
CHAPTER-II
FIXED-WIDTH CONFIDENCE INTERVALS 

PURELY SEQUENTIAL PROCEDURES



CHAPTER-II

FIXED-WIDTH CONFIDENCE INTERVALS: 

PURELY SEQUENTIAL PROCEDURES

2. 1: Inirofluciion: -

This chapter deals with general methods of constructing the 

fixed-width confidence intervals, which are purely sequential in 

nature. The problem of construction of fixed-width confidence 

interval for unknown mean of the population with unknown finite 

variance has been considered by Chow and Robbinst19&9). We study 

this procedure in section (2.2). Also the asymptotic properties 

of this procedure are established.

Sometimes even though there is no nuisance parameter, the 

fixed sample size procedure dose not work. For example, the 

construction of fixed-width confidence interval for variance of 

the normal population with zero mean. In all such cases a 

stopping rule can be adopted which will provide a bounded length 

confidence interval with prescribed coverage probability. 

Khan(1967) gives the general method of constructing the 

fixed-width confidence interval of prescribed coverage 

probability for an unknown parameter of a distribution involving
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,possibly, some unkown nuisance parameter. He assumed that 

distribution involved will be assumed to be known except its 

parameters. We study this procedure in section (2.3)-The 

asymptotic properties of the procedure are studied in 

section(2.3.3). The procedure is illustrated with normal 

distribution and exponential distribution.

In section(2.4), we extend the method due to Khan(1969) to 

construct a fixed—width confidence interval for g{0), a 

continuous differentiable function of 6. The method is 

illustrated by constructing a confidence interval for reliability 

function R{t), with exponential life time distribution. For the 

same problem, simulation results are reported in the last 

section (2.5).

2.2:Fixed-width confidence interval for unknown mean of the 
population:

Let X ,X , ....be a sequence of i.i.d. observations from somei 2
2Jpopulation with p.d.f. fixiuta ). We have to construct a

confidence interval of prescribed width 2d (d>0) and prescribed

coverage probability (1-a), (0 < a <1), for the unknown mean p of
2the population, when a the population variance is unknown.

2 biL
Case 1: Let the variance of the population a known, then the 

confidence interval for p with width 2d and the coverage
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probability (1-a) is constructed as follow.

For any n > 1 , define
nX = n_t S X n i

i -1

and propose the interval

In X + dn
>v
j

Let constant 'a* be such that.

(2?r) J“' 2 | %xpl-u*/2) du - { t —ot>

That is, 

Then,

{N(0,1) | < aj = n-«).

tf 7
b ’

P[H ‘ Pl x'" ' d £ P >- X + dn

p ! I x - ,j I < d 1

d J
_ l/2 t i*r i. .i/2,..P©1 xn " M (/o' >- (n d)/cx

A sample size n is given by ,

2 2 2n * Smallest integer > (a c )/ d . ...(2*2.1)

From (2.2.1) we have,

, . .2l im.__d n _
d->0 2 2 ~a <?•

Hence, it follows from the central limit theorem that, 7
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? V m pi T a nl ss ( 1 —/m )
g i/iig ' j X -y ^4 j V * <wa / •

d*o L n J

pase II: Now in this case we assume that a is not known. It can

jbe easily seen from cased) above, no fixed sample size procedure 

exists which gives the desired coverage probability. In this case

we define, an estimator of a to be,

V « n x\ ( X. 
" i*i 1

-- .2 ■' -t>X ) + nn . . (2.2.2)

Let a .a^,..., be any sequence of positive constants such 

that.

and define.
n-H»

N = smallest k > 1 such that Vk 1 dZk/(a2) ..-(2.2.3)
k

Theorem (2.2.t):Chow and Robbins(1965).

Under the sole assumption that 0 < 0 < oo ,

itm. d N
d-tO 2 2a a

1 a.s. .. (2.2.*)

Lim. P
d*o

I =* fj j =(t-ce). (Asymptotic consistencyJ> ...(2.2.5)

lim. d E(N) (Asymptotic efficiency).. .... — i a.s.d-»0 2 2a a
. .. (2.2.6)
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Remark 2.2.1: In case of distribution function of Xi is

continuous, definition of v in (2.2.2) can be replaced by,

V = n 1 T { X. - X }2. ...(2.2.7)
n Ini =t

Before proving the theorem (2.2.1) , we prove the following

lemmas , on which |proof of the theorem is based.

