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3.1.Introduction:

In chapter II we have given purely sequential procedure

to construct a fixed-width confidence interval for mean of the

population with p.d.f. fCxj6?) with unknown variance. The purely

sequential method is asymptotically consistent but fails to

acheive the exact consistency. Stein (1945) proposed a two-stage

procedure to construct a fixed-width confidence interval for mean

•>

y of a normal distribution when population variance o'" Is 

unknown. Mukbopadhyay(1982) developed a two-stage procedure to 

construct a fixed-width confidence interval for mean of the 

population along the lines of Stein’s two-stage procedure which 

acheives the exact consistency even without normality. In his 

method the assumption of the normality is relaxed and replaced by 

(i)the independence of estimators of the parameter of interest 

and the nuisance parameter and (ii)the pivotal nature of the 

estimators in some sense. In section (3.2) we discuss the same
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and we study asymptotic properties of the same. The procedure is 

illustrated for normal distribution, negative exponential 

distribution and the multivariate normal distribution. Since the 

method is not asymptotically efficient, we consider a modified 

version of a Stein two-stage procedure which is asymptotically 

efficient, in section(3.3). We also give asymptotic properties of 

the modified method. Some of the properties we discuss with 

negative exponential distribution. In section (3.4), we review 

the problem of estimating the parameters of an Inverse Gaussian 

distribution. In section (3.5). some properties of two-stage 

procedure to Construct a fixed-width confidence interval along 

the lines of Birnbaum and Healy(i960), are reviewed.

3.2: Stein's Procedure and exact conststency:

Let X ,X ,... be i.i.d. random variables with p.d.f. 12
f(x;d,?), where (£,ij) e IR » where IR and IR+ stands for the

entire real line, that is (-®,®), and positive half of the real

line, that is (0,®), respectively, while support of X may depends

on 9 alone. Let T = T (X ,X ,. .. ,X ) and U *» U (X ,X )n ni2 n n n 1 2 n
be estimators of 9 and £ respectively based on sample

X ,X ,...,X and suppose that T and U satisfy the following 1 Z n n n
conditions.

C-I.For any fixed n, (possibly > 2)> T is Independent ofn
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the

(U ,U ,...,U ).2 3 r,
C-II-H) For some ft > 0, for a measurable function g:!£*■♦ IF:',.

nn'' (T - Q)distribution of n does not depend on n, t* andgTF7“
r n1 | t - J1 1?. Let Fla) = P. . ' n * j , a>0.-----:----- i a 19k )

(T - y)Hi) The distribution of n does not depend on <9 and
g{U )

t and ***

. KlL-*!
—i(li~).- 1i b { = 1- a (say), c«£(0,1)"J

Given two preassigned numbers d (d>0) and a UXcKI), we have to

construct a confidence interval I n for & having width 2d and

confidence coefficient atleast (1-0), that is,

P I
e,f; [ n, 2> *1 = 1-ct

Assume that n observations (X ,X , ...,X ) are recorded. We will1 2 n
propose the interval,

1= T - d , T + d ,n n n

for e.

Lower and upper limitj}of interval will be modified suitably, if 

support of a random variable X depends on 6. Isee example 

(3.2.2) j .
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Now

NOW

P [i 2> „ [t - d k 6 < T d !"• J *’U " " J
» p. TIt - e\ < d i*’U' " 1 J

ft. Af "• |Tn - "'<* 1j ____"_____ £ ____ !
[ g{() 0<O j

*( —)■1 g(^ ) ;

p rx *] ) -a,

if and only if,
/d

g(£)
a, using C-I (i).

That is n >
if ftf agio 1 _[s— J - ' (say).

Case Is If £ is known, we take a sample of size^cj+) and propose 

the corrosponding interval I for 6.n

Case 2: Suppose that £ is unknown. In this case, a two-stage 

procedure similar to that of Stein(t945) is proposed to construct 

the fixed-width confidence interval for 0. The procedure is as

follows.
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Stage-I:Start an experiment with sample X ,X ,.. ,X of size m
l 2 rr,

,(m>2), from f(x;9,£). Based on these observations compute U and

b and define a stopping random variable as follow,m
/ b g(U ) >1 /f:| m m f 1

lN = max
| f { m*' m V I 1 i
i m * \---5---- F + 1 ‘! L v. ° ) -1 » .(3.2.1 )

Stage-II:Take an independent sample 

f(x;£,^) and propose the interval

X ,X , m+i m-t-2 , X f romM

N h d , T + d],N J . .. (3.2.2)

for 9.

