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CHAPTER: -IT1

FIXED - WIDTH CONFIDENCE INTERVALS

TWCO-STAGE SEQUENTIAL PROCEDURES

3.1.Introductions

*&r
In chapter II we have given gy! purely sequentiail procedure

to construct a fixed-width confidence interval for mean of the
population with p.d.f. fix;8) with unknown variance. The purely
sequential method is asymptotically consistent but fadils to
acheive rthe exact consistency. Stein (1945} proposed a two-stage
procedure to construct a fixed-width confidence interval for mean
¢t of a normal distribution when population variance 02\ is
unknown. Mukhopadhyay{(1982) developed a two-stage procedure to
construct a fixed-width confidence interval for mean of the
population along the lines of Stein's two-stage procedure which
acheives the exact consistency even without normality. In h%s
method the assumption of the normality is relaxed and replaced by
{ilthe independence of estimgtcrs of the parameter of interaest
and the nuisance parameter and ({(iijthe pivotal nature of the

estimators in some sense. 1In section (3.2) we discuss the same
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and we study asymptoti¢ properties of the same. The procedure is
11lustrated for normal distribution, negative exponential
distribution and the multivariate normal distribution. Since the
method is not asymptotically efficient, we consider a wmodified
version of a Stein two-stage procedure which 1is asymptotically
efficient, in section{(3.3). We aiso give asymptotic properties of
the modified method. Some of the properties we discuss with
negative exponential distribution. In section (3.4}, we review
the problem of estimating the parameters of an Inverse Gaussian
distribution. In section (2.5). some properties of two-stage
procedire to construct a fixed-width confidence 1interval along

the lines of Birnbaum and Healy(1960), are reviewed.

3.2: Stein’s Procedure and exact consistency:

Let xt,xz.... be 1.i.d. random varijables with p.d.F.
Fix;0,f), where (8,f/) « kK » m*, whera K and R’ stands for the
entire real line, that is (-o,m), and positive half of the real
1ine, that 1sA(O,m), respectively, while support of X may depends
on & alone. tet T = T (X ,X,...,X) and U= U X, ,X,...,X)

n n 1 2 n n n 1 2 n
be estimators of & and 7 respectively based on sample

3

xz’xz""’xn and suppose that T and U satisfy the following
ke n
conditions.

C-I.For any fixed n, (possibly 2 2), Tn is 1independent of
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(U ,U ,-.-,U )-
2 13 T

C~II.{3) For some (3 = 0, for a measurable function g:E's E', the

distribution of "mm~_~3__m;_ does not depend on n, & and
gl(z7)
[Pl - o
¥, Let Fla) = P, ' v { n "t ’ , ar0.
) 8,? ~ S a
L gt?) ]
- . 3 . (T - &) :
{17) The distribution of‘"_l does not depend on & and
g{vu )
i
¢ and ™ painli & Seguem fonpsien tuak
T - s 1
Pog fomen < p - « (say}, «e(0,1}
o < = 1- a is , (0,1},
’ { glun) n } © y =

Given two preassigned numbers d (d*0) and o (0<xK1), we have to
construct a confidence interval I for &9 having width 2d and

<

confidence crefficient atleast (1-x), that is,

.pe’f{ Im 2> 5} 2 Y-y,

Assume that n observations (xi,xz,...,x )} are recorded. We will

a1

propose the interval,

N T n
for 6.
Lower and upper Jimitsef interval will be modified suitably, if

support of a vrandom variable X depends on 6. [see example

(3.2.2)).
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Now,

=2
-
|
T
p)
Q
S

NOV F's

if and only if,

nﬁd
- > a, using C-I (7).
gtt) :
1/f3
’
That is, n = {—E%LAL ] = ¢, {say).

Case 1: If ¥ 1is known, we take a sample of size/}c}+! and prooose

the corrosponding interval I for 9.

n
Case 2: Suppose that ¢ is unkna#w. In this case, a two-stage
brocedure similar to that of Stein(1945) is propbsed to construct

the fixed-width confidence interval for &. The procedure 1is as

followy,
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Stage—-I:Start an experiment with sample Xt.xu...ﬂ,x* of size wm
JAmz2), from Fix;8,¢). Based on these cbservations compute U aend
m

b and define a stopping randowm variable as follow,
m

1 (b gty ) 177 )
N=max{m, { {-~E-—- } } + 1 3. ...(3.2.1)
{ L 3 1
Y )
Stage—II:Take an jndependent sample X X ... .X from
mit m+2 M

f(x;0,Ff} and propose the interval

I =11 -4, T al . ..13.2.2)

N N

for &.