Lemma (2.2.1): Let y (n = 1,2,...) be any sequence of the random—•..- ...... n

variables such that y > 0 a.s. and lim. y = 1 a.s. Letn nn-HX>
f(n) be any sequence of constants such that

** i (n) > 0, l im*f (n) - cjo
/ n-»c»

and iXuJk ^
lim. < f(n) \ - <?
n-»C0 | f(n)-1 |

and for each t > 0, define

N = N(t) « Smallest k > 1 such that y < f(k)/t* ...(2.2.8)k
Thus N is well defined and|non-decreasing function of ft, then

and

lim N = oo a.s. lim E(N) *= oo ...(2.2.9)
t -*oo t -too

(2.2.10)

Proof

24



By definition, for each t; t>0
f (k)N = N(t) = least integer k>1 such that 1 —-—

7 > mif t <t , then N(t ) < N(t ) a.s., and N(t) = eo-12 1 2 t -KO

himAlso as t ♦ oo, N oo a.s., EN ■+ oo a.s., therefore E(!l)t •♦»o = >Xi.

To prove (2.2.10), we have.

1. )
j f (N|_ \ ( JF (N-J
|fTH-1)| { f <H i j

, f f(N) 'I y , Since y { f(N -1) l
- (ffifriT) N"< * {-----i----- ]•

Thus, taking limit as t-» oo we have,

lint ( f(N) \<——---\ = 1 a.t+oo y t J ...(2.2.11)

Lemma(2.2.2):-

if also E(Sup
n

If conditions of the lemma (2.2.1) 

y ) < a) , then
n

lim, ( f(N) \ 
i -tco | t j a.s.

hold and

Proof:- Let Sup y — z then E(z) < a?.

Choose m such that,

f f(n) ) ,(n > m).\ fours' ) < 2

Then for N > m we have,

25



f HN) ) _ f P(N) f(N—1) )
l t / “ l'f(N-l) 't -j < 2y < 2z.

N—i

On the other hand, if N < in,

( f (N) 
t

max j f(N) | 
1in<m | t j f ( 1 )+f(2 )+------+f(m), t > 1.

Hence for all t > 1, we have,

f flN) )
1“ l 2z+F(1} + ...+f(m).

If E( z ) < co

lira. ( f(N) { f lira. \ f(N) "I ]

— i~r-j “ E[ {-t—} j “ 1
Above result follows by using (2.2.11) and Lebesguets^ dominated

convergence theorem(1.2.3).

Lemma(2.2.3)s- If the conditions of lemma (2.2.1) holds. If

J —i—...I a i if for N defined by (2.2.8),
l n Jn-»co

E( N ) < co ( all t > 0 )

, )
hmsvp |E(N y ) / E( N ,| < j j 
t* 0£> ^ N J J

...(2.2.12)

and if there exist a sequence of a constants g{ n ) such that.

g( n ) > 0 and lira . . . . . .g( n ) « 1 , y > g(n)y 
n-+00 n n—l

then, lim. E (N) 
t -too t

. .. (2.2.13)
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Proof:- for any € > 0 (0 < c < 1), choose m so that

f(n-1) > (l-e)f(n)

> (1-s)n, for n>m

and

g (n) ^ (1 -£■)

E (Ny ) < (1+£r) E {N) ♦ for t > m.N
On the set A * { N > m) it follows that,

{ j n2 - ii-on /JJ=£*!L)

Hence,

< g(N)N < g(N)Nyt N-t

2 2 2 (1-6) f r.. 1 . U-'5> r..2U")* J-M S J'»yN s EINyN)

( 1—6)" J N < E(Ny } <
f E(Ny ) M

N r n J *
A

(1-ff) E(N-m) <
f ECNy ) 'N

E(M-m)
<

N E(y )N
E(N)

from (2.2.9) and (2.2.12), it follows that,

2 limsup E(N) < lirn&up * <
€ t fen t ~ t -kd E (N) ~

This implies.

< Ny .N
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...(2.2.14),« ,z 11 msv.p E (N)(1-€) --
tM D t

Now let

then

y = min{1 , y )
n n

< 1 n
and l im

y’rvHT) n
= 1

Define

N* = NMt) = smallest k i such that
f (k) 

' t

From lemma (2.2.1),

E(sup y' ) < 1 
n 

n

! = lim Ef (N) ^ im E(N*)
t. -+00 t t. -too t

but since y* £ y , N’< N.
n n

Hence, E(N* ) < E (N). 

Thus,

liminf E (N) 
t ♦ oo t

liminf E (N*) 
t + oo t

thus, from (2.2.14) and (2.2.15), we have,

i im E(N)----------  c J .
1-+00 t

In the following we prove the theorem (2.2.1).

Proof of theorem (2.2.1):

15)

28



4
Let y

V ' t * r n -»
— = -----  ! £ (X, - X_ )Z + 1 1

TJ 2O'

naf (n)=----- ,

no*

t=

LH = 1
2 2 a a

l JL. 
T\>

J
. (2.2.16)

then (2.2.3) can be written as

f (k)
N = N(t) = smallest k > 1 such that y, < —-—k t

By lemma (2.2.1), we have,

. lim. ( f(N) "I
1 = t.® pt—t ‘

l im. f d?'N__|
d-*o ] i a. s----- (2.2.17)

a o'

which is (2.2.4) of the theorem.