In following theorem, we prove that interval defined by 

(3.2.2) satisfies the definition of exact consistencyt1.2.5).

Theorem (3.2.1): (Exact Consistency):

For the rule in (3.2.1), under the the assumptions (C-I) and

(C-II), for all (0,f ) e RxIR ,

0.? I .=> 0} > (1-«).« J .. (3.2.3)

Proof: First we note the basic inequality,using (3.2.1),

/ b g(U ) vj m m • 
! /

1 *0 U I (ftc b g(U ) xTR { , ' ^ ! HI m !< N < V"™--1- f +m. ...(3.2.4)

Now,

P fj 1. = p Fj _ d < < J 4. d 1
[ N " j I N N |L
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p. j i t - e | < d]
0.? [' n ' j

<o
■ E *»<
n—m 4 T - 1 d, N=r.M 1

oo r,“ E pe.i II T*n~m 4 L
e\ < a N=n]p, . [ N=n]

J *’U J

CD
■ E p
n^m 0.? T - g| n i ^ dKuH- - . . (3.2.5)

The last step follows from condition (C-I), since the event (N=n)

depends only on U for any fixed n.m
Thus,

COp Ft a. pi = r1 p 
B,f [ N - J h a r

=m

H"''!T„ - *1 «,/ 1

gl? > g'.nj
lpe,t “

= nl

n=m ^ g(K)J ’ *- J

_E iFLil'IlV 
e'1 V Fg(0Jj

Since, from (3.2.4), dN‘ > b g(U ), we have,m m

0.?
b g(U ). -vm wi 1 fi => el > Ea FpCjl'l 1■N J I- «!?> 1 i

|vl b g(U ) m m
g(£)

u ] ),
™.J j

where V is independent of U and has same distribution as that ofm
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M

rP K1 - 6)
n

9(0

Hence, i =. « N
> p [ lyla«J
~ Bit. g(U )I m

— 1

This completes the proof of the theorem.

In the following, the above two-stage procedure is

illustrated with some examples.

Example{3.2.1): Let X ,X ,... be i.i.d. random variables having -------------- t •>
normal distribution with mean (j and variance t/“.

Now let & * ij and £ = o. We have to construct a

fixed-width confidence interval for B.

mChoose T - m tT' X, = X and U =■ S ,
m ■ . i m mm?. = t

where,
«ns2 = (m - 1 )"V X, - X )Z.m , X. m

In this case, let ft = 1/2 and g(x) = x (>0), then distribution of

ft . i/s -
m1 (T - &) m (X - ij)

m __ m
g ( ) v

is N(0,1) and the distribution of

n/*(T - B) ml/z(X - ;,*)
m m

g(U > sm m
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is Student’s t with (m-1) degrees of freedom-

cons ider
I = [x
N [ N d , X -*• d f,N J

then from procedure in {3-2.15, we get Stein’s two-stage 

procedure as a special case. Where the sample size N is given by

r r f b S
N = max^ m , ^l

m m vi) ! + 5 y.L l d J J j ... (3.2.6)

Here,
1 /** _m " (X - p > m

m-t follows fc-disfcribution wish (m-1)
m

degrees of freedom and fa is such thatm

pfi
yi-'V| j T J < b | = 1-«.m-i 1 m J

100(cs/2)t po^nt of Student's t distribution 

with (m-1) degrees of freedom.

implies b = tm m-t,0t/2

Example (3.2.2): Let X ,X ,... are i.i.d. random variables from--------------- t 2
distribution with p.d-f-

f f )( — n "j 1|--- exp^-{---- — forx>i./,P’ >0*^ >• 1 " JJ ...13.2.7)
[ 0 . otherwise.

In this example support of X depends on parameter u, ifj,v)f= IRxfR . 

Now, let d = ju> and £ = c .