In following theoram, we prove that interval defined by

{(3.2.2) satisfies the definition of exact consistency(1.2.5).

Theorem (3.2.1}): ﬁExact Consistency):

For the rule in (3.2.1), under the the assumptions (C-I) and

(C-II), for all (6,7) « RxR',

:Z. (1"‘-‘)- oo-(302-3,

[ SRR |

PB,P,' [Im > 8

Proof: First we note the basic inegquality,using (X.2.1),

P

¢ b oty ) V'  bgtuy U
{( md T ? <N < ,i,--.."‘lé,-«ﬂl.. )} +m. . ..(3.2.4)
Now,
[t =0l = [ e T
o, [In - ej P%’.?, ‘LT a=p =T +d i
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P .
=YrP [; T - 4} < d Nan}P, .g 7'3=n'l
-2 Je.l ]

®
= E"pg,?[f Tn - 4‘ < d}Pe’{:{ N=n}. ...{3.2.5)
n=m

The last step follows from condition (C-I}, since the event (N=n)

depends only on Um for any fixed n.

Thus,
f2 -
o [ o7 - e dn i
p. 1 26l =v» 2 <9 5 v =n
S LI nEm 9’{%_ at?) gf.-‘,)]‘ o1 !
© 3
Sodnt DY f
=7 FE\--—E—— }PQ'V v = n}
n=m gl?) 8

' 2
Since, from (3.2.4), dnN' 2 b 9{y ), we have,

( ( bmg(um) \
p [I > 9] z E S ] ?
¥ o F .
CRANS g,21 " P _
Ie - bg(U) 3
=E_ _{P ,.‘lv[ ¢ T u}}
e, l e, st | , ’
N 8,74 g(f) m
where V s independent of U and has same distribution as that of

w
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nﬁ(T - 2)
0

-

glf)

[ wisws
5 gll) - 1.
Hence, PB,&{ IN > A } 2 PB,{{ LﬁéTU:Tm £ bm} = f—nt.

This completes the proof of the theorem.

In the following, the above two-stage procedure s

illustrated with some examples.

Example(3.2.1): Let xl,xq,... be i.1.d. random variables naving

. - . 2
normal distribution with mean p and variance o .

Now let & = pn and ¢ = 2. we have to construct a

fixed-width confidence interval for #.

m
...1 o
Choose T =2m [T X, =X and VU = 5§,
m . 3 m m m
=1
where,
2 1 2
S"=(m~-1) TX -Xx)".
m \ t m

t=1
In this case, let 3 = 1/2 and gix} = x (>0}, then distribution of

I ) 12 -
m (T - &) m (X - )
m m

=

glX ) ey

is N{0,1) and the distribution of

3 2
uJ(T - &) m (X =9
m

g(u ) S
m
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is Student’'s ¢t with {m—1) degrees of freedom.

Consider

then from procedure in (3.2.1}, we get Stein's two-stage

procedure as a special case. Where the sample size N is given by

- b S 2 )
{ V4
N = max{ m , [ { LIS I S 2 ... 13.2.6)
U ‘
L Y 3 {
4
Here,
/2 ~
n' (X =
T = = follows t-distribution with (m—13}
m=-
S
m

degrees of freedom and b s such that
" PWig

1 %5 ro ("/v‘“v",‘\\')
pliT <b 1 ==, LR
U m-1 m l \«4‘»’ y"
implies b =t 100(/23% point of Student's ¢t distribution
m m-t, /2

with (m-1) degrees of freedom.

Example (3.2.2}: Let xt,xz,... are i.i.d. random variables from

distribution with p.d.¥f.

' formou, o >0.
o)
...13.2.7)

:‘
Fixsp,o)=4 e
{ 0 R otherwise.

i +
In this example support of X depends on parameter u, {u.o)e RxE .

Now, let 8 = z and ¢ = ¢ .
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Choose,

T = x( ) = minix‘,xo,...,x ),

B

—

m
= I X - ).
and Um om n g { ‘ X

In this case take 7 = | and gi{x} = x > 0, then distribution of

£
m(T - 5) m(X(t) -
n = — follows Chi-squaras distribution with 2

gl¥)

degrees of freedom and

3
mAT —-2) mi{X -11)
m _ (1)
gl{Vu ) o
m m
miX - Yo
_ (1) p-f) 7
m
{m—1) Zttx -¥ Y/
va L [ m

m
Since (m1) T, (x‘—xl‘)fa has Chi-square distribution with Z{m-1)
i W)

