDURES



CHAPTER-II

FIXED-WIDTH CONFIDENCE INTERVALS:
PURELY SEQUENTIAL PROCEDURES

2.1t Introduction: ~

This chapter deals with general methods of constructing the
fixed-width confidence intervals, which are purely sequential in
nature. The problem of construction of fixed-width confidence
interval for unknown mean of the population with unknown Ffinite
variance has been considered by Chow and Robbins{1%$6%9). We study

this procedure in section (2.2). Also the asymptotic properties

of this procedure are established.

Sometimes even though there is no nuisance parameter, the
fixed sample size procedure dose not work. For example, the
construction of fixed-width confidence interval for variance of
the normal population with zero mean. In all such cases 'a
stopping rule can be adopted which will provide a bounded Tlength
confidence interval with prescribed coverage probability.
Khan{1967) gives the general method of constructing the
fixed-width confidence interval of prescribed coverage

probability for an unknown parameter of a distribution involving
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. possibly, some unkown nuisance parameter. He assumed that
distribution involved will he assumed to be known except its
parameters. we study this procedure in section ({(2.3).The
asymptoﬁic properties of the procedure are studied in
section{(2.3.3). The procedure ﬁé i1lustrated with norma’l
distribution and exponential distribution.

In section{2.4), we extend the method due to Khan{i1969) to
construct a Ffixed-width confidence interval for gl{e), a
continuous differentiable function of 8. The method is
F1Tustrated by constructing a confidence interval for reliability
function R{t)}, with exponential life time distribution. For the
same problem, simulation results are reported in the last

section (2.9}).

2.2t Fixed~width confidence interval for unknown mean of Lhe

population:

% s e e o

Let Xl,xz,....be a sequence of i.i.d. observations From some

djggbUTation with p.d.f. f(x;y,az). We have to construct a

4t confidence interval of prescribed width 2d (d>0) and prescribed
coverage probability {1-a), (0 < a <1), for the unknown wean u of

the population, when az the population variance is unknown.

be
ase 1: Let the variance of the populatqion 02‘}4 known, then the

confidence ‘interval for p with width 2d and the coverage
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probability (1-0) is constructed as follow.

For any n 2 1 , define

and propose the interval

et constant 'a’ be such that,

(Zn)ﬂ"iz'f'%xp(-uzlﬂ du

That is, Pr IN(O,1)]| £ a

L

]
P{ In > u] = iﬁ{ )(n -d =< u =

p [ ] R; -

oL

Then,

tA

A sample size n is given by ,

{t—ot). o

{1—-c).

-+d}
n

P&nilz | X =y |/o s (n"2d} 70 }

n = Smallest integer > (azoz)/ dz.. e 02.2.1)

From (2.2.1) we have,

tim _ d°n
d-+o

= 1.

2 2
a‘o

Hence, it follows from the central 1imit theorem that,

«~32
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)

I = u} = (1-¢0).

gl

o o~
¥ -
Q
.

. . 2 .
ase II: Now n this case we assume that o s not known. It can
}be easily seen from case(l) above, no fixed sample size procedure

exists which gives the desired coverage probability. In this case

. . 2
we define, an estimator of o to be,

rl
v = n 'Y ¢ X, - X )t +ﬁ e (2.2.2)
n . ™

L=

lLet a&,az...., be any sequence of positive constants such

that,
ltm a = a
be]
n <0
and define,
N = smallest k 2 1 such that vx < dzk/(a:) c..02.2.3)

Theovrem (2.2.1):Chaw and Robbins{1965).

— ———

Under the sole assumption that 0 < o?< ® ,

lim d°N e (2.2.4)
1 a.s.

|

d~o 2 2

lim P{ In > u } ={1-ct}. (Asymptotic consistency”? ...(2.2.5)
d+o

Lim d E(N) CAsymptotic effictency) .. (2.2.6)

a.s.
d+»0o 2 2
a ¢

]

23



|

Remark 2.2.1: In case of distribution function of X! is

continuous, definition of Vv in (2.2.2} can be replaced by,

Vo=l Tx, - X% ca02.2.7)

Before proving the theorem (2.2.1) , we prove the folliowing

A
lemmas , on whichlproof of the theorem is based.