63



Choose

T = X = mintX ,X ,. . . ,X )
iti l t I 4 •>

and U - o 1
m m (W—1 ) [ (X - X. > - l (1)l = t

In this case take ft - 1 and g(x) *= x > 0, then distribution of
tJ'H - 9 ) m(X - fj) 

m < i ) follows Chi-square distribution with 2
g(?)

degrees of freedom and

m' CT -&) m(X —/!)m < i >
g(U )m m

m(X - li)/o-
< t >

m
(m-1 ) Z <X -X )/-

'/ii i (?) m

m
Since (m-1) V (X,-X )/<■> has Chi-square distribution with 2(»-*)

u ’ a)i = i
degrees of freedom and X and T (X -X ) are independent, hence<i> i u>

i = l

ii/*(T -6)

distribution of - m
gtu )

TTJ
has F distribution with 2 and 2Cm-H

degrees of freedom. Thus, for this example, the sample size is 

given by

N * max ^ m 
K.
\ 1 + 1 iL 2d J I (3.2.8)

In (3.2.8) m is the starting sample size and b is such that
TTi
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n»(X 'P>

a -J< b J * 1-a.

That is, 

implies b

<
P-jF

K
< b i = 1-u,

B1j

* F i.e. 100a? point of F distribution
in a

with 2 and 2{m-1) degrees of freedom.

and finelly we propose the interval,

I * {x - 2d , X
N [ NU ) MU .]

for the B.

•JL

Example!3.2.3): Let X = (X ,X ,...,X )* is si-dimensional 
----------------------------- t 2 n

(n=1,2...) normal with mean vector . . . ,p) * and dispersion
nxi

matrix E = cY P • • » P. = 1 and P - P» (< *j=1 ,2,. . . , n). The
J L' L j ____

0p.d.f. of X is given by

f(x)= {2rr)“n/Z|^| 'l/t exp|- ~-lx - p)"£lix - /j) }. ...(3.2.9)

^
4-

Suppose v = <s IRxIR x{-1,0). We wish to construct a

confidence interval for jj. 

Let us consider

(a'*'1
c>Z>

I = !" X - d , X + d ], 
n L n n J

as a confidence interval for p. Then,
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V \ 3 v tn J
P ( X-» > I r, U < X + d } n j
P ||x
l> | 1 r id)

|X - (J1 n d
P ^ *> i / ? ~ i» 1/2^f O'"U 1 -pj+np)") ‘ f o- U 1 -p)+npj-'| {J 1" n ~j J(

IPJ i N ( 0 , t )
(1 -pY Iz \ . .(3.2.10

:1 l-'X,

if and only if,
1 t. , .a ov (1 -p)n £------- -— * C, (say),

where a is upper 100(«/2)S point of standard normal distribution. 

Note that inequality in (3.2.10) is valid since -1<p<0. )<.

„ ( f mm ] , ]
N = max^ m , j------------+1l L d2 J ;

«■
Choose 9 * ju, ¥t = o,(1-p)1^2, T = X and U = S (for me 2),

mm mm
mwhere S2 = (m-1) 1r (X.- X )2.m . I ml = t

In this case, take 1/2, g(x) = x and define
2 2b s

\ 1-°>

where, m>2 is the first stage sample size. We propose interval

I - [ X - d , X +d|, for p. 
N L N N j
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areWe know that, for distribution in (3.2.9), X and S
in m

independent. The distribution of X is normal with mean p and
sn

2 2 2 variance [ (m+(m-1 )p)o* }/» and the distribution of S‘/{ (l-pjo’ ] is
TT*

Chi-square with (m-!) degrees of freedom.

Hence, 

t/z —m (X - p)
----------------------  follows t—distribution with (m-1) degrees of
(S )/(m-t) 

m

freedom.

Now,

1 { _ _ i
4x"-d^ix* + dj

■ Pv{l - "I - d }

* V, P,il x - fj| S d | N>n 1 P,jN 
n J v R ! ; " • V.

\ (
*

K - v\ i

£ Pi/» { <r2{( 1-p)+np}y ' f ?/ 1(1 -p)+np:Q

, ^ n

t/z .. z
f

) l n
(

t/z •! N=n

4" "1
=, J. p I«<0.1) |<

( <7Zl (1-p)+np3^1/2

t « J
i -.{■ ■ ■!

n
K.

i
j|N<0,1)| <

, 2., ...i/2f c- n -p)1!
I’ " J

N=n \.IN -")
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( r
I

!2$E 12$ | 2 . .
l> j | ft? (1-p)|

t/2 -1 jN = n j-.

It N

Now,

N >------------, this implies dN c b 5 .
2 in m

d

Hence,

f [' bV > F ?« ------
Sm mPJ V ' M I “ Vi2* If 2 W>^ N J [lo- { 1-p) *

l J
•1 S

"j

/■t b S
= E j j N (0,1 ) I < —i-2U2— 

t> 1 V 1 1 / 2,, ,^ *• r v (1 -p)

jP [ihii'Jil- EJPJ
ii*^ t ^ i

V cr“(1~o)

v

1 I 
b I i 

J I

= 1—«.