L=1

m
degrees of freedom and Xu)and PN (x{—&n) are independent, hence
izt
mﬁ(T -9)
distribution of - 9(3-7~ has F distribution with 2 and 2(m-1)
m

degrees of freedom. Thus, for this example, the sample size I{is

given by

b o
N = max { m, [ mm
{ L

mm ]
2d J

b}
+1 } . ...03.2.8)
2

In (3.2.8) m is the starting sample size and bm is such that
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P —— il <b } = 1-o
o4 m

L m

{ Y
That is, PIF £ b } = t-a,

‘ 292(?73"".) ﬁ'ﬂ}
implies b = F j.e. 100:2% poynt of Ff distribution

m 2,2(“’3"1;0,\3

with 2 and 2{m—1) degrees of freedom.

and finelly we propose the interval,

_ L
for the 5. t;ﬁ,;t, M-\Qp
o Y
1T W
Example(3.2.3): Let X = (X‘,KZ,, ...Xn)' is n—-dimensional

{n=1,2...) normal with mean vector y=(‘u,...,m; . and dispersion
. - X

matrix T = cvzp“j » P, =1 and £, ; = p, {(u¥y=1,2,...,n}. The
R - oy 1
p.d.f. of X is given by LSl
- =
-n/2 -1/2 { 1 -1 1
fix)= (2n) |5 exp{- —im-(x - 0= ) e ...(3.2.9)
- \ ~ - ~ -~
s % e
. + X
Suppose v = {(u,z,p) < KK »{-1,0). We wish to construct a
e —— —_—
_ S
confidence interval for .. &\-;lr;,’ > AN

fet us consider
I = [i‘ -d, X +d

1
n [_n n J

as a confidence interval for ;. Then,
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(1 au)en!z i val
PII 2up=PiX —dipsx +d|
{0 J [ )
J{ ¥ I d\
= pp)‘}xn - ol o= }
{ iX - h)
e « |
- Pv{ o"{(lwﬁ)+np}]1 N f c*"[(i«p)-*npﬂ1 B ?
{ n J L n J
| |
IN(D,1)! < i
zp 4 (0,1} e Y ...13.2.10)
o (e
| S B
z 1-n,
if and only if,
2 2
nz -2 V,(] el c, {(say),
d‘w
where a is upper 100(x/23}% point of standard normal distribution.
¢ 1.7
Note that inequality in {3.2.10) is vaiid since -1<{p<0. X €ﬁ7q>
—————— \’ e -
. 1/2 . . \/
Choose 8 = 1, ¥ = o(1=-p) », T =X and Y =S (for m =z 2),
m m m m

m
where s> = (m-1)"'T (x.— X )°.
™m Pzt L m

In this case, take 2 = 1/2, g{x) = x and define

2.2
‘ b's
N = max{ m o, [ =T J+1 },
L l. dz l )

where, mz2 is the first stage sample size. We propose interval

1'=r§ -d, X +d

]
N | '~ N 1

., for ;.
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We know that, for distribution 4in (3.2.2), ¥ and S° are
m m

independent. The distribution of X is normal with mean ;: and
o

variance {(m+(m—1)p)o?}/m and the distribution of Si/((l—p)ﬁzl is

Chi-square with (m—1) degrees of freedom.

Hence,

milz(f - Lt}

m

foliows t—-distribukion with (m—1} dayrees of
(Sm)f(m—i)

freedom.

Now ,

N

{ ) { , _ 3
PviINap]-ﬁPp‘\x -dzs u <X +d}

{ { 3
= 7 Pvi} Xn -ul £ d l N=n } PH{N = n?
n H K v
=rP l 2 FE = 2 /2 l N=n}
" vt [ o {(1~p)+np}}1 - { f.r'[(1-p)+np}]1 - % :
L n J L n J }
{ )}
. P in = n}
b2
- [N(D,1)]< N=n! A
E P { 02{(1~p)+np}]1/2 ! ? pv N = n}
\ { n j ' J
. d -
zLP [nee. 1) < 2 7 | l P {N = n}
n v (e (-l | “{ J
| L ) J




{ ¢ } 3
b d | t
= Ev$2§ féf}‘"Jﬂji/? ~1¥N n %.
{ tL n o J ! J
Now,
2.2
. bmsm . . . /2
N 2z , this implies dN = b s .
2 Mm om
d
Hence,
b s ) } -
pir a;'\:ejz‘&-‘“’“ -;—1‘5&
Y S TH ) 2 Yz m
L ) U Uefa-m 1% ) | }
L J '

[ ¢ b 1
= EV?PV [N(D,1)]| & — :’ ’5—--] '
L L. v sy (1_,3) j

{ ¥

Pl I

= E %P 1N(0,1)l_ < b % }

.:)t v Sm /o ren. mJ !