Lemmai{2.2.1): Let ¥ (n = 1,2,...) be any segquence of the random
n

variables such that yn >0a.s. and limy =1 a.s. Let
A
n-+Q

fin) be any sequence of constants such that

<
‘Vf(n) > 0, lim./(n) =

[ahadé ¢l
<1
and X '
iwﬁ”‘
tim { _Ftn) ; - ¢
N fFin)-—-i )
and for each t > 0, define
N = N{(t) = Smallest k 2 1 such that Y, < flkl/t. .-.(2.2.8)
i wo P
Thus N is well defined andlyon—decreasing function of /t, then
lim N = a.s. lim E(N) = © .-.12.2.9)
L+ " tam
and
tim | FIN) ce.(2.2.10)
et 1 a.s.
t » L J
Proof:-

s ————
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By definition, for each t; t>0

- Fik
N = N(t) = Jeast integer k2! such that yk < é )
. lim
if t <t , then N(t } £ Nt ) a.s., and N(t} = w.
1 2 1 2 L +@

tim
Also as £t » v, N + w a.s., EN » w a.s., therefore {10 E(N) = ro.

To prove (2.2.10), we have,

Y, < {j_ﬂgﬁ’)} _ [Fn) 3 {f FiN-1) ‘}
it ] \f(N—l)}.‘ F(N) ]
" ) 3 i - 3y
< [EM Xy o osineey o [P o) Y
[f(N—!)A ] t J
Thus, taking l1imit as t+ © we have,
m { )
tem i.fl..’.‘.‘..’...} =1 a.s. c02.2.11)
t -+00 t

- Lemma(2.2.2):~ If conditions of the lemma {(2.2.1) hold and

if also E(Sgp yn) < w , then

tim _{ FIN)
e} = | a.s.

L L t J

Proof:- Let Sgp yn = z then E(z) < o.

Choose m such that,

(n—1) <2

{ fFin) ) Ln > m.
Fimt) |

Then for N > m we have,
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FIN) Y f FIN) O FUIN-1)
t } (FN-1) &

]
} < 2y < 2z.
3

{
-<
L N—t

On the other hand, if N { m,

. 5 / |
e b= o ‘J3~l~} £ FOH+F(2)+. ... +F(m), t 2 1.
t J 1Znlm L t §

( Y
i_féﬁl_} < 22+F(1)4. . .+F(m).
, J

If E{ z ) < w

tem [ FIN) 3 [ lim f PN Y] L

m-—'
o TE T T e T ]

Above result follows by using (2.2.11) and Lebésgue(;? dominated

convergence theorem{1.2.3}.

lemma{2.2.3):—- If the conditions of lemma (2.2.1) holds.: If

o f 3
Lim i_fiﬁl-} =1, if for N defined by (2.2.8),
n-0 n j

ECN)<Co (all t > 0)

| S p—

vae(2.2.12)
lzmsup

. iF(" Y >/ ELN )}
and if there exist a sequence of a constants g{ n ) such that,

gl n) >0 and tinm

= 1 >
s gl n ) " yn g(n)yn__1

then, Lim E(N)

= 1. . .2.13
L 400 t (z.2 !
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Proof:— for any £ > 0 {0 ¢ £ ¢ 1), choocse m

so that,
finm1) 2 (1-2)Ff(n)
z (1=-¢)n, for nZm.
gin) = (1-g)
and
E(NyN) < (15¢) EI(N), for t 2
On the set A = { N 2 m} it foilows that,
{' (1-£)° } N = (1IN {“(_m.m ‘;
J
< g{NIN ”:'”- < gNINy

Hence,

“_e’ [fn] < 91'3 jn s fuy, <
A

f
J N
A

2 [ E(Ny )
“:’ E(N-m) S {mem

-

IA

l E{N-m)

from (2.2.9) and (2.2.12), it follows that,
(1_6)2 limsup EI(N) Limsup

This implies,

27

onr—

E(NYN)

2 E(Ny ) )
{(1-€) . M
— {u s ElNy ) = {«-m—--—-j

N Ely )
N

E{N)

{ )
o ——— <],
t -2 t L4 E(N)

m.

<

Ny
N



2 limsup E{N)

{1-=) < 1. c..(2.2.14)
t 4 t
Now let
y = min{lt , y )
N 0N
then
Lim
0« y* <1, y" 5y and ''= 1 a.s
ial bRk 4t n
Define
N . . Flk)
N' = N"{t) = smallest k * 1 such that yk b R

From lemma (2.2.1),

E{sup y' ) = 1
n

n

tim EF(N) _  Llum E(N7)

= it — it

t 0 t t 300 t

but since y' = ¥y , N'S N.
3} n

Hence, E(N') < EI(N).

Thus,

Liminf € (N) . liminf E (N')

t‘* w t - t o0 t 0--(2.2.15)

thus, from (2.2.14) and (2.2.15), we have,

At

ltm  E(N)

= 1.
1@ t

In the following we prove the theorem (2.2.1).