Now,

p T I ^ n\L "' J
p T »l/2 lXi+X2+. . .-HXn-N^I < Nl/2d ]L a a J

F rom (2.2.17),

. 1/2 „dn , N „ . . ,.,.---------  -> a and —-» t in probability.<y t

Hence, from the result of the AnscombeH 952), it follows that as

t-> oo,

n*}Xl+X2+. . ■-t'Xn-^i |
follows N(0 , 1).

Hence,

lim Pf I s u]L n J (2rr) i/l f exp(-u2/2) du
d-*o

(1-a)
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which is (2.2.5) of the theorem.

Now to prove (2.2.6), we have from 1emma (2-2.2), 

whenever the distribution of X, is such that,i

n L i X Vn < oo

l-l

for then

lim ( f (N) \J —---- > * 1 a.
t ->oo j t f

s.

(2.2.18)

(2.2.19)

and from the fact that function f(n) defined by (2.2.16) is 

n+o(n). It follows from (2.2.18) that.

lim. ( E (N) | _ lim f d*E H |
Uffi ] t { d->0 j 2 2 [

V .) V a :t )2 2 ja f ✓
For (2.2.18) to hold, it is necessary that fourth moment of X. to

t.

be finite. However using lemma(2.2.3) we will prove that (2.2.6)

holds without such restriction.
f (n)Fix t> 0, choose m such that 

such that.

> 1 (n > m) and choose 6 > 0

(n-1)f(n-1) > 6n , (n>2),

and define,for any r>m.

H = min(N , r)

By Wald’s theorem for cumulative sums, we have,
M

E [ Y (X. - y)' } = EM E (X. - )>/)’i- 2
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* EH a

Hence, by (2.2.16),

Put g(n) = (n-1)/n, (n>2), then

rv-l
1y > ------ -

Hence,

no1 i si
SiX -X . >'

. L l n-1 n<y

[--1
g(n) y

n-t

E(My ) » f ry + f Ny
m j r J n

IN>rJ lN<r)

> rrliri ] P(N > rl + r Ky
[ t J J N

(2<N<r)

> rPCN>r] + j 
J

f tNg(N)f(N—1)J

12 <N<r)

> NPlN>r] + >6 f -2N .t J 
l2<N<r]

Hence by (2.2.20)* we have

J
lN<r)

N > - J"1
[2<N<rJ

_LJ
J
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o
"t

r
i N

[2<N<rJ

1
I

J
Now letting r*r.c , it follows that

E (N) = ltm f N < «». 
r->oo J

[ Nir j

which is first part of (2.2.16). 

By Wald’s theorem

E(Ny ) < E(N ) +
N

1
•> 1

a

r _i.L J J

so by (2.2.9), we have,

) [EIMJ] '•
which is second part of the (2.2.16). That is all conditions of 

the lemma(2.2.3) holds and hence,

l imsiip 
i •+«)

lint ( E(N) ]

301 t 7t -*00

lim. ( d2EN )
< ----------  ^ a.s.

d-*o 2 2
a a

which is (2.2,6) of the theorem- Hence the proof of the theorem.

Remark(2.2.2): From theorem (2.2.1) it follows that the purpose

*”1 2 
of the term n in (2.2.2) is to ensure that y * V / a > 0

n n

a.s. This fact 1s used in lemma (2.2.1) to guarantee that N ♦ oo 

as t -* oo a.s. If distribution function of X . is continuous the 

definition (2.2.7) is equally good, the only change being that
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21 /a in the proof of (2.2.6) disappears.

If the problem is to construct a fixed-width confidence 

interval for the parameter of interest, not necessarily the mean 

of the population, we give the general method in the following 

section, which is due to Kban(1969).

2.3. General Method to Construct a Fixed WidthConfidence 

Interval for the parameter 9i

Let f (xt& ,& ) be a p.d.f. of a random variable X with real .1 2
valbed parameters 6 and B , where 9 is regarded as a nuisance*' . i 2 2

parameter. We have to construct a fixed-width confidence 

interval for parameter 6 of width 2d (d>0) and with prescribedl

coverage probability (1-a), (0<a< 1 ), when both and 9 are

unknown.