Since, b is 10O(oc/2)3f point of Student's t-distribution with
in

(m-1) degrees of freedom. It implies that

P j I => 9 [ > 1-a. 
y| n f

In the following we state and prove the asymptotic 

properties of the two—stage procedure described above.

Theorem(3-2.2): For the rule in (3.2.1), under the
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assumptions {C-I) and (C-II), for all (0,£ JdRxR , as d 0>

(a)dN^ -» b g(U ).
m m

f, g(u ) ,l/^
(b)F I _ f « I__ 1L_ \ E M_____ JL_ V

$.<f l c J [a j g<?> J

, N . br _ i „ r m )

(3.2.10)

(3.2.11)

t/ft

Provided Ea g(U H is Finite. a,?\ m j

(C) P { I *» 9 I ■+ 1-«.
)» I ,sf I (3.2.12)

Proof: From (3.2-4), we have.

i//? t//}
,■ b g(U ) s, , b g(U ) . '

"L < n .< i-JSL-Ji- 1

l d J l d J
It follows that ii.m N.is finite almost surely (a.s.)

d -M>

Also, we have,

M(i > b , as.
a ■+ o Tn in . . (3.2.13)

and

b «(U ) > Umsup (N-.»'Jd 
m m d ■+ O

limsup cm? h-»/n)'3
a •+ l)

Umsvp dHn HK^Pn_a/H)P
d -+ o d ♦ o

limsup dHfi. 
d ■* o
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That is

b 9(U > i «*"* dk*.
m m d o

.-(3-2

Combining (3.2.IS) and (3.2.14), we conclud that,

! ' ifft ft' dN1 = b g(U ) a. s.
d -nr m ift

..(3.2

This proves that result (a).

To prove (b), again consider the basic inequality

, b g(U )j sn T7) -
i/ft

\ - * * V
/ b g(U ) - 
• m m !

1 /ft
S +m.

ag(f )Dividing by C =--- - , we get,

i /ft
( b g(u > V| m m !
\ ag(r ) j C ~ | ag(r ) j ] ag(^) j

( b g(U ) , 1 m m *
i/ft t/ft

f dm

By taking expectation, cn the both side, we get,

( b_g(U ) 
c J__ :7i
&*%\ ag(<*)

t /'
{ N !C }___ \tc) f ^ C ( c%‘- t ;

t b g(U )* ~ m -
i/ft

'0,ft { ag(f ) j

-HE 1 a v )
f dm )

t/ft

9,* ( ag(^)j

That is ,
t/ft g(u :( bm C y ^ ' { H ) f b -^t/ft (

|-T-) E*4^1
i/ft

+E f dm ]0*? | ag(Oj

. 14)

.15)

t/^
1
1
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By taking the limit as d -* 0, we get

i n i f
t/ft t/ft

■ i as J----
[ C j \ a j

» 9< V 1
j------- H_ (. .

VH glM j

i/p
This proves (b), provided £tl #Cg(U )} is finite.

Now,

Q.l

, > { i b.3IU..> I 1
! i a. «} - £., f!I !.AJ >’ I M '* I *” .’W £ • I q I >' } I i* , -. ... L t 9k) J J

which combining with (3.2.15) and dominated convergence theorem

(1.2.3) leads to

Urn. „ {P • I ^ w, d-*o 6,? J! |
A

f f b g(U ) ) 1* ! m ifs • *p j r m m
_T *-

■n t jj

= (1-a), using theorm(3.2- 1) .

This proves (c) of the theorem and hence the proof of the

theorem.

There are many examples, where E&

l/.'i
Y 9{U >J_____!

,K\9 iKi \ 1, ir» this case

(3.2.11) becomes,

E.
b i/f-

f JL\ f ™ 1 a.; ( c ) { » j • as d 0. .(3.2.16)

Next we see whether b > a. In addition to conditions (C-I) and
m

(C—II), if some more extra conditions are satisfied we can

conclude that b >a in fairly general setup.
m

3.3: Modified Stein-type two-singe procedure:
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3.3.1: Normal Distribution:

Stein’s two-stage procedure to construct a fixed-width 

confidence interval is not asymptotically efficient(Ref. Zacke 

P.No. 558) In this section First we review the Modified two-stage 

procedure, in brief, to construct a fixed-width confidence 

interval for mean of normal distribution, which is asymptotically 

efficient. Further we state asymptotic properties of this 

procedure.