Proof of theorem (2.2.1):
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v $ g -
n [ n N 2 1
et ¥ & e = e L (X, =X ) +1
n 2 2 | 208 Tn— " |
o ne L=4 "}'\j
naz azo 2 l...(z.z.la)
f{n)=-—;, t= - }
a d
n
then (2.2.3) can be written as
. fik)}
N = N{t) = smallest k 2 1 such that yk < Er—
By lemma (2.2.1}, we have,
: i 2 Y
I {~f«é3‘-?—-3 = ;"'"‘z; »»‘3;-'57; a.s....(2.2.17)
L+® L J "o L a“p" J

which is (2.2.4) of the theorem.

Now,

[ nil?sz+Xz+...+Xn~Np§ < nt/24q 1
] <

g cr J :

P( I = p} =P

L n 7
From (2.2.17),

dn:/z N
+ a and 3" + 1 9n probability.

Hence, from the result of the Anscombe({1952), it follows that as

t» ®,
1/2
+X 2+, . .+
n__|xs xzo Xo @] £oy10ws NLO L 1),
Hence,
f ] ~rz o 2
ttm PL I »ul = (20) Jf exp(-u"/2) du
d-»o '- n j “a

= {1-g).

29



which is (2.2.5) of the theorem.
Now to prove (2.2.6}, we have from Temma (2.2.2},

whenever the distribution of X{ is such that,

3l

E{ =g n“E( X, - X )2} < w . ..(2.2.18)
n [ n
L=t
for then
tim [ f(N) ..€2.2.19)
{ ———-- } = 1 a.s.
t 20 L t J

and from the fact that Ffunction f{n) defined by (2.2.16) 1is
nroin). It follows from (2.2.18) that,

, o lLim { _EAN) ‘} _lim { d’E
L

t 40 L t d-n 2
. a o

-4

|

™~

}
}
For {(2.2.18) to hold, it is necessary that fourth moment of xi to
be finite. However using lemma(2.2.3) we will prove that (2.2.6)
holds without such restriction.
fin)

Fix t> 0, choose m such that — 21 {n 2 m) and choose & >

such that,
(n=1)f{n=1) = &n° , (n22),

and define,for any r2m,
M=min(N , 7).

By Wald's theorem for cumulative sums, we have,
M

-E r (X, - y)z

]
LA e

-

= EME (X, - w?

30
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Hence,by (2.2.16),

175 E {

E{My }
M

< EM + (1757).

Put gi{n) = {n-1)/n, {(nz2), then
hald &
! X -xX
yn” 2 7 n—1
no FRES
-
= j—— 1y
n n—1i
R = gln) y _
Hence,
=T
E(Myu) J ryr +
{NO>T])
> [rfir) ]
Lo ]

v

Hence by (2.2.20), we have

[25N<T]}

31

M
?
.4&(xt

f
TPIN>T] +’
J

NP{NO>T] +;§~

-

2
EM o .

X )2+ )

1
M }

... (2.2.20)

fw,

INST)

PIN > 71 + f Ny
N
[2<NsT)

[NG(N)F(N—1)]
.

{2 =N=5r)

f 2
J N .
{23N5r]

[ 2]
L 2]
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Now letting re+m , it follows that

lim .
f N £ @
T30 4

{N=T]

E(N)} =

which is first part of (2.2.186).

By Wald's theorem

E{Ny )} = E(N) +
N

P,
L2

o~
~
N

so by (2.2.9), we have,

R
ENy } {E[NJ] 1,
N ]

which is5 second part of the (2.2.16). That is a1l conditions cof
the Temmal(2.2.3) holds and hence,

vim f EOD Y _lim d%en )

o= t 00 i—_f_**j d-o i e } a.s-

which is (2.2.6) of the theorem. Hence the proof of the theorem.

Remark(2.2.2): From theorem (2.2.1) it Follows that the purpose

of the term n“1 in (2.2.2) is to ensure that yn = vn / o > 0
a.s. This fact i1s used in lemma (2.2.1) to guarantee that N + o
as t 2 wa.s. If distribution Function of Xi is continuous the

definition (2.2.7) is equally good, the only change being that
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176° in the proof of (2.2.6) disappears.

If the problem is to construct a fixed-width confidence
interval for the parameter of -‘interest, not necessarily the mean
of the population, we give the general method 1in the following

section, which i9s due to Khan{1969).

2.3, General Method to Construct a Fixed Width Confidence

Interval for the parameter &:

Let f(x;él,ez) be a p.d.f. of a random variable X with real
vg]hed’parameters 91 and 82, where 92 is regarded as a neisance
paramoter. We have to construéE a Ffixed-width confidence
interval for parameter 81 of width 2d (d>0) and with prescribed
coverage probability {(1-o),{0<aK1), when both 81 and 92 are

unknown.