L }

L ¥ oo (1=2)

Since, b is 100{x/2)% point of Student's t-distribution with
m

{m—1) degrees of freedom. It implies that

; .
P { I =6 } = t=-at.
¥Y{ N }

In the following we state and prove the asymptotic

properties of the two—-stage procedure described above.

Theorem{(3.2.2): For the Tule in {3.2.1), under the
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+
assumptions {C-I) and (C-II), for all (8,)e<RxR , as d » 0.

3
ta)aN” + b gty 3. . ..(3.2.10)
m m
r _t/(ﬁ‘-}
we, (1= " ) E ij__fi?m) Vo (3.2.11)
oL T)T ) fer U | sz
/3
3
Provided E V{ glu )} is Finite.
/:?,(,iL m }‘
{ 0
tc) PL{ I =6 } B P Lo 03.2.12)
18 B |
A, 5
Proof: From {(3.72.4), we have,
/5 2
b g )t [ bogtu ) b
™m ™m 7
SRl B IR S S
{ J {

It follows that tim N is finite ailmost surelyla.s.).

d 20
Also, we have,
limi 7.
Lmznf dN( 2 b alU )} a.s. ... 13.2.13)
d + 0 m m
and
‘me 2
b glu ) = UMEUP (y nyiy
m m d"’(’
= bmse B emny?
d » v
. limsup dn’? lmmsup(I_m/N)ﬁ
d » 0 d + 0
- Limsup duﬁ.
d » 0



That is,
b glu ) x ~ITEVE 44", . 03.2.14)
m m s SR

Combining (3.2.13) and (3.2.14), we conclud that,

Lim 3
~aN'" = b g(y } a.s. e l3.2.15)
v 284 m m

-This proves that resuit {(a).

To prove (b), again consider the basic ineguality

/13 1/
b giu ) 7 (b gty 17
1} M O PR ML I Gy
i d } L d ¥
P agi:)
Dividing by C = —3 - we get,
/2 /8 A )
b glu )" bty ) Y
fom__ ™ b os N ocam oL, {‘- _Gm
VTagty [ T T T VTeet) \ Tagzy |

By taking expectation, on the bcoth side, we get,

2 R
bagw o Lt o b ogu g F
£ § m m ! PN ! joom m
PRI Je— SRS S UL S Y SR [
8,21 agtz) ! 2,61 C | 8.r) agir) |
‘ 1/3
( )
+E,, {——) .
T g(,))
That is ,
. /2 t/fR

™ < }’ N ) o x {
=) Salzm | SRl =) Sexlsm )

70



By taking the 1imit as d + 0, we get,

/3 1 /13
R R L {90
E. el = o E e ! .
= el
/{3
This proves (b}, provided £8 LLaiu 31} is Finite.
[y b
Now,
i \ { b oty )
4 - s = } l--—.-——.» SR {
Pu“’-¥ IN o { !:..:i;"{3 F! i,:) E i{*
' ’ (L I

which combining with {3.2.15) and dowminated convergence theorem

€1.2.3) leads to

lim i { ( ( bmg(um) ] }
4o Popt L, 200 = Eu 0 Fl—omy i}
! SN

H

(1-22), using theorm(3.2.1).

This proves {c)} of the theorem and henrnce the proof of the

theorem.
/3
oty ) "
There are many examples, where EB ?{ g(,} I = 1, 9n this case
{3.2.11) becomes,
/03
N { ad G
E@,g{"E‘ ] , A5 r 0. ...03.2.18)

Next we see whether b > a. In addition to conditions (C~-I)} and
™m

{C-I1I), if some more extra conditions are satisfied we can

conclude that b >a in fairly general setup.
m

3.3: Modified Stein-type two-stage procedure:
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3.3.1: Normal Distribubtion:

Srein’s two—-stage procedure rto construct a Fixed-width
confidence interval is not asymptotically efficient(Ref. Zacks
P.No. 558} In this seckion First we review the Modified Lwo-stage
procedure, in brief, to construct a Fixed-width confidence
interval for mean of normal distribution, which is asympioticaliy
efficient. Further we state asymptctic properties of this
procedure.