In Stein’s procedure for N(p,:/-) distribution, with u as 

parameter of interest, the random sample size N is given by

N =maxi n ,o
i S n — t n 

*> o 1 + 1 s ■? .3.1)

f 'tIn this procedure P| p ^ _ 1-ot, but, E(N/C) converges to

2 2(a ) /a as d ♦ 0,which is bigger than one. This means thatn
O-t

Stein's procedure is not asymptotically efficient.

$
To overcome this difficulty, Chow and Robbing 1965) proposed the 

rule (2.2.3),

{N = infjn: n >2 and n d
a2S

? rd~ *
. . . (3.3.2)

The procedure according to this rule is asymptotically efficient.

consistent, but doesnot satisfy the property of exact

72



consistency. That is pj I s» p ^ > 1 —ot. (Ref. theorem (2.2.1 )).
( N }

To overcome this drawback, we modify the rule (3.3.1) as follows.

f ^ 'JN = inf^ns n>n and n (S2 +n1)}. ...(3.3.3)1 ° d2 " j

The sample size required by (3.3.2) and (3.3.3), for small d. are

absolutely close to each other. In case of (3.3.3), we have the
2 7 Zlower bound, N > a‘/d that is N i a/d. So rule (3.2.3) giving

us "asymptotic efficiency” because we take atleast la/d)-*-1
2samples and in turn sample estimate of variance tends to o' as d

2 ~t 2-» 0. We take S +n as an estimate of o' even if then

distribution is continuous, in particular normal.

Now we define a new two-stage procedure as follows 

( T * 1 >Let
r a I

n = maxO , ~—- + 1 i , then° l Ld J >

N =roax
C fa2 sz ] )I V LXLji l+1 l ' ' , 2 J i( * t

(3.3.4)

The motivation behind (3.3.4) is very simple. The rule (3.3.3) 

says that we take atleast la/dl-M samples, so rule (3.3.4) starts 

with la/dJ+1 samples, if d is small. *

Theoremt3.3.1);For fixed a, 0<cy<oo, the rule in (3.3.4) satisfies 
the following properties.

(a) N/C + 1 as d ♦ 0.
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(b) lim E(N/C) = 1. 
d-K>

Proof: - First we notice the basic inequality ^ram the rule
(3.3.5),

Za S no-t no <_ N
a' S * no-i no + 4. ...(3.3.5)

Now n t ® as d ■* 0. Hence S“ -* a1 a.c. and a
O no n -t a, as d—»

o
0. Using this fact and (3.3.5), we have,

N/c -> 1 a.s., ' as d -♦ 0, 

which is part (a) of the theorem.

To prove the part (b), dividing (3.3.5) by c and taking 

expectation and limit as d-»0, we have,

E(N/C) * ),d+o
which is part (b) of the theorem.

To prove (c), consider

PCI 3 jUlN p{lx>l 1

00 ( _ | 1 r i- x: Hlv^i -dN=n > Hn * n )

- E P(lVH S <* ) p|n - n ).
n=no( " ) K )
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Since the event {N=n} depends only on 5“ for any fixed n.

Hence,

( \ I * \i }l « 1
oo r^iv^iE pj

n = nO ^ <r

IS’Z . -" d I f

J 1 ;
E pj|NCO.I>| < d- | p| «=n \
n=nO ^ l ^

2E { l-i }
[ i 5 J J

1X2

(u( ,|-^‘^)-1 }.
l using {3.3-5)

1-a.

Which is the part <c) of the theorem.

Now part (d) follows since,

M * ^ ^ I
\ *

( fut/zd 1 12Ej *»!!-- <L. -1 yl l ty J • 1-3),- in view cf (a)

Hence the theorem.

Remark(3.3.1): We can define n as. ------------- o

rJ on = max <I , —° | Ll d J
and propose the rule,

2/(l+f)
1 +-1 for any ^>0,1t

t
J

N =max’ n , o

2 2 a S n -i n o o r j- (3.3.6)
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For this rule also the properties (a)-(d) holds.

In the following subsection we consider the modified 

two-stage procedure for non-normal distributions.

3.3.2:Non-normal Distribution:

In this section, the modified two-stage procedure is 

considerj^for non-normal set-up, which has ail properties as in 

theorem (2.2.1),is as follow.