2.3.1. Assumptions,Notations and Preliminaries:

Let fe(xi,xz...,xn) be the Jjoint probability density/mass

function of random variables xt,xz,...,x . ond 8 = (sfea). We
h n Y

-

assuﬁéfthat all regularity conditions for maximum likelihood
estimation(MLE) of e£ 82 are satisfied. That 1is

(1)Thé'parameter space ©®, is non—-degenerate open ‘interval in Ri;

i2§fbrt£1most all xi,x?,t..,x and all @ ¢ ©,
, 4 n

33
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f . » ey
b a(x1 xz xn)
66{

, (= 1,2)

exists, the exceptional set being independent of %.

(3)

{

A A ’ w

o [ . rt} i _
~5§; Jfg(xi,xz,...,xn)dx = T fe(xt,xz.-,,xﬁ)dx. a

’( . a r A f s
.(4)"‘;}":“" jtj,fl_;()(t,)(:,---,xn)d)\ = J*;:;ZJ‘——. t’.fg(xt,xz,...,)’.”)dx-’\
t A N i

o

{5)The elements of matrix

[

.
] by ,(6)7
CHEEE U VA

existf and are such that A, is positive definite.

A

-

where

fdzlog FoOX X ,eaon )

] -— F e 1 2 ™ = 1.2
i 9‘. ETONE T j tes T lesy

L }

exists and are such that Ae is positive definite.

Let N donot91 the stopping rule and n denotes the fixed size
random sample. The Fisher's Iinformation matrix is
I =nlt |, iuj=1.2,

n Lir] 7

and we assume that [ij} is positive definite. and
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Let éi(n) and éz(n) be respeétiveTy the MLE's of 91 and 92 based
on the random sample of size n. Since we consider the regular
estimation case, the ét(n) is asymptotically normal with mean 91
and variance Xiiln , where sz = Azz(ex’ez}' since in general

1. .'s are functions of & and 8 .
i) 1 2

Let I = { g{n) - d , 8 (n) + d ]
n t 1

as a confidence interval of width 2d for ¢ ,
1
and define,

N CRCR
n = Smallest integer 2 2' A n, {say).
d

... 02.3.1)

From (2.3.1) it follows that,

2
tim { dn }

0 1A% e .6 j
11 b4 2

S
—

tim F oy el ol g —dco<oin +4d
n 1 d+ O [ 1 1 1

tin [ i —ol<al
ds 0 PLI gtn) - 6| <d |
t/2,"
[ jo,tm -6, | 9@ a¥n } }
d-+0 t/2 - 172
L »,,t8,.0) SPLCRLIC M
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= P{ %N(O,l)} < a’}. a'>a,

af &= /

/2
(e, )"
11 1 2

where a' =

Hence

lim . . .
des © PL In > .t‘j pred .

The n0 is considered as optimum sample size if )11(9!, 92) are
known. This is not Justified in strict sense but it will serve as
a standard for comparing the stopping random variable in a

sequential procedure to be adopted. 1In some cases nn might turn

out to be optimum if only 92 were known and Au‘ei,éz) =x (8 ).

2.3.2: Stopping Rule and its Asymptotic Properties:

Suppose that 81 and é; are unknown. In this case fixed n. as
determined by (2.3.1}), will not be avaiiable to gaurantee
fixed-width 2d and coverage probability 1-a«. Hence, analogous te
{(2.3.1), we adopt the'f011ouing sequential rule.

Let m be a given fixed positive integer. Define
N: Starting with n2 m, stop whenever

a’x (@ (m),8 (m))
N1t 1 2 }
J

...(2.3.2)
2

n 2 inf (‘n Zm:n 2
L d

and consider
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I =(em)_-—d,em;+d7
N 1 t }

L

as a confidence interval for 8{
In the ,f0110winq Jemma wo oprove that the above sequential
procedure terminates with probability one under the assumption

that Aii(ex,ez) < ., That is the sequential procedurg is closed.

Lemma:(2.3.1}): Under the assumption X (8,6} < =, the

sequential procedure terminates with probability one.

Proof:~ Since we consider a regular estimation case, under the

(2,61

*

regularity assumption, X (8 (n},8 (n}} convergas to A
_ 11t 2 11t 2

in probability. Hence the right hand side of (2.3.2) tends to n0
with probability one, which impliy that,

PIN = )} = 0, That 1is PN < m ] = 1

In the following theorem we prove some asymptotic properties of

the sequential rule defined in (2.3.2}).

Theorem (2.3.!{: Under the assumption E{sﬁp Rn(aitn},Gz(n))}<®,

tim N
d,’o '—";"" hand 1 a.s. 900(2t3-3)

Lim P[ IN > 61} = 1~ct» (Asymptotic comsistency) ...(2.3.4)

d+0
e

L Eiﬂl = 1 a.s. (Asymptotic efficiency) --.42.3.5)
d-0 n0
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- - -1
Proqi: To prové (2.3.3), Let yr ={&u(61(n),92(n)} { A“}

?