2.3.1. Assumptions,Notations and Preliminariess

Let frt(x ,x ) be the joint probability density/mass
9 1 2 n

function of random variables X ,X ,...,X . and B * {B ,B ). We.t 2 n 12
y

assume'that all regularity conditions for maximum likelihood

estimation(MLE) of 6,6 are satisfied. That is12
i(1 )The parameter space €>* is non-degenerate open interval in 0? -

(2)For almost all x,x ,...,x and all 6 e ©,1 2 n
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1,2)
d f\{x ,x ,... ,x ) 6 12 n

m.
X.

, ( i =

exists, the exceptional set being independent of 0.

'*’-35: /Wx*.....\)dx ‘ /“Ir WV",xn,dx‘
X. LA A

X'X **> *

\(4- *)—~r- ft ,f ..(x ,x . ,x )dx =» f-$—-- fc ,f . (x ,x . ,x )dx.1 
06. J ? £ t 2 n J <*{J . ? fj t 2 n I

A

(5)The elements of matrix

A = \ l, .(#>] 
* l lJ J

exist^ and are such that A,., is positive definite.&

where

ij e

a-iog ffi(x ,x .
v JL u

X ) 
r.

#9 ,d9 . I )
i *J - 1.2,

exists and are such that is positive definiteC7

Let N denote^ the stopping rule and n denotes the fixed size 

random sample. The Fisher's information matrix is

In = ’ itj = U1*

and we assume that i , ,1 is positive definite, and
'jJ

rt i - rA i - aLoj LwJ

i.e. I {n) = A/n.
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Let 9 (n) and (9 (n) be respectively the MLE's of 9 and 9 based12 i ?.

on the random sample of size n. Since we consider the regular

estimation case, the 9 (n) is asymptotically normal with mean 6
t l

and variance X /n , where X = X (9 r9 }, since in general
il 11 11 i 2

l , ,*s are functions of 9 and 9 .IJ 12

Let I =fy(n)-d,£(n)+d
n { t i

as a confidence interval of width 2d for 6 %
t

and define.

a2A r& }
11 i in * Smallest integer >--------------- ■------ * n (say).

d2

From (2.3.1) it follows that,

(2.3.1)

l im
d-» 0

d2n

a2\ (9
*- hi

e > 
2

> 1.

Hence,

lim
d-> 0 I n *» 9i

l im.
d-» 0

pf e (n) - d< e < 9 (n) 
[ « 1 ‘

■+* cj j
im.

-* 0 9 in) - 9 Il t' d 1
J

L im
d-»0 x id te )i/z

11 1 2

)
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where a*

Hence

= pT JN(0,1) } < a ’ j,

d/ Hi
X (& ,9 )t/Z 
11 1 z

I

L i ,7i
d-> 0 n 2> 0 1-«.

The n is considered as optimum sample size if X (0 , 6 ) areo 11 t z

known. This is not justified in strict sense but it will serve as 

a standard for comparing the stopping random variable in a 

sequential procedure to be adopted. In some cases n^ might turn 

out to be optimum if only 9 were known and X (£,£>)= X ).2 It 1 2 tt 2

2.3.2: Stopping Rule and its Asymptotic Properties:

Suppose that 0 and 9 are unknown. In this case fixed n. asi 2
determined by (2.3.1), will not be available to gaurantee 

fixed-width 2d and coverage probability 1 —ex- Hence, analogous to 

(2.3.1), we adopt the following sequential rule.

Let m be a given fixed positive integer. Define 

N: Starting with n> m, stop whenever

, aZX (e (n),0 (n)) ^
n > inf | n > b : n > —----- ----- [...(2.3.2)

L d2 J

and consider
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I = f £ (N) - d , 0 (N) -t- d 1
N l 1 * J

as a confidence interval for $ .t
In the following lemma we prove that the above sequential

procedure terminates with probability one under the assumption

that X (0,0) < od. , That is the sequential procedure is closed. a t 2

Lemma: (2.3. 1) j Under the assumption X 1$ ,& ) < cc. the------------------ ti j '>

sequential procedure terminates with probability one.

Proof:- Since we consider a regular estimation case, under the 

regularity assumption, X (0 (n},0 (n)) converges to X (P ,0 )it t 2 11 1 2

in probability. Hence the right hand side of (2.3.2) tends to 

with probability one, which imply that,

PIN » co ] « 0, That is PIN < oo 3 = 1

In the following theorem we prove some asymptotic properties of 

the sequential rule defined in (2.3.2).

[sup " * 1Theorem (2*3.1 ); Under the assumption E X (B In) )!<<&»------------------ [ n u l 2 J

lint
d>0

N
n. 1 a.s. (2.3.3)

lint
d-*0 I =» 0N 1 = t-a* (Asymptotic consistency) —(2.3.4)

lint E(N) 
d-*0 n_ 1 a.s. (Asymptotic efficiency) ...(2.3.5)
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m

-1Proof: To prove (2.3.3), Let y = [a (# (n),# (n)l I* A ] 
------- n [ ti t 2 J [ <ij *

2 a*X (f? t9 )
f(n) =---- and t =---- —--------- in lemma (2.2.1),so that the•1 r% V

conditions of the lemma are satisfied.

