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CHAPTER ~ IV

FIXED-WIDTH CONFIDENCE INTERVALS:
NON-PARAMETRIC SEQUENTIAL PROCEDURES

4.1.Introduction: -

In chapter II and III we study the construction aof
fixed-width confidence interva1s in parametric setup in the sense
that, the form of the distribution is completely known except its
parameters. This chapter is devoted to non—-parametric sequential
interval estimation procggures. In non-parametric setup the
functionmal form of F, the d.f., is coﬁpleteTy unknown and it s
assumed only that F belongs to suitable family F of d.f. In
section {(4.2) we Teview, 1in brief, the general wmethod of
constructing the non—-parawmetric fixed-width confidence interval
along with the asymptotic properties. We obtain fixed-width
confidence interval for reliability function. The corrosponding
simulation results are reported, when F has an expomential
distribution with mean 8 in section (4.3). The results obtained
are compared with the results of the parametric model in section

(2.5).

Tahir(1992) has proposed a method to construct a fixed-width
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confidence interval for correlation coefficient of bivariate
normal distribution. We take & review of the results reported by

Tahir(1992)}) in section (4.4},

4.2 A Non-parametric Method to Construct Fixed-width Confidence

Interval:

{

{ 3
Let { Xi, i21% be a s2quence of i.i.d4. random variables with
& 3

d.f. F defined on Rp,‘ for some pii. In parametric model
functional form of F is assumed to be known and unknown algebric
constants associated with this form are regarded as parameters.
In non-paragetric setup, F is of unknown form and it 1is assumed
only that F belongs to suitable family F of d.f. For axample F
may be the class of all continuous F on Rp or all F is
{diagonally) symmetric about origin which is taken as Jlocation
parameter of F. In general in non—parametric Fformulation we
take the parameter

@ = @(F) = a functional of d.f. F. .. (4.2.1)

Thus our parameter of interest is “1{(F).

The objective here .is to locate an interval, say 1, bpesed
N
on sample observatios xx'x"""’x of a sample of size n, such
da 11}

that,

3
(i) P { I = 6{F) } -y =, as d — 0 ... (4.2.2)
Fy n J
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(i) Width of I < 2d, d > 0O .-.14.2.3)

Based on sample (x‘,xo,...,xﬁ) of size n, ek
T =T (X ,x9,...,x } be a non-parametric estimabor of #{F). That is
n N 1 Z N
T is not based on any specific form of F. IF F'1 is sasple
n Y

(empirical) d.f. based on (xt,x?,.‘.,xﬁ) then Fr is the natural

{non-parametric) estimator of F so that one may choose Tn= ;{F}

as a natural estimator of 4. This s wusually termed as a
vgn—nises functional. There are other estimators, which <can be /
ccnsidefad, such as U-statistic.

We assume that as n - w,

t/2 . 2
n { Tr -~ &{F)} ~ NO , V{F)}, ...14.2.84)
1

where V(F}, 0 < V(F) < m, s itseif is the functional of F. We
=

also assume that there exists a sequence {V } of the estimators
n

vz(F). (for example, Jackknifed variance estimator).

Note that, (4.2.4) ensures that for large n ,

n alz

/ ]

where Za is uppaf 100(/2)% point of the standard normal

/2

distribution, By choosing d (d>8) sufficiently small, in

{4.2.3), we may set

2 _ . -2 1
zv (F)}d = n } <. (4.2.6)
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and obtained that as d — 0,

]
p v o = ). .. (4.2.7)
r

#-d:BF) ST e+ d
§

v’

[\
so that both (4.){2) and (4.Y.3) holds for an interval,

Moo

n

N
4

T*~-d,T++d .
n n J

jo
E ]
]
e,

- v @
But definition of n in {(4.0.6) reveals that n depends on
. 2
unknown F through the V(F). Hence, n cannot Le satisfi&d (4}7{7)
simu?tanegus?y for all F belonging to ,F, the class of d.F. This
motivates to develop a sequential procedure to achieve the goal.