2 azk (e ,8 )
t "2

fin) =—— and t =——2% in lemma (2.2.1),s0 that the

2 2
a d
2]

conditions of the lemma are satisfied.
Hence

tim F{N) _ o lim N 1 a.s
t t d-0 i T

Q

N
To prove {(2.3.43, we observe that.-%£l + 1 a.s. as t» w, and
N

hence n‘ti -+ 1 a.s. as t + w,

R i

where nt = {t] greatest integer < t.
By taking Y = & (n), F(x)= 20x) =(21) "% expl~u’/z) du, the
-0

condition {C-I) of Anscombe is evidently satisfied by 81(9), by

1/2

> -
taking wn ={ ;1] and €& = 81. el(n) also satisfies the

condition (C-IX). Hence by the theorem of Anscombe(1.2.1}, it

follows that,
1/2

n ~
{ : ][em)-—e]¢u(o,n. as to .
t L 2

RRAERE

Also from (2.3.3), we have,

B 4 a (aos-), as d ¥ 0-
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Therefore,

, . : : N(t) . 1/z2 1/7)
Lim | . tlim f( o) B e A NCEN
g0 P{-IN 2 eij 0 {LL A, ] le (Nte))-6 | = d(—;::—:-) J}

pl|neo,1)] £ al

L

h

""ay

and (2.3.5) follows from lemma (2.2.2).

Note that (2.3.3) and (2.3.4) are universely valid and assumption

of £ 1%UP % (n)
L n 11

J

] < w is required only Por validity of (2.3.

5).

However, in some cases it might be possible to prove (2.3.5)

fsup

without the assumption E [ n An(n) } < w by using Temma

(2.2.3).

In the following we apply the above method to normal

exponential model.

Examplel(2.3.1}: Let xl,xz,...x be a random sample of size
2]

from N(u,o?) ,i.e. from distribution with p.d.f.

-1/2

1 ]
f(x;u,a?) ={ (2n0°) exp{ - — {x - p)z pp @< x < - ,
i U 20 -0 < u<w, 690,
0 sotherwise.

where both u and &% are unknown.

and

n

{i)Consider the problem of constructing " the fixed-width
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confidence interval for g of width 2d and confidence coefficient
atleast 1-a.

Take 91 = u and 8_ = o°. The Fisher's information matrix (l,.}

2 {2y

t,7 = 1,2, is obtained in the following.

Here,
) .2 i 2
logfix;8 ,8 ) = - 1/21log (2w ) — —— (x - u)’.
12 2
2
Therefore,
Slogfix;8 &8 )
N 1. 2
o6
t
a8
2 1 2
= —|= 1/2l0g (2n7) - -~ (x - )
du| 2¢ }
1
= r—um— (x - u )].
B J
Hence
z
! = Ef- (x - )]
11 | ” i
= ~l~ E{x — pt)
P H
[e4
- mi
z
o
2
fo lagf(x;en.azl 1
lzz = Z“21 =E - :
06 o8
1 2
Now
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L]
prorme—y
I

Hence

Now

Hence

F 9 (@ -
21298 1050} ]
a g T
_”[“ } ]
8 ‘(v-l., {x - ;_r)) }
o™ b ot J |

(x - u)

3

fotogft x;(:?1 e )

Jrea ¥

2

o’ |

N _(x-p)z}

- | - 17210g (2r0%) - .

Hence the Fisher’'s information matrix 4s given by

41
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N

and X (8,8 ) =86 = .
1t ot 2 2

Noxt we Ffind the MLE of & and 82.
1

The 1ikelihood function is,

-n/2 - n
2 f 1 2
L(Ql.azli) z{ZW lod } exps— —-= L, Ix = p }

M4

o207 u=t 4

and the loglikelihood function is given by,

n 2 i -
loglte .8 |x) = = ——logl2n) — —-loge” - — T (x, - u)’.
S A 2 2 2 2
4 L=

Differentiating with respect to 91 and 82 and eguating to Zero, we

have,
630gL(61,62) 1 Iy
Era =0, =2 e L%x{x‘ - 1) =0
L g
- - - N
. g = = = E n. I’
e aI(n) 1] xn (tztx }/n
n \o
) » 1y& o
dlogt(ei,ez) ) n ,sztxi - ) ‘yukL
2 20 2z
- “2 O - 2
w8 {n) =0 =3 (x, -~ %X }/n.
2 L= 3 ™
- ~ n92(n)
Instead of using ez(n) we can use 92(n) = '~;:T—~ which is
the

unbiased and also consistent estimator of 62. Hence we have
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following stopping rule

iv

N="mf{n?:2:n
L

After terminating the sampling we define confidence interval to

be [X -d, K +al.
N N J

L

{ii)Now consider the problem of constructing the Fixed-width
confidence interval for o° of width 2d and confidence coeffiéient
atleast i1-a.