Hence

lim. f (N) _ Utn  N
t+a> t d*0 n 1 a. s.

To prove (2.3.4), we observe that, +1 a.s. as t + oo, and

. N(t)hence----- -» 1 a.s. as t <o,n

where n * It) greatest integer < t

By taking Y = 9 (n), F(x) = $(x) =>(2?r) 2/ exp(~u2/2) du, the
-oo

condition (C-I) of Anscombe is evidently satisfied by £(n), byt

X 1/2

taking w -pin [ n and 9 = 9 . 9 (n) also satisfies thei i

condition (C-II). Hence by the theorem of Anscombe(1.2.1), 1t

follows that,
i/2

i X (9,9) [ 11 1 2

£ N(0,1), as t* oo.

Also from (2.3.3), we have.

d r_ !i_ )i * jv it j

i/2
■ta (a.s.), as d -» 0.
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Therefore

i tm. „ r^ „ p I d>0 [ n
l f.m.
t *0

fr J11L-) n a

t/2

t 1
6’ (N(t)>-0,i 1 < d ( N(t>l

t A Jv t t J

j N ( 0,1 ) j < a1J
= 1 - at

and (2.3.5) follows from lemma (2-2-2).

Note that (2-3-3) and (2.3.4) are universely valid and assumption
["sup ~ 1of E A (n) J < co is required only for validity of (2-3.5).[ n u J

However, in some cases it might be possible to prove (2-3.5) 

without the assumption E 

(2.2.3).

j"sup ^ 1 < op by using lemma
11 JLn

In the following we apply the above method to normal and 

exponential model.

Example(2.3.1): Let X ,X ,...X be a random sample of size n --------------- 1 Z n
2from Nt/jjO’ ) ,1.e. from distribution with p-d.f.

r -i/z f „ x2 f 2 J 1 2 1f(x;jUtO ) “j (2770' ) exp^ ------(X - fj) -OB < X < 00*
1 2O'2 1 -oo < n <00, o,2>0*
^ 0 ,otherwi*e.

2where both /i and a are unknown.

(i)Consider the problem of constructing the fixed-width
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confidence interval for /j of width 2d and confidence coefficient

atleast 1-a.

Take 8 = u and 8 - oZ. The Fisher's information matrix fl .‘ 2 l iJj
i,j =* 1,2, is obtained in the following.

Here,

logf C x; f? ,i9 ) x 2
J/2lo# (2?t^2) (x -

2</
Therefore,

£?.o&'f(xj(? 8 )1.2

F
---- 1- 1/2lo* nrro ) - (x - 

2az

= FJ_ (x _ u ,1L ,* u J
Hence

-J_!11 I 2«■ <y
(x - jj )

1 .2 --  E(x - p)4O'
1

O’

l « l 12 21 « E
<? io#f (x;f? ,£ ) 12

#6? 1 2
Now
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LLf_£I?JL. ftx,e ,e ,]k 1 2 jlaw2 ^

rjl rj_ . „,i i U2 i „* " J J
[
■da K a 

(x - ju)

a

Hence

l = l = E 12 21
{x - JL!)

Ct

= 0.

22

dlogf ( x;6> e> ) ]'t. * i, 1

Now

• c. 00 1 *
2 J

f ■\ .1
d - 1/2 {iTTt/} - —~ (X - Ji)2 •y r

da la J

1 (x - y Y
2o-2 let*

Hence

l = E 22
1 (X - JU )'

_ 2 ,42c? 2(7
Ml**

20-

Con simplification)-

Hence the Fisher’s information matrix is given by

4)
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0 1
r, i
l ij)

r e"1

L0 T C J
and X f8 ) = B = ry'.tl 1 2 2
Next we Find the MLE of 8 and 8 .i 2
The likelihood function is.

H8 ,6 x)t 2 1 - j^2?7 c/~ j
-n/2

ex ( 1 E tx.
2<r' s. -i

:)* i

and the loglikelihood function is given by, 

logne ,e lx) = -1 2 1
n . »« » n ^ 2 1 m . 2j-log(2n) - -—loga - —- £ (xtf - ^) .