Let X ,X ,...,X be a random sample from d.f. F with mean u 
t Z n

•>
and variance ■:/'.

Let n = maxi2 o !
a

M* 1 1 and define,

i
N =max{ n

l f)1

a S i

i (3.3.7)

I i
and propose the interval I = i X -d , X -«-d )- for the u..

N \ H N j

Remark(3.3.2): The rule like (3.3.6) can also be proposed even in 

non-normal case and consequently the upper bound for E(N) can be 

made sharper.

Now, suppose that we are in pt same set up as in section 

(3.2) and we propose a rule like (3.3.6).

“I"
Choose a fixed y !R , and let
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i/(Ut*Y)

... f ' U d J
and we start a experiment with m observations. Then we define,

- , i //-f{ r i )N= max | m , j —'— J +- 1 ...(3.3.3)l L J J
and propose the interval,

I * IT -d , T +d ), for a.
N N W

The procedure in (3.3.8) looks exactly like the one given in 

(3.2.1). The major difference in procedure (3.2.1) and (3.3.8) is 

that, the starting sample size m in procedure (3.3.8) depends on 

d, the desired length of confidence interval. Also m * ro(d) -* r 

as d -+ O.The basic inequality in (3.2.4) is changed to

4-1

b g(U ) % m m |
t/fi

N <
, b g(U ) j m m
l”

i/* t/(H t +^)
.1l d J +4, (3.3.9)

The asymptotic properties of the procedure are given in the 

following theorem.

Theorem (3.3.2):Asymptotic Properties:

Suppose the function g:!R •+ !R is continuous, U is

consistent for t, , that is,

( 1
i/fi

1.
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Then under conditions (C-I) and (C-II)

(a> p«, ( ^
=* e ] > l-'.r. . (3-3.10)

l i in. f N }(b) —— =1 in probability
d-K> [ C j ...(3.3.11)

. . irm._(c) .d -»o 0 1. . . . ! 3.3.12)

(d) 1.1 m
d -tO B,ft \ N

( \ 
; I 2* 6 ; = - . 13.3.13)

Proof:

To prove (a), consider.

p Ft •=. 1 s p It _ w < #3 < t 
e,r [ n ' ' J e,r [ m a - - m

i
d *

S P
e ,F cdj £ d

.?p f. x
pe,( 11 tn

n=m L

$\ i d. N=nj

00
■ E V? [| T»
n=m

£| < d | N=n"|p., .. f M=*n|
I J a-U J

CO
* z P
n=*m e.z

i - e\ < dK? [ n="
The last step follows from condition (C-I), since the event Ui=n)

depends only on U for any fixed n.m

Thus, from (3.2.4), we can write.
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r i m f n' iT„ B\
IT is. Hip . ji h * =» r p, _ 

n u ej.
gU >

dn‘" } r i------ Prt f N *= njg(?)J ^ J

/*> /v~ _r drT v r ]s E F ---  pd * r = nj
n«m 1 gtnJ *- ■»

E JpL^Vt
*9,M I If

* ’ V ^ g(( )>l

b g(U ) ^j F r_ n!_ _ * i ij,■«.{l Fl , using (3.3.9)
gil)

e*,?k?( lvl* - b g(U ) 
m ~

git)
t (u™j j-

where V is independent of U ans has same distribution as of
m

n"(T - B)
n Hence,

g<£ )

* . b
N j «?,< gCU ) mm

=* 1 —-.t. ...(3.3

This completes the proof of the theorem. 

Now consider the inequality (3.3.9)

, b g(U ) s.x/^ ( b g(U )

{-Vs-} <N<(-V—I(, ° .J (. ° J

t //?( i+j')

+4t * J
Dividing by C to this inequality, we have.

.14)
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( b„«(V \l'ft N
j “• Hi *
\ agTF)"' J ~ ~C

< bJ>(V i
| m III ■

{~ag'(7T" j

t/ft t /PA t+Y) t/P
(jD
l cl j

l d 1
\ agt* ) J
l/f?

^ f d *
4

That is ,

t/(i
fl/fi( o(u >b yt/'V 9iu_) , , T , ,

i_____ 2_i j__jji_ i < )_a -■ j___J!Ls i___ il a I l 9(0 I ~ 1 C J - } a j 1 St ) j

i //»

-y/fiit+y) i/p

r.a„] ij_\ +4
t d J [ gR ) j [ ag R } {

I—- !
? ag(£)f

i/P

. . C3.3.15)

Taking limit as d •* 0, we have.

l ».«t 
d +o

2LI = , c J U
which proves (b)

To prove (c) take expectation in (3.3.15), we have.