Take 61 = o'2 and 62 = i, then the Fisher’'s information matrix is

given by
fefz /2 0

2|
J

{‘ 0 gt
1

f
k

%,

| ST

and A (6,8 ) = 267} = 20%.
11 1 2 1i

Hence the stopping rule is given by

2 2

Zansn -

N = inf{% 22 2 A Z e— } .
a® -

After terminating the sampling the confidence interval is

[Sz-d, sz+d}.
N " N

Example(2.3.2):Let Xi,xz,...xn be a random sample of size n from

exponential distribution with parameter That 1is from the
p

distribution with p.d.f., w9 i B

S
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8 expl-fx) , x = 0, 0.

(
Fix;8) ={
L o

, Ootherwise.

then the Fisher's information is given by

2 4
I6) = - E{ a losf(x;&) ]
L g2
logfix;8) = logs - Bx.
~2 ogfixser = 8t - x . \
dz . -2 v\)"g’(}
— togfix;8) = - 8 .
a e
Hence, ;
z i ;
Loyar P ¥ e —
1(6) = - s{ g roeflxgt) } = a2,
- ae®

To find the MLE of &, the likelihood and loglikelihood functions
are respectively given by

n

L(8|x) = e"exp(-& % x ),

izt

n
logl(8|x) = nloge - eigle.

Differentiating with respect to & and equating to

zero,
we have

dlogL (8]x)
o6 =0 % .
" E; W“Aﬂ
a2 n/8 =% x, = 0. {
1=1 & i
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Hence from (2.3.2)the stopping rule is given by,

{ _ a b az,??.
N=dnf{ n22:n2-=—m} and n = —.
L t 4 d?,

-

The hypothesis E{igg xu(n} } ¢ w is true in example(2.3.1}

which follows Tfrom following Tlemma which 1is proved from the
Winner's theorem. However, the hypothesis 1is not true in

example(2.3.2) and hence {2.3.5) cannot be concliuded from

lemma{(2.2.3).

Now First we state the Winner's theorem (without proof}.
T ———————

~

Theorem{2.3.2): Let [ X n 2 1 } be a sequence of i.i.d. random
N

. - T T + .
variables with E|X | <o or E|X | leg |X | ¢ w, according as i
n N 2]

or r = 1 then,

sup 1 n r
{nZI r ‘i§ xi! } < w
n

and conversely.

Lemna(2.3.2): Under the assumption 0<o;ﬂn

glsuwpgal o o

[ n21 "n |

n
where s? = (n-1)ﬂl2 (x, -X_ )%
n t “n

L=y

Proof: For q = 2

— - ——
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S = - X
1 (n—l).z (X{ n)
t=1
1 ) 2 n =2
= T e X T en .
L=t
Since,
2 } n 2 - ] o >
2 & — x - o PR ST - “a..
sn {n—1 )(‘.?1 ) {n-1) Xn {n=-1) xn an
2 1 ‘ 2 -~
X e TOXT 4+ X
1 {n—- )‘.i“‘, ~
Therefore,
iai
Sup _2 X2 + Sup ~~lmw-2 X2 + Sup 1 n 2
S = N (n-1) ¢ L o= LX)
nZ2 o on ns 2 =2 n2t X . L
n o1
Hence, -
Su 2 2, 4+ .2 .
el uP g ] <o if EX'log |X|7 < @ and ext < w,
{nZ2 "n}
2.+, .2 2 2 .
but EX"log |X| < EX” < w and EX" are true for the normal

distribution with finite variance.

Now we assume that q > 2 then

q a/2 . r 1 i =2 ]QIE
Sn ={S ) = l_ Tf;:.‘m‘.szh + )(n J
q/z T g/2 q
< 2 L | ﬁ x?] +|X | ]
Lia-1)072420 %) n' ]
a’z¢ q/2, q n a/2y _ 9
<2 2 {px+ =2l Lo L
S R T Rt I RS
Therefore
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which 14s true 1in case of normal distribution with finite

variance. This completes the proof of the Tenma.

&
Remark(2.3.1): In case of family of distribution involiving single

parameter the stopping ruie N as defined in(2.3.2) takes the form

2
[ a. 3
N = inf i NZMm: N ¥ ————e— },
. d'1te )/ :
n
where
- -
tier= - g] 2 1egfOGEN T 1y B(n) 4s MLE of 6.  IF Fisher(s) 0

L™ er |
information I(8) is independent of &, the sequential procedure is
not necessary, since the bounded length confidence interval of
prescribed coverage probability can be based on the normal

o WOUNR NmGRnL
theory{~ In general, sequential procedure to construct

fixed-width confidence interval of prescribed coverage
probability is not required when xq}ei,e?) = An}ez) and 82 is
known.