-

In view of assumed consistency of {V 1, as an estimator of

it

VIF) and (4.2.6), we may consider the stopping rule,

L3 -~ R 4

{ : ]
N = inf{ nzn :nd =2 V¥ }, d>0, ...(4.2.8)
H 0 wa/z n H

A
and define TN by Tn* for n =N . Define,

{ 3
I = i T -d.T +4d ?. d>0. ... {4.2.9)
Note that for IN (4.1.3) holds good.
Thus, the basic problem is to show that as ¢ — 0,

{ Y
P i I = ezr)} - (1=}, ...(4.2.10)
F N

It may also be shown that, under the suitable regularity

conditions,
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...N._._.,I, as d — 0. e t4.2.01)

N
For example -~ 1, as d » 0 or Et-;} -» 1, as d — 0.

n n -

Tnis shows that, for d sufficiently small, N s clesed to

optimal N and hence the two procedures share a common

efficiency.
Suppose that { V' } satisfies the condition that
3]

n ;
V - V(F), as n + w , s (4212
N

and the sequence {7 } satisfies the Anscombe's conditions.
n

That is,

-

max {nxlz*r _—
m:lm-ntf@ \ ™ N

| W

P, 0, as «5%-«, 0,0 — © ...(4.2.13) /

then asymptotic consistency in (4.2.10) holds in the a.s. mode of

convergence. In order to establish,

tem [ oM 01 . 1, for all F e ¥, ...(4.2.14)

a4 +0 L t n* }j

k
we need some additional conditions on {Vn]. These conditions are
as follow.
{C-1): Suppose that there exists a sequence {Zi} of the 1i.i.d.

random variables such that,

(i) Zi's are non negative.
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{ii) E(Z;) exists.

(395) v £ Um-m 'L 2, for all nzn om.
ifn '

In this setup, we take EfZ ) = V'(F) then (4.2.14) holds.
=
{C-11): Suppose that Vn is expression as a linear combination of

reversed (sub)martingales, so that,

{ = )
g! P v 1 ¢ o, for some n :2, .. (4.2.15)
{ AN n J "
. %)
2

then condition (f))(14) holds.

(C-III): Suppose that, for some r>} (not necessarily an integer!},

( » . 2r 3
E{[n‘lz)v“ - ViR L sc
" 4

t ]

then condition (4.2.14) holds.

<w, Por all n>n”, e £4.2.186)

"~
i

It is also possible to replace {(4.2.16) by the probability

inequality,

( x 2 ‘ -y .
P{ |[V_=- Vv {F)| >¢ } £Cn , for every nrn ,
{ n J & 0

where, ™1, (for all £>0, c¢<m).

In any case, condition (C-III) {s more restrictive than
conditions (C-I) and (C-XII) and in majority of cases it wmay be
possible to incorporate (C-I) or (C-IXI) and to avoid the extra
moment condition in {C-IXII). In (4.2.8) often Zi/z is replaced

2 2 : . 3
by a sequence {a }, where a - Za/ as n » o and the conclusion
N n i

>
4
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above remains the same. Also n may be rteplaced by monotonic

function yw(n) and parallel results holds.

In folliowing exampie we illustrate £the generai wmethod of
constructing the non—-parametric fixed—width confidence interval
by constructing the fixed-width conf idence interval for

reliability function.

Exampie(4.2.1):

Let X ,X,,... be a sequence of i.7.d. random variabies from
1 2
distribution with d.f. F, which 1is nonnegative and continuous.

For some t>0, define

Given two preassigned numbers d (d>0) and o (as(0,1)), we haQe to
construct a fixed-width confidence interval for R(t).
Define

1, if xi >t
Y )
t

Lo’ifxi t

1A

then E(Yi’ = PF! Xf >t } = R{t), that is, Yi ia an unbiased
' | J

estimate of R(t).

Now let

n
b Yi » for a1l n 2 1,
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then E(U ) = R(t) and var(y )=R{E}(1-Rit}}/n. Thus u = Rt} is

an unbiased estimate of R(t).

Let
AN
N\l
n \kt 5
U, = — ol s ) ey
= — i e - ‘l
in {n 1)!::1 Pk | N)\
'Y 3%
and W = nu - {(n—-1}¥ ., L® 1,2,...,N0.
18 o) ™ i 41

Then w‘ I . are identically distributed random variables

1 z2 iala}
. n
and wh =n T Wm = Un
-3 §
Now, let, :
" z
2 1 -
s* = rlw -§ 1,
n {n-1) ‘_‘ Lm ~}

then S;’ converges to Rit){l-Riti}, as n — w.
™

Sequential confidence interval for R{t):

V4
Choose a real number 'a' such that %(a) = (1-(a/2})), where & is

S

standard normal cumulative distribution function and define for

d>0, Stopping rule as follow.
( . - z

N = inf'{ n%’.Z . 2~ 5— "2_?"' &y

L }

and propose the confidence interval for R(t) of form
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I ={th)-—d,n(t)+d}.
N ,\N N 3

The sequential procedure, given above, satisfies the foliowing

properties.
{1) N » o with probability one as d » 0.
2 22 oy -
(2) dN » '8 with probability one ad d » 0.
(3) d°E(N) » o a” as d -+ 0.