2:/' is.t

Differentiating with respect to 9 and 6 and equating to zero, we 

have,

dlogne ,6 )12 = 0, *
<y

I (x - jj) =0
t. - .1 t

4 S In) = u = x - ( Z x.)/n- i n i. = t ?.
n

,0 )12
— = 0, - n

2(7

. I (x . - /j)Jm t
2o-4 as 0

J** \
^ ft. *

«♦ £ (n) = <rZ *=,Z (x, - x )2/n.
2 t * 1 }, r*

n£ (n)
* 2Instead of using 6 (n) we can use $ (n) = --- ;—2 2 n- i which is

unbiased and also consistent estimator of 9 . Hence we have the2
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following stopping rule
2 2 a s

N = inf
( <1 » \ I n n1 n - 2 : n i d2 i

After terminating the sampling we define confidence interval to

be f X - d, X + d 1.In n j

(ii)Now consider the problem of constructing the fixed-width
2confidence interval for a of width 2d and confidence coefficient 

atleast 1-a.

Take 6 - a and 6 — u, then the Fisher's information matrix1 2 IS
given by

U i = 
ViJi

e~z/2

,-iB

and X (6 ,9 ) - 2&~1 = 2<A 
11 1 2 1

Hence the stopping rule is given by

N « inf{2a s \ n > 2 = » > | .

d2 • ■>

After terminating the sampling the confidence interval is
( s« * d- < * d )•

Example(2.3.2)sLet X »X ,—X -------------- 12 n
exponential distribution with 

distribution with p.d.f.,

be a random sample of size n 

parameter That is from
^ 6

from

the

*3



f(x;0) mJ
{ B exp(-flx) , x > 0, 0<rt<oo.
)^ 0 ♦ otherwise,

then the Fisher's information is given by

1(0) [" d~ logf (X;0)r dB

lOgf(X;0) = logB - 0X

?.og’f(x;0) = B " - x
dB

Hence,
1(0)

— LogfixiB) - - B 2. 
?

d B

0 logf(x;0)

yJutr*-

as
fit-2

To find the MLE of 0, the likelihood and log!ikelihood functions 
are respectively given by

n
L (0 | x ) = 0nexp(-0 T. x.),

i -1
n

?.o#L(0jx) = nlogB - .

Differentiating with respect to 6 and equating to zero,
we have

dto^LCd) jx) 
_

$ n/$ - 7. x .i= 1 t

*>(0) - T. x , /ni = i i
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Hence from (2.3.2)the stopping rule is given by

N * inf | n 2 : n > IxV)
n

j and
2

•j d‘

The hypothesis E \ (n) 1 < a> is true in example(2.3.))
Ln~2 u j

which follows from following lemma which is proved from the

Winner’s theorem. However, the hypothesis is not true in

example(2.3.2) and hence (2.3-5) cannot be concluded from 

lemma(2.2.3).

Now first we state the Winner’s theorem (without proof).

Theorem(2.3.2) s Let [X n i ! } be a sequence of i.i.d. random. " 1 - n
T T *+•variables with EjX | <oo or Ejx J log Jx [ < ®, according as r>)

or r = 1 then.

E ~L | S X. |r] < »Lnil nr 'i=t j
and conversely.

Leirena(2.3.2): Under the assumption CK# <®,

E sup cq ]S < oo, n> 1 n j
• -J

where S2 * In-U'V CX. -X )2. 
n 44 t ni- 1

Proof: For q = 2
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Since,

2 . 1S <---------
n ( n—1 )

c.
t* 1

n
TtPT) —----- X + 2X

(n— 1 ) n

? 1 > _*: 
X 1 + ------ - £ X" + X‘

t (n-1 } > ; J

Therefore,

Sup s2 = A * Sup r„rrr £ A.i . (n-1) — t
r>£ 2 i-2

+ sup J_ ,Ex r.4 -> •-*A» , »•
n t. = i

Hence,

E|Sup $2'j < {n if EXZl„g,+ jx
Ln—2 nj * 1

< m and EX2 < a:.

2 <f 2 ? 2
but EX log jxj < EX" < aa and EX are true for the normal 

distribution with finite variance.

Now we assume that q > 2 then

Sq =<S2) q/z r i n 2 -■>< J. £ X + X " 
(n-1) , t n 

L l - i

q/:

q/2
< 2

i r " zi” - q 1 —r £** +|x I

q/2p q/2f q
<2 [2 | |xj + I f " 2'l"/2'---- r x2 S- +!, rx‘ y + jxq/2 I ,U lJ j 1 n1 

(n-1) H = 2 j > J'
Therefore



sup q 
n>2 n ~

q/2p q/Z p q2 [2 { iXJ (n-1

,vi/2> 
x:». l.i

* sup l . „i V., “Hex,> n t = 1
^1

Hence,

which is true in case of normal distribution with finite 

variance. This completes the proof of the lemma.