In the following section we extend method due to Khant1969)

to construct a fixed-width confidence interval for gi{8), where g
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is a continuous differentiablie function of &.

2. 4: General

ht )

Method Lo Constrawt a2 Fixerd - Widih

Conlidemre

Interval tor the parametric tunction gosr:

Let xi’xz’ ... -be a sequence of i.i1.d. random variables

from
distribution with bp.d.f. fFf{x;8). We have to construct a
fixed-width confidence interval for g({sg}.

Let ¢ = g{#) be a continuous differentiable function of &,

=

that s, g'(#) # 0 and Let € = g—t(rj»}

togﬂ)@)

gln) eoxist then

logfix;g (£))

il

Logfixid)e
Now by chain rule,

dlogf dlogf gy

i

&4

a9 i (o]
and as
a¢
6" # 0, we have,
dlogfF ¢ Qlogf
E[-69 ] = 0, if and only if, E[n~56~_ j = 0.

Further

alogf > dlogf 2. ap .°

[ | -l | [=]

That is,
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, d¢ ]2
I(6) = I(¢) [«§§—J )

L

Hence the Fisher's information for g{#) is given by
4 -2
;o

I{p) = I(Q)L*Eﬁ"}

Now if 8 is MLE of 8 than g{#) i3 the M.L.E. of g{(F). Then from

{2.3.2) the modified stopping rule s given by

( a* ;
N=dnf{nzm,n2 — o . .(2.4.1)
d*I(gie )
1]

and we propuse the interval

S 5 )~ . f>]
IN [ gN(&) g , g&(8)+d ], for &,

-~

wher gN(H) is based on N observations.

We illustrate the method by constructing the fixed-width
confidence interval for reliability function 49n the following

example.

Examplie.{2.4.1):3Let xt,xz,...,x be a random sample of size n
! i p]

from exponential distribution with mean &8, that is from

distribution with p.d.f. W

F(x;0) ={}é“ exp({-x/8) , x =2 0, &> 0- :}°‘®b

0 , otherwise.

We have to construct a fixed-width confidence Jinterval for the
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reliability function R(t), that is for PQ[X > t}.

-

The Fisher's information for & is given by

Ie)= - El ,éiiﬁﬁgiﬁifl 1.
L 36" ]
Now,
Hence
\
Flosfix; @) 9\,w"“ :
B e ,...3.(.._.. r\/
Wi 8 *32 \A
and
& Zlogfix:6)
er Tl g 2 _ 1 ) 2x ’T
(3'82 "-f‘z ‘-’1 t:)z I - -}
Hence
2 “loffin;e) -
1(5)=- s{ - ] =L s{ x ‘,1.
[ e | et L e
_ 1
&
Let R(t) = g{@) = PQIX > t} = expi-t/6a),
then Fisher's information I{(g{3)) is given by
op . -
. = y )} —e .
I{gie)i= I{¢) = I )[ 35 }
where ¢ = gi(&).
NOw
. d¢
R NN
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Hence,

I(gi(8))= Iig) = (a/t) axpl2t/a).

From example (2.3.2), similarly we have x as the MLE of A. Since
n

R(t) is continuous function of &, hence MLE of gi{8) is given by
g(B) = exp(—t/;n).

Hence from (2.4.1), the stopping rule is given by

2

¢ a t

NI N
L

iz d exp(Zt/f )
n n

and we propose the interval

I B )
IN = L gn(e) d , gN(9)+d ), for 6.

In the following section we Teport the simulation resulits

for example(4.2.1).

2. 5. Simulation Recultis:

An algorithm used for simulation study is providéd in
appendix (A-I) as well as the corrosponding BASIC progfam is
provided in the appendix (A-II}. The following table gives the
simulated resulits for different values of 8, t and d, for a = .05

(table No. 2.5.1 to 2.5.5 ) and for a = 0.1 (table Nos. 2.5.6 to
2.5.10). The results are based on 500 simulations. R{t) 1is an

actual value of reliability function.
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Table 2.5.1

3 = 4 t =3 R(t) = 0.4723666
d E(N) vari{N) EIR(t)]
0.20 , 10.864 10.5295 0.4240461
0.18 13.414 17.28662 0.4308892
0.16 17.16 26.42243 0.4323234
0.14 22.478 42.87348 0.348104S
0.12 30.916 T77.4125%6 0.4364415
0.10 45.206 . 135.5994 0.4417724
0.08 69.652 408.8706 £.4336736
0.06 128.82 700.8223 0.4524%93