.
(4) P{ IN > R{t) +{1-ct}) as d » 0.
(

3
{
{

A

In the following section we report simulation results for
example{4.2.1), by taking Fix)= 1 - exp{—-x/9).

-

4.2 Simulation Results:

Let xt,xz,... be a sequence of i.i.d. random veriables From
exponent ial distribution, rthat is from distribution with d.F.
Fix) =1 - exp (~x/5).
By following the sequential pr;cedure reported in example

(4.2.1), we have the stopping rule,

' “2 ndz '
Nzinf{ n22 , o° < }
4 L |
n
- 1 D - 2
where ¢ = —— T (Y -Y }, Y is defined in example (4.2.1).
n n—?_inn i
1=

An algorithm to simulate the results Is provided in appendix

(A—-IXI) as well as the corresponding BASIC program is provided in
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appendix (A-IV).

Following table gives the simulation results for di?ferént
values of &, ¢t and d, for ot = 0.05 (Table Nos. 4.3.1 to 4.3.35)
and for ¢ = 0.1 (Table Nos. 4.3.6 to 4.3.10). The resulits are

based on 500 simulations. R(t) is an actual value of reliability

function.
Table 4.3.1
g = 4 t=3 Gty = G.4723066

d Ei{N) var{H) ELR{t)}

22.436 32.12586 0.4687734
0.138 28.18 43.88355 0.4665056
0.16 35.92 69.49378 0.4671592
0.12 63.382 272.408 0.4607748
0.10 91.494 429.3535 0.468591%
0.08 141.2 1231.172 0.4669953
0.06 248.046 4451.461 0.4656341

Table 4.3.2
8a=17 t =25 Ri(t) =0.4895417

d E{N) vari{nN) E{R{t)]
0.20 22.298 32.83319 0.4835564
0.18 28.342 42 .84017 0.4940436
0.16 36.326 56.55571 0.4829034
0.14 46.674 117.0039 0.4798471
0.12 62.404 273.4529 0.4765310
0.10 83.946 562.3033 0.47%8537
0.08 138.966 1563.803 0.4712047
0.06 250.282 4115.586 0.4956596
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Table 4.3, 3
= 15 £=13 R(E)=0.4203504
d E(N) var(n) E{R(t)]
© 0.20 21.858 31.80858 0.3930772
0.18 27.476 46.62549 0.4051344
0.16 34.456 82.57139 0.4025202
0.14 45.128 126.1317 0.33%2306
0.12 62.006 203.2578 0.4039202
0.10 58.95 475.6001 0.4013636
0.08 135.004 1566.707 0.4044673
.06 238.428 5156.887 0.3855913
Table 4.3.4
= 27 £ = 23 R(E) = 0.4266242
e -~
d E{N) var(N) E{RIL))
0.20 21.638 37.96695 0.3900407
0.18 27.72% 45.4469 G.4054049
0.16 34.558 86.31079 0.3934609
0.14 45.686 109.3953 06.3635339
0.12 60.56 304.7024 0.4119602
0.10 84.072 834.663 0.4027766
0.08 136.93 1364.676 0.4008311
0.06 243.416 4305.094 0.4078117
A=
Table 4.3.89
= 35 £ = 33 R(t) = 0.3895134
d E(N) var(N) ELR(E)]
0.20 21.130 37.59714 0.3576850
0.18 26.674 51.79875 0.3623140
0.16 33.284 92.63135 0.3689130
" 0.14 43.090 167.2983 0.3598566
0.12 57.826 339.5879 0.3531236
0.10 82.462 731.0020 0.3513969
.~'D.08 132.14 1442.457 0.3663331
. 0.06 225.622 6309.379)  0.3577929
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Table 4.3.8

5 = 4 t Rtt) = 0.47236866
d E(N) var{n) EIR{t} ]
0.2 16.084 14.74566 G.4%891821
0.18 19.482 21.5%56158 £.3529694
0.16 24.88 35.00%84 0.4542325
0.4 32.144 72.95621% 0.47368802
g.12 44.44 114.7103 0.482678%
0.10 64.026 225.6772 0.465845233
0.08 98.43% 640.4147 0.4681527
0.06 177.254 1631.373 0.4715123