<F
Remark(2.3.1); In case of family of distribution involving single

parameter the stopping rule N as defined in(2.3.2) takes the form
2

( an ’lN = inf < n > m : n >--- —x— Ll d?Iid ) >
n

where

110}= - e[ 1 and 0(n) is MLE of 6. If Fisher^
L 00z J

information 1(0) is independent of 0, the sequential procedure is

not necessary, since the bounded length confidence interval of

prescribed coverage probability can be based on the normal 
yLn'J***

theory In general, sequential procedure to construct

fixed-width confidence interval of prescribed coverage

probability is not required when X (0 ,0 ) = X (0 ) and 0 istl 1 2 It 2 2
known.

In the following section we extend method due to Khan(19&9) 

to construct a fixed-width confidence interval for g(0), where g
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is a continuous differentiable function of B.

3.4: General Method to Construct__a Fixed - Wiflirt___Corrfidemre

Interval for the parametric function gCBj:

Let X ,X ,be a sequence of i.i.d. random variables from 
i 2

distribution with p.d.f. f(x;£). We have to construct a 

fixed-width confidence interval for g{9).

Let (j> = g(i?) be a continuous differentiable function of <$, 

that is, gMt?) # 0 and Let B *= g = g(<2>) exist then

= logfix;g Xi'P))

= logf(x;~cp)*

Now by chain rule,

dlogf fflogf drp

and as

d<p

~de # 0, we have,

r
E do 0, if and only if. E

r dlogf

L V 1
J «= o.

Further

That is,

P <?iogf ,
2

- diogf -
2

r a#

&e

48



2
1(0) I(<£)

J- 1r*n ■
Hence the Fisher's information for g(0) is given by

r <¥ 1~2
H4>)

r -i

Now if 0 is MLE of 9 then g(0) is the M.L.E. of g{0). Then fTom

(2.3.2) the modified stopping rule is given by
r a2l ar f

N =* i nf ̂ n'rim, n > —----   ^ ...(2.4.1)l d^Itgie )) J
n

and we propose the interval

M
f;
^ N (£)-d , g ( 0)+d j. for 9.

wher g (0) is based on N observations.N

We illustrate the method by constructing the fixed-width 

confidence interval for reliability function in the following 

example.

Example. (2.4.1) :->Let X ,X ,...,X be a random sample of size n ----------------- t 2 r,
from exponential distribution with mean 0, that is from 

distribution with p.d.f.

1
f(x;0) ={ 0 

0

eV^V* ^
exp(-x/0) , x > 0, 0> 0* cfo 

, otherwise.

We have to construct a fixed-width confidence interval for the
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reliability function R(t), that is for P^[X > tj.

The Fisher's information for 9 is given by

I(6>) = f d'~ l ogf ( X; 9 ) ]
l"

Now.

logf{*%9) ~ - log9 - x/9.

Hence

dlofjf \xt$)

i

t X-----f------

9 9'

\

and
9 logfix;9)

&B

J___ 2x _
’V3

' {tv]

9

Hence

H60=- E
d “loff(x;rt)

?
dS e

.J 2x17.L. EJ 2* ■,]

9

Let R(t) = gC9} = P^IX > t) = exp{-t/£}, 

then Fisher's information I(g(9)) Is given by

IlgleO)* !<<£) « I(6>)
d<P

He

where <p = g(£)

Now

L J exp(-t/0){t/& K

H

50



Hence

I(g(0))= I(^) = (0/t)*exp(2t/0).

From example (2.3.2), similarly we have x as the MLE of B. Sincen
R(t) is continuous function of B, hence MLE of g{$) is given by

g(£) *= exp(-t/x ).n
Hence from (2.4. U, the stopping rule is given by

N = tn 2 , n >
2 ^2 a tn

X2 d2exp(2t/X ) i 
n n

and we propose the interval

I *= f g C6»I—d , g (0)+d ], for B.
N ^ N N J

In the following section we report the simulation results

for example(4.2.1)

2. 5. Simulation Results:

An algorithm used for simulation study is provided in

appendix (A-I) as well as the corresponding 8ASIC program is

provided in the appendix (A-II). The following table gives the

simulated results for different values of 0, t and d, for a = .05

(table No. 2.5.1 to 2.5.5 ) and for a = 0.1 (table Nos. 2.5.6 to 
2.5.10). The results are based on 500 simulations. R(t) 1s an 
actual value of reliability function.
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Table 2.5.1

0 = 4 R (t) » 0.4723866

d E(N) Var(N) EIR(t)]

0.20 10.864 10.5295 0.4240461
0.18 13.414 17.28662 0.4308892
0.16 17.16 26-42243 0.4323234
0.14 22.478 42-87348 0.3481049
0.12 30.916 77.41296 0.4364415
0. 10 45.206 135.5994 0.4417724
0.08 69.652 408.8706 0.4336736
0.06 128.82 700.8223 0.4524593