4
L

In Stein’'s procedure for N{.,v )} 2Jiscribution, with . as

parameter of interest, the random samgie size N is given by

+1 s -..13.3.1)

L S

- of %
In this procedure Pi IN 2 3oz 1=, but, E(N/C) converges to
}

2 2 ) . . .
{ an ) /a as d + O,which is bigger than one. This means that
[ 2 2as §

Stein's procedure is not asymptotically efficient.

$
To overcome this difficulty, Chow and Robbiq{I?&S) proposed the //

rale (2.2.3},

22
( 23
N = 1nfin: n 2 and n - ~~;4 i ... 03.3.2)
: d 7

The procedure according to this rule is asymptotically efficient,

consistent, but doesnot satisfy the property of axact
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‘ \
consistency. That is P{ Iﬂ 2 p 2 1-—a. (Ref. theorem(2.2.1j).
t J

To overcome this drawback, we modify the rule (3.3.1) as follows.
2

{ . . a 2 -1
N = inf{n: nn and n Z—— {S° +n )}. ... 12.3.3)

The sample size required by (3.3.2) and (3.3.3}), for small d, are

absolutely close to each other. In case of (3.3.3), we bhave the

~

2 2. 2 3 . I
Tower bound, N =z a /d that is N =z a/d. So rule (3.2.3) giving
us “asymptotic efficiency”™ because we take atleast [a/d)+1
samples and in turn sample estimate of variance tends to 02 as d
-t

2 . ya . ,
+ 0. We take S +n as &n estimate of o even if the
2}

distribution is continuous, in particular normal.

Now we define a new two-stage procedure as follows.

{ 3
Let n = max{z R f~§~}+1 } ., then
(3 }

¢ L 9}

2
an ~1Sn )
0 o |+ }. ...03.3.4)

The motivation behind (3.3.4) is very simple. The rule (3.3.3)
- says that we take atleast [a/dl+1 samples, so rule (3.3.4) starts

with [(a/d]}+1 samples, if d is small. »
oA e

Theorem(3.3.1):For fixed o, 0<c<m, the rule in (3.3.4) satisfies

the following properties.

(a) N/C » L as d » 0.
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Lim & onscy
0

j

{(b)

d~

ry

-’

v

¢
¥,
{c) P)IN Lt

\

lam.P
d-0

(d) I

=

{
T
‘ N

Proof: - First we notice hagic iseguality From rthe

vt eyt

(3.3.5), ” R
] S
AR-t N

2

d

2

N

z

n-1 nY

L)

d° d

2 2
Now n +» ®mas d » 0. Hence S -+ » a.s. and a a,
4] ne n -t

o)
0. Using this fact and {(3.3.%), we have,

N/C + 1 a.s., as d - 0,
which is part {(a) of the theorem.

To prove the parr (b)), dividing (3.3.5) by ¢ and

expectation and 1imit as d-»-0, we have,

L
“UReIN/CY =t
q-20

which is part (b) of the theorem.

To prove {(c), consider
f ) b}
P{IN > u} = Pilxn—g[ < d }
@ ¢ _ ] Y O f Y
=T Pi;xN—p’ £ diN=n } P{N = n }
ns n() l, \ )
w - -
=7 P{IX -u| £ d } P{N = n }.
n=no \ n J L 3
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»

Since the event {N=n} depends only on S$° for any fixed n.

™
Hence,
t/2 172 R
Pla,=u = L o : | PN}
\ J n=no l (44 fad J {
1ty - 1/2
{ . n d § !
= L PINIG, 1| & ——— } P{ N=n ;
n=nn ) / \ J
A 1s2 3
= 2ef 3t 9 1o |
S
{ nnwtsnn 1 .
Pl ZEi % -~u:-»~}m1 }, using (3.3.5)
= 1-u.
Which is the part {(c) of the theorem.
Now part (d} folilows since,
{ 3 f _fN"Zd 1 3
P{ I =p } = ZE{ e } + 1=}y in view cf (a).
v N J t Lo } j

Hence the theorem.

Remark(3.3.1): We can define n0 as,

( 2/ {1+y)
n_ = max {2 ’ {{«%"} } +1 }, for any »>0,
' L ' J
and propose the rule, .
2 2
[ a, _ 1 3
N =max nn,{'m'?g__:jg r-z I . (2.3.6)
) 2
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“

For this rule also the properties {(al-{d} holds.

In the following subsection w2 consider the modified

two~stage procedure for non~normal distributions.