( bm i f u | | w„ *
i___ Hi-t £ J_____!L~ ^ < e f——1 < |----- 22—V E I_____ 2- l{ a j 6,f,\ g(£> j - $,?; \c > a j j

i/p

(3.3. 16)

„ , . _ (N ! r D„ >up ( 9‘V >
i/P

-y/pit+y) i/p

f.JL.1 J_J l +4 {. 
L d J \ g(Uj \agR)j

j

i/p
\

But U is consistent for f, that implies,
n

{ 9lU > l/f?
F I_____m_ 1 = i

gR> j

Hence by taking limit as d -* 0, we have

*
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which proves (c).

To prove (d) that is P, ,d-+o 1 I =>3}
\ N J « 1-a, we have,

( \ ( P, Vf dlT l)
P„ B i I 2> = A F1 N j* V } V

But *m dN^ = b g(U ) a.s., 
d-»o m m

using this property and dominated convergence theorem*1.2.3),

we have,

lim. „P *•
d+o

(\ iN -> 6 } * E }*' )

, b g(U |F1 ™ JT I
^ g (^ ) J

1}
t -r> *W ..{3.3.18)

Which proves (d) and hence proof of the theorem.

In the following section, we review the problem of 

estimating the parameters of an Inverse Gaussian distribution in 

terms of controlling the risk function corresponding to a 
suitable zero-one loss functio/K, j

V
3,4: Estimation of Inverse Oaossian parameters:

A- randofn variable X is said to be distributed as inverse 

Gaussian (IG) with parameters p and X, if its p.d.f. is given by



t/2
(( \ i r •>. {X_.,)z i

f (x;fjr A) = -j i 2rr xa J t 2/u2 X J
! o

* x>0

♦ if1 xlO.

where 0 < jj, A < oo. .(3.4.1)

Inverse Gaussian distribution is perticularly very useful 

for many long tailed data sets.

Suppose we have a sequence X ,X * - . .* •> Of i. i.d. random

variables with inverse Gaussian distribution with above p.d.f.

Suppose that n observations X , X 
t

,.. . *X are
t, i t recorded, usually we

take

v 1
— r xn . and X

l n
- 1 l ( 1 » !

n n_t ,E. 1 
— 4. X j

x j
n

as estimators for and X. *. It is known that (X , X ) forms a.
n r,

complete sufficient statistic for {Johnson & Kotz(1970)

Page No. 143)* In estimating fj by X , suppose the loss function isn

given by

LCm , X ) * {r* !
[(9 'A ' “

1 f-----

I 0 >
(X )$ t

otherwise.

(3.4.2) )

This loss function corresponds to "proportional closeness” 

in some way. So far we are discussing fixed-width confidence 

interval procedures. Thus* introducing the loss function like
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(3.4.2) is not proper. A reasonable loss function for fixed-width 

confidence problem we define following 0-1 loss function

lis.t )
n

for the methods in section (2.2) and (2.3). Thus, in section

(2.2) and (2.3), given d>0 and at-U),)), we achieve the exact

result L(i9,T ) S ct. In the following we consider loss
n

function (3.4.2) only.

Given two preassigned numbers d (d>0) and a (G<«<1)» we wish

to achieve,

_ i

4L,"'V )s a. ... (3.4.3)

Now,

C iv
( \ Jin'*

E . L(p,X ) \ = P . \ —------~ > du ^
H n J (- }l/2 j

= P
X' ,x{

pnA) lxri“^’i

y (X ) t/2 > d(nX)
, 1i/'i !

I

.< a.

if and only if.

d(n\)1/,Z > a, i.e. n >
d2X

where a is upper 100(a/2)$r point of N(0,1) distribution,
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(nX)t/ZjX -^|
since,---------- 1--- —- is distributed as N(0,1).

p (X )t/z 
n

Thus, the goal of controlling to loss in (3.4.3) can be achieved 

by fixed sample size procedure, if A is known, by taking a sample
1= - {* a2 ] .

of size----+1.I. d2x J
Now we assume that X is unknown and in this case we propose a 

two-stage procedure.