Table 2.5.2

8 = 7 t =5 R(t) =0.4835417
. d E(N) var{n) ELR({t)]
0.20 11.484 4.117737 0.4745196
0.18 14.044 6.662064 0.4785355
0.16 17.836 10.65308 0.4836684
0.14 23.794 11.96753 0.4780310
0.12 32.508 16.17355 0.4833384
0.10 46.582 25.24707 0.4872514
0.08 72.706 61.41553 0.4864213

0.06 130.224 76.02735 0.4884756

Table 2.5.3

= 15 t=13 R(t)=0.4203504
d E(N) var(N) E{R(t))
0.20 11.916 4.128937 0.3908082
0.18 14.788 6.851044 0.3951396
0.16 18.888 12.33145 0.3975079
0.14 24.808 17.70709 0.4023741
0.12 34.136 28.41345 0.4107821
0.10 49.89 39.97803 0.4094075
0.08 78.596 71.37305 0.4135697
0.06 140.81 . 84.98633 0.4179109
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Table 2.5.4

8 = 27 t = 23 R{t) = 0.4266242
d E(N) var{N) EIRIL)]
'0.20 11.822 4.342331 0.4078377
0.18 14.9 5.802017 0.4104059
0.16 19.024 9.367432 0.4137769
0.14 25.138 10.57495 0.4144559
0.12 34.314 22.4115 0.4160253
0.10 49.748 32.94043 0.4185827
0.08 79.018 17 .17432 0.4242450
0.06 139.66 192.8125 0.4198375
Tabl (54 ac 60‘3
e = 35 t = 33 R(t) = 0.38%6134
d E(N) variN) ELR{L)]
0.20 11.734 5.599228 0.3545625
0.18 14.538 10.26854 0.3509967
0.16 18.73%6 15.57831 0.3584123
0.14 25.272 16.69403 0.37531848
0.12 34 246 38.83765 0.3724770
0.10 20.382 39.95966 0.3808527
0.08 79.484 80.70557 0.3842320
0.06 143.384 41.5 0.3873111%
Table 2.5.6
& =4 t =3 R(t) = 0.4723666
d E(N) var(n) ELR(t)]
0.20 8.202 2.045%204 0.4518438
0.18 10.014 3.861801 0.4406913
.16 12.696 5.755585 0.4537945
0.14 16.992 6.227906 0.4575984
0.12 23.162 10.05975 0.4645199
0.10 33.406 15.78528 0.46%0286
0.08 52.7 20.35791 0.4683785
0.06 33.466 39.55274 0.4718127
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=7 t = 5 g{t}) =0.4895417
d E£i{N) varT{N} EfR{t})
0.20 8.106 2.362763 0.4684128
0.18 3.99 3.425903 0.4787731
0.16 12.66 5.212418 0.4752982
.14 16.422 7.919892 0.47840627
0.12 22.803 10.055%12 0.478435%7
0.10 32.29 22.4419 6.3845285
0.08 51.392 21.310585 0.45667553
0.06 91.318 472 .60059 0.4877526
Table 2.5%.8
= 15 t=13 R(t)=0.4203504
d E{N) vari{nN) EfR{t)]
0.20 8.236 2.27276 0.4003424
g.18 10.38 2.4595462 £.3927875
0.16 13.14 5.816391 0.3960365
0.14 17.404 T.224753 0.38%9887
0.12 23.9852 14.50971 0.4003249
0.10 35.028 12.31921% 0.322:1320
0.08 54.728 34.28589% 0.4153286
0.06 88.1354 60.97949 0.419698¢
Table 2.5.9
= 27 t = 23 Ri{t) = 0.4266242
d E{N) var{N) EfR{t)]
0.20 8.324001 2.31102 0.3895%110
0.18 10.466 3.152855 0.4052621
0.16 13.166 5.814438 0.3944038
0.14 13.37 7.31308 0.4076867
0.12 24.11 9.529908 0.4157985%
0.10 35.192 6.29101¢6 0.4194036
0.08 54.86 16.20434 0.4251566
0.06 98.028 43.63184 0.4253885
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Table 2.5.10

8 = 35 t = 33 R(t) = 0.3895134
d E{N) vari{N) E{R(t)]

'0.20 8.526 2.169327 0.4366958
0.18 10.358 4.035783%3 0.3599142
0.16 12.994 7.321961 0.3569953
0.14 17.166 12.58242 0.3b633585
D.12 23.684 Z1.17212 0.3610205
0.10 35.138 22.20288 0.3743985
0.028 55.038 56.13697 0.38D4416
6.06 99.804 57.58278 0.386%151

In the next chapter we consider tweo-stage

procedures to obtain fixed-width confidence ‘interval.
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