3.3.2:Non—normal Distripetion:

In this section, the modified two—stage procedure is
o ad
conswderLfor non—-normal seb-up, whicih has a1l properties as  in
theorem (2.2.1),%s as Tollow.
Let X ,x?,...,x be a random sample from d.f. F with mean
1 A n
and variance o .
f fai .
tet n = max{2 , |——]|+! | , and define,
4] { d H N
- fod Z -~y ~
f Pas b
N =max! nn.g n {1 Y, ...{3.3.7)
e
~ -
_ (- _
and propese the interval I = ¢ ‘N—d , X1+d { for the ..
! ¢ ! Ji

Remark({(3.3.2): The ruie Tike (3.3.6) can aiso be proposed aven in

non-normal case and consequently the upper bound for EI(N) can

made sharper.

s

be

Now, suppose that we are in‘? same s2t up as in section /

(3.2) and we propose a rule like (3.3.6).

. +
Choose a fixed » = K , and let
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(

m = max (2]
iz ’ L j

1
Ld.

and we start a experiment with m obsearvations. Then we define,

/{4

[ bgtu) ] ]
= b L + 1 4 {3.3.3}
N= mcnx‘L m ,i 3 ! j, ... 13.3.3)
and propose the ‘interval,
I ={7T-¢d, 7 +d i, for =#.
N N B
The procedure in (3.3.8) looks exactly Tike the one given in

{3.2.1). The major difference in procedure (3.2.1) and (3.3.8) is
that, the starting samplie size m in procedure ({3.3.8) depends on
d, the desired length of confidence interval. Also m = m{d) -+ =

as d +» 0.The basic inequality in (3.2.4;) is changed tb

Iz 1 /R HEE
;b gty ) tF b gty ) | Jyeter)
m-m . < m m f2]
LA SRR S . +4. ..03.3.9)
¢ j ] La)

o o,

The asymptotic properties of the procedure are g¢given in the

following theorem.

Theorem (3.3.2):Asymptotic Properties:

. + i - .
Suppose the function g¢g:[k + K is contimtous, U is
n

consistent for ¢, that is,

1 /43

XTI

|
-
L]
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Then under conditions (L~I) and

(C-II)

.. {3.3.10)

<43.3.11)

.. .13.3.12}

.13.3.13})

{. .
(a) P, { I“ > 8 ¥ R B
S A8 “ [ }
Pim [ N . i
{b} 420 L'E~J = 1 in probability
Lim (N}
te) d»0 8,7 | C } =1
lim 1 !
3 = s = -
LN 8,5 1 I,2° f
Proof:
To prove (a}, consider,
A} {T d~ e d }
P = & = S - = £ 8 “+
8,¢ {IN j 24 L N M J
| ol < gl
=Pg’ngN-d!_dJ
Z 8,F L.I N } N=n
nEm
4] -
= - 9‘ % j ==
§ Pe,& l TN | 2 d i N=n
n=m = :
[4 4] - . .
= , T - < P N=nl.
Eeg o [17, - o1 s alp [ o]
n:m ke

The last step follows from condition

(C"“I)’f

depends only on Um for any fixed n.

Thus,

from {(3.2.4), we can write,
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PG,f LIN =

) : i’ - &l 12} -
ol :p e i PR L ]p In r}
- a a s I =N
] n=m F[ gil) g(i’)j @41 4
e 2 3 f i
n
Al ACRE
n=m giZz )~ 4
= EF’) ;} ;:[,.._(.i.& "L
\’,l' \, g(f‘) i
. b gty }, -
{ Y
=g )) F{w n m ) ;‘ , using (3.3.9)
7,8 { L gif) -1 3
{ brg(u ) 5 ‘x’
= E IP,,,[V_:«-#'» u 1ot
dyt{ C’),( ! ! g(z) mj j

where V is independent of U ans has same distribution as of
m

4 .
ni{T - &)
° . Hence,
glf)
} {'t t’
) Vig( .
= > L - €
P@,Zf{ IN > & } Z PQ,{'{ g(um) < b

m

= e,

This completes the proof of the theorem.

Now consider the inequality (3.3.9)

v 9 J

/2

e e e et W

(a)
Ld)

Dividing by € to this inequality, we bhave,

7%

t/30t+y)

+4

...{3.3.14)

-



3 3 £2{ 2+ 3
b gty ) t/f b gy ) 1/ t/B0ry) L/
f 7w m . f "m on . [ a) f d 3\
i agl¥) } - C i agl(?) } Ld)} 1 ag(?) |
1/
{ d Y
+4 e L
P agir)|
That is ,
. 1 /{2 , Y L/
e | et e et
-y/lery) £/ 1/
(2] 1 Vg j_9
Ld} i g(!)} { ag(LJ}
...13.3.15)
Taking Jimit as d - 0, we have,
?.l' . -
St {-—'U =1, .. 13.3.16)
4 +0 c }

which proves (b).