Start an experiment with m (mi:2) observations and define

f f *>2X2 1 1
N =iriax{ m , I———- [ + 1 V, ...(3.4.4)I » a I It L d' J J

where b is the 1Q0(a/2)? point of Student’s t-distribution with m
(m-1) degrees of freedom.

Theorem(3.4.1):

For rule in (3.4.4) and loss function in (3.4.2), for all 

£*,X e IR+xlR+,
E . { L(p,X ) ] < a.^,X\ n j

Proofs First notice that ”N ** n" depends only on X , which is ----- m
independent of X for any fixed n>2. The proof of this factn
follows from Basu’s Theorem (1955), since X is completen
sufficient statistic for v. and X is an ancillary statistic form
any fixed X.
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Thus

E Jl-Llfi.X ) 1 = P,
n ; f*

f1 V ^ . J
j------------------ v. d y\ 1 i /•> (
U'V J

f(NX)t/Z| X - L-i
<*■ i

; V'
"’'l >J ;j(X } N

t /1
< d(NA) t/

r
P ^jN(0,l)|
^•al

i/2
d(N* ) V

( f 4 / ‘>*\ \
» E . 2§ jd(NA) “ - 1

l 1 *

> E J 22>fb (XX )1/2] - 1 using (3.4.4)
fJ.X[ l m m J j

* e Ip . fizl < b (xx v/z x ] X ,M»X | IU,A [' 1 m TTi mj j

where distribution of Z is N(0,1) which is independent of

X , hence, 
m

) - pm[,z| (XV -l/Z i b
nt

= 1-a,

.-t/2where |Z| (XX ) follows Student's t-distribut1on with (m-1) 

degrees of freedom, since (m-l)XX follows chi-squarem

distribution with (m-1) degrees of freedom, the proof of the

theorem follows.
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In the following section we review some properties of 

two-stage procedure to construct a fixed-width confidence 

intervals along the lines of Birnbaum and Healy(1960).

3.5. Birnbaum - Heaiy type confidence interval:

Birnbaum and Heaiy (1960) consider the problem of 

constructing the fixed-width confidence interval but do not 

consider the problem of achieving the exact consistency. In this 

section, we consider the extention of method of Birnbaum and 

Heaiy for constructing the fixed-width confidence interval for 

the parameter of interest.

We consider the same set up as in section (3.2), but without 

the assumption (C-I), when '( is unknown, we consider the

following two-stage procedure.

Start the experiment with the sample of size m (possibly

m>2), say, X ,X ,...,X . At the second stage, we take a fresh 
12 m

3*

sample X ,X ,... ,X . Let T * T (X ,...,X ) and
mu m+2 m-t-N N N tn+l sm-N

propose the interval,

* ( * - 1
I - d , T + d V , for B.

N | N N J

«
For each fixed n, the event "N = n" depends only on U and T

m N

depends only on (X , .. . ,X ), hence the event "N = n* and
m+l m+N

*
T are independent. Now by using the same technique as in section

85

#1



(3.2) we can prove that

pe.?l s e | - '-a-

and

Um p- 11' d-K» N
B | * 1-0*.

Let H = N + m and H = N, where N is defined as8H s

. . . (3.5.1)

... (3.5.2)

Then the

N = max m ,
l

asymptotic relative

bglU ) ] ')m m * + i [.

J
efficiency (ARE) of the

Birnbaum-Healy procedure with respect to Stein's
procedure(3.2.1), under the condition (C-I) is given by

bk,;
,. r ( n ) ili.m. | £?,?, s [

d-p O { "e ' Th F {[ Bli J

1,

( r )
provided E,., |g(U )! V is fL m J J inite.

Since ARE being closed to unity, asymptotically these two 

procedures are equivalent.

Remark(3.5.1)s The results like (3.5.1) and (3.5.2) holds without

condition (C-I). However, if condition (C-I) also holds, Stein’s

procedure ^>eat£ Birnbaum-Healy procedure in terms of taking fewer

samples. i
\

0&

t (r **

t/tJ}

, c ru .5 5 - —
h*
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3. 6. Conclusions:

i

(1}The procedures considered above are not applicable to the 

models, where the only parameter of the model itself is the 

parameter of interest.

(2)The procedures are not applicable for the problem when giB }
l

is the parameter of interest, where g is a continuous knowa 

function.

<3)If any of the assumption in condition C-II donot hold we 

can not use the procedure.

In the following chapter we discuss the problem of 

fixed-width confidence interval in non-parametric setup.
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