Table 2.5.2

0=1 t = 5 R (t) *0.4895417

d E(N) Var(N) E[R(t))

0.20 11.484 4.117737 0.4745196
0.18 14.044 6.662064 0.4785355
0.16 17.836 10.65308 0.4836684
0.14 23.794 11.96753 0.4780310
0.12 32.508 16.17395 0.4833384
0.10 46.582 25.24707 0.4872514
0.08 72.706 61.41553 0.4864213
0.06 130.224 76.02735 0.4884756

Table 2.5.3

$ = 15 t=13 Rlt>=0.4203504

EIR(t>]d E(N) Var(N)

0.20 11.916 4.128937 0.3908082
0.18 14.788 6.851044 0.3951396
0.16 18.888 12.33145 0.3975079
0.14 24.808 17.70709 0.4023741
0.12 34.136 28.41345 0.4107821
0.10 49.89 39.97803 0.4094075
0.08 78.596 71.37305 0.4135697
0.06 140.81 84.98633 0.4179109
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Table F? Atj* *r

e « 27 t = 23 R(t) = 0.4266242

d E {N) Var{N) ElRIt)3

0.20 11.822 4.342331 0.4078377
0. 18 14.9 5.802017 0.4104059
0.16 19.024 9.367432 0.4137769
0. 14 25.138 10.57495 0.4144559
0. 12 34.314 22.4115 0.4160253
0.10 49.748 32.94043 0.4185827
0.08 79.018 17.17432 0.4242450
0.06 139.66 192.8125 0.4199375

Tabl e 2.5.5

& * 35 t = 33 Rtt) « 0.3895134

d E (N) Var{N) EtR(t)j

0.20 11.734 5.599228 0.3545625
0. 18 14.538 10.26854 0.3509967
0.16 18.736 15.57831 0.3584123
0.14 25.272 16.69403 0.3753183
0.12 34.246 38.83765 0.3724770
0-10 50.382 39.95966 0.3809527
0.08 79.484 80.70557 0.3842320
0.06 143.384 41.5 0.3873111

Table 2. 5.6

e « 4 t = 3 R(t1 * 0.4723666

d E(N) Var(N) E[R(t)]

0.20 8.202 2.045204 0.4518438
0.18 10.014 3.861801 0.4406913
0.16 12.696 5.755585 0.4537945
0. 14 16.992 6.227906 0.4575984
0.12 23.162 10.05975 0.4645199
0.10 33.406 15.78528 0.4690286
0.08 52.7 20.35791 0.4683785
0.06 93.466 39.55274 0.4718127
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Table 2.5.7
C
D

I " 1

t: = 5 R(t) =0-4895417

d E {N) Var (N) Ef R(t} J

0.20 8.106 2.362763 0.4684128
0.18 9.99 3.425903 0.4747731
0.16 12.66 5.212418 0.4752982
0.14 16.422 7.919892 0.4784027
0.12 22.803 10.05512 0.4784357
0.10 32.29 22.4419 0.4845285
0.08 51.392 21.31055 0.4867553
0.06 91.318 42.60059 0.4877526

Table 2.5.0

9 = 15 t = 13 R(t1=0.4203504

d E1N) Var (N) ElfUt)]

0.20 ' 8.236 2.27276 0.4003424
0.18 10.38 3.4598G2 0.3927875
0.16 13. 14 5.816391 0.3960365
0.14 17.404 7.224753 0.3898887
0.12 23.952 14.50971 0.4003249
0.10 35.023 12.31921 0-4221320
0.08 54.728 34.28589 0.4153286
0.06 98.134 60.97949 0.4196584

Table 2.5.9

r*tsII

<r> t = 23 R(t) = 0.4286242

d E (N) Var(N) E£R(t)J .

0.20 8.324001 2.31102 0.3895110
0.18 10.466 3.152855 0.4052621
0.16 13.166 5.814438 0.3944038
0.14 13.37 7.31308 0.4076867
0.12 24.11 9.529908 0.4157985
0. 10 35.192 5.291016 0.4194036
0.08 54.86 16.20434 0.4251566
0.06 98.028 43.63184 0.4253885
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Table 2.5.10
& — 35 t = 33 R(t) * 0.3895134

d ECN) VartN) ElR(t)]

0.20 8.526 2.169327 0.4366958

COo 10.358 4.057839 0.3599142
0.16 12.994 7.321961 0.3569953
0.14 17.166 12.58242 0.3633565
0.12 23.684 21.17212 0.3610205
0- 10 35.138 22.20238 0.3749988
0.08 55.038 56.13697 0.3804416
0.06 99.804 57.59278 0.3869181

In the next chapter we consider two-stage seque<
procedures to obtain fixed-width confidence interval.
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