To prove (c) Lake expectation in (3.3.15), we ha»é.

/3 /{3
=t B S Eas ) S et Eeisar |
L s,fk gtz) | 8,5 { C ) toa G.Qk gtr)

-v/3(1+y) /8 /3
{ ) }

f..?.] )._1_...... +4 ‘......9_... .

{d]} { g(’)} i ag(?)}
But Un i9 consistent for ¢, that implies,

/R
. g(Um) hd
I i S
9:((' gl¥) )

Hence by taking 1imit as d » 0, we have
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ll‘m ' r.....’_“_.. = ],
a0 9,‘ L C )
which proves (c).
: . lim 1 ]
To prove (d) that is P. . { I > 8} = 1-a, we have,
dra  &,°F { N j
{ b} { ‘
Pa s i IN > ei = E, ?i F{ dN’_ }
78 | 11 WY
But tim dN{3 = b g{U ) a.s.,
d-»0 m m

using this property and dominated

convergence theoremii.

..03.3.17)

2.3},

we have,
. : ~ . b g{u ). -
tim { 3} { - N )
R, 4T se b=k, plm o) \
d"l.‘ M \ N - } T k L g(?‘ 1 } }
= {-z. ...13.3.18)
wWhich proves (d} and hence proof of the theorem.
In the following section, w2 review the ’Aproblem of

estimating the parameters of an Inverse Gaussian distribution

terms of controlling the risk function

suitable zero-one loss functiq}g

P

3

- Gaussian (IG) with parameters ¢ and A, if its p.d.f.

A

3.4: Estimation of Inverfse Gaussian parameters:

- -

_ A random variable X is said to be distributed as

]

81

in

corrosponding to a

inverse

is given by




t/2

Y .
(f } [ 2]
§t._.,._...:...- ‘ exp{-n & 5 {xx,;..) } , if x>0
Foauaa) = 4L 2e @) L2
{ 0 - , 1f x<0.
whnere O < u, x < m. ..-13.4.1)

Inverse Gausszian distribution is perticularly very usefnl

for many long tailed data sets.

Suppose we have a segquence X‘,X_,... of i.i.d. random
variables with inverse Gaussian distribution with above p.d.f.

Suppose that n observations xt,xo,...,x are recorded, usuvally we

take

S
ELT

.
-~

as estimators for . and 3. It is known that (X , A ) forms a
: n \

complete sufficient statistic for (u,2) (Johnson & Kotz(1370)

e

Page No. 143), In estimating u by xn, suppose the Joss function is

given by .
( X, - ~
(@ @ X
bl X ) = { (x ) ...{3.4.2)/
lal ol
{ 0, otherwise.

This loss function cprrosponds to T"proportional closeness”
in some way. So Tar we are discussing fixed-width confidence

interval procedures. Thus, introducing the loss function like
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(3.4.2) is not proper. A reasonable loss function for fixed-width

confidence problem we define following 0-1 loss function

1
a R

L6, T ) = {( 1, 9f (T -6 2 -
{

" 8, if |T 8] ¢ d

for the methods in section (2.2) and {2.3). Thus, 1in section
(2.2) and {2.3), given d>0 and «u={d,1), we achieve the exact
Tesult Eé,EL(e’Tn) < . In the following we consider loss
function (3.4.2) only.

Given two preassigned numbers d {d>0}) and = {0<x<1)}, we wish

to achieve,

-

{ - h)
E . 4L{p.X ) } = . .- 13.4.3)
;.i,.&k n
Now,
, . } —
E LX) L=p [ X > d }
s = e P & | 7]
p')\{\. H n } ;.{,}\4{. ()‘(- ’1/2 )?
N
_ /2
((ﬂ«\)i lx _”i
n 172
=P 7 > din))
Ho g (xt7? '
4}
2o,
if and only iF,
1/2 az
d(n).) :: a, '-I.Q. n Z ""‘"'z'—"
d X

.where a is upper 100(x/2)% point of N{(0,1) distribution,
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L

YA
(na) ! ‘{x —t|
since, 0 is distributed as N{(0,1).

- t/2
b4
[T n)

Thus, the goal of controiling to loss in (3.4.3) can be achieved

by fixed sample size procedure, if A is known, by taking a sampTe
2
1
) a
of s1zer-;~ ES
N
Now we assume that Qﬁigﬂgg&nggn and in this case w8 propose a

two—-stage procedure.

Start an experiment with m {mz2) cbservations and define
;:".‘._ b+ o1 b, ...{3.4.4%)

where o s the 100{(x/23)% point of Studenkt's t-diskribution with
m

{m-1) degrees of freedon.

Theorem(3.4.1}:

For rale in (3.4.4) and loss Ffunction in (3.4.2), for all

U € R+XR+,

Proof: First notice that "N = n" depends only on X , which is
m

independent of X for any fixed nz2. The proof of this fact
n

follows from Basu's Theorem {1955), since X is compiete
n
sufficient statistic for @ and A s an ancillary statistic for
m

any Fixed A.
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Thus,

i

E I—L(p x )

(]

#

A%

‘whera distribution

A , hence,
m

£, {1-Lip,X) Ve
Hehy g ]

where ‘Z{ (AN )-1/2

™

degrees of

distribution with (m—1) degrees of freedom,

theorem follows.

freedom,

(RS
U — AN
".Ai x 1’2 d j
H N
- 1/2 .
(o E - e
P9 < dinNy)
LZ,:\ - /u.!
S § THENYI0 SN J
1 e |
SERILIES D] s a2
L J
"' > \
E 4 2§ d(Nzx&)tlh‘} - } }
“’Kl . J J
i r 1/2) h!
E ,{ 2% b (Ax ) -t i, using (3.4.4)
,‘J,,\.k \ m J }
{
E {( [}z; _on 2 } } ,
e A o™ my g
of Z s N{(0,1} which 1is 1independent of
-1/2
g (AA )~ b
e |1?] <o |
1—-ct,
follows Student's t-—-distribution with (m—1)
since (m—-HIx.ZA.m follows chi-square
the proof of the
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In the following section we Teview some properties of
two-stage procedure to construct a fixed-width confidence

intervals aiong the Tines of Birnbaum and Healy{1960).

3.5. Birnbaum - Healy type confidence interval:

Birnbaum and Healy {(1960) consider the problem of
constructing the fixed-width confidence ‘interval but do not
consider the problem of achieving the exact consistency. In this
section, we consider the extention of method of B8irnbavm and
Healy for constructing the fixed-width confidence interval for
the parameter of interest.

We consider the same set up as in section (3.2), but without
the assumption (C-I), when ¢ is unknown, we consider the

following two—-stage prDQGQUre.

Start the experiment with the sample of size m ({(possibly

m:2), say, xt,xz....,x . At the second stage, we take a fregh
: m

sample X . X g oo X . tet T = T (X I 4 ) and
mtL  m+2 m+N n N m+t m+N

propose the interval,

™ {f = = 3
I = i T -d, T +d } , for 8.
N N N

L 4
For each fixed n, the event "N = n" depends only on U and TN
m

i

depends only on (X s ona- X ), hence the event "N n" and
m+s m+N :
-

TN are independent. Now by using the same technique as in section
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(3.2) we can prove that,

{ = 3 ’
P > 8 Z t-at, ce .5.
Q,fi Iﬂ = ? A s ] (3.5.1)
and
Lim { = 1
o~ A -
d=+o Pe,zi In » 6 j = i -- 13:5.2)

Let Nau = N + m and NS = N, where N is dofined as

N =mx{m .l’-b'"g:fl“-i 1 + 1 ]}
L L J

Then the asymptotic Talative efficiency (ARE) of the

| —

Birnbaum-Healy procedure with Tespect to Stein's

procedure(3.2.1), under the condition (C-I) is given by

e L lim {( ,_E.f”...’.(.."i)_.. )&
o ' f
BH,S d+ © l EB.E(NBH) )

provided E . g(u ) is finite.
ol o]
Since ARE being closed to wunity, asymptoticaliy these two

procedures are equivalent.

Remark(3.5.1): The results like {3.5.1) and (3.5.2) holds without

condition (C-I). However, if condition (C-I} also holds, Stein’'s

procedure Birnbaum—Healy procedure in terms of taking fewer

samples. ~e'P por V7 fune

S nuft FINZ st
1% Nﬁ(\w‘ [*;."H {yﬂ‘

nt o oy

A
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3.6. Conclusions:

({1)}The procedures considered above are not applicable to the
models, where the only parameter of the model itself is the
parameter of interest.

{2)The procedures are not applicable for the problem when 9(81}

is the parameter of ‘dnterest, where g is a continuous known

function.

{3)IFf any of the assumption in condition C-II donot hold we

can not use the procedure.

In the following chapter we discuss the problem of

fixed-width confidence interval in non-parametric setup.
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