403&?

g =7 t R{t) =0.4895417
d E(N) var{n) E[R(t)]
0.20 16.19 12.80968 0.4904125
0.18 20.254 14.7655 0.5034955
0.16 25.486 26.73779 0.4804335
0.14 32.664 64.59497 0.4980311
0.12 44.346 114.7103 0.4829786
0.10 64.642 197.4383 0.475727%
0.08 99.374 580.%83 0.491503¢6
0.06 177.224 1695.697 0.4455253

4.32.8
15 £t =13 R(Et) =0.4203504
d E{(N) vari{n) EfR(t)}]
0.20 15.484 13.628691 0.4051969
0.18 18.916 26.18494 0.3928824
0.16 24.276 38.00787 0.3938440
0.14 31.824 62.48499 0.3980503
0.12 43.238 120.2734 0.4097313
0.10 61.224 286.56781 0.3924973
0.08 95.944 652.0811 0.4063156
0.06 169.192 2233.838 0.4041339
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Tabie 4,.3.9

8 = 27 t = 23 R{t) = 0.4266242

d Ei(N) vari(n) EIR{t)].

- D.20 15.68 15.2816 0.40608805
0.18 19.578 19.647938 0.4170588
0.16 24 .43 37.46509 0.3873231
0.14 31.812 64.50464 0.3985085
0.12 42.602 139.1195 0.41208695
0.10 61.888 273.5033 0.40573538
0.08 97.234 537.9024 0.40685%93
0.06 170.8 2086.664 0.4120506

Tabie 4.35.10
2 = 35 t = 33 Ri{t) = 0.3895134

d E(N) var{n) ELR(t)]
0.20 15.1 16.926 0.354205%
0.18 18.816 24.61014 0.3654689
0.16 23.274 46.66291 0.3585811
0.14 30.580 66.64362 06.3576914
0.12 41.554 125.5231 0.3535610
0.10 59.434 281.0418 0.3121628
0.08 93.264 646.7201 0.366323%0
0.06 158.792 3017.735 0.3555142

Remarks(4.3.1):These results are compared with parametric wethod

reported in section (2.5), we observe the foliowing things.

{a) E(N)

compared to the non—-parametric model.

parametric method is achieved without

in the

probability.

(b) The variation in the values of N in the parametric method

parametric

model s
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i

less as compared to the variation in N in the non—-parametric
method.

{c)The values of E(a(t)) in the parametric method are approaching
to the actual values of R{(t) as d, the width of‘ confidence

interval, decreases whereas the E{R{t)) are not giving any trend

in the non—-parametric method.

In the following section we review Lthe results reporied by
Tahir{1992) to construct a fixed-width confidence interval for

correlation coefFicient of bivariate normal distribution.

4.4. Fixed-®Width Sequential Contidense [nlerval for Correlatiorn

-~

Coettficiont o1 Bivariate Normal Dictribrtion:

4.4.1:Introduction: 9

Let (xi,Yl),(xz,Yzl... be a sequence of independent pairs of

random variables and suppose that for each { = 1,2,... (XJ,Yi)
(4

has a bivariate ncoermal distribution BN(0,0,@f,ui,p). Thus the

joint p.d.f. f(x;,yf) of (xi.Y{J is given by

{ . ‘*1/2 { Q‘X;, y.)\ -
fix.,y.) ={2nogazli~pz)} exp{ - ——— " ! ...(4.4.1)
L 12 J L z J

"'\“(X,Y)<m

01,02>0,‘p'(1.

where,
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Qix. .,y ) =
t

|
N
gt
-
+
| S—
-

2 4
where o, 02 and » are unknown ceoastants.
1

Given two numbers d (d>0), and ot (0d¢xwt), we have to

construct a seguential fixed-width confidence interval for .

In the following we introduce an unbiased estimator for o

and find an estimator of its unknown variance.

Lemmald.4.1): Let (xl, Yz) and (X , Y  be independeat random

& w

variables and suppose that for { = 1,2 (Xi, Yi) follows

”

amo,o,of,oz o). Then

14

f 1o e
PL X1Y1+X2Y2 > 0J = 3 .

X, Y.
Proof: Let Ui =~;i and v; =~;i~ for ¢ = 1,2.then far each
t [ \"2

i=1,2 , (U{,Vi) has bivariate normal distribution BN{0,0,1,1,p).

Consider,

MUV + UV = [(u 3V ) (U 4 ')"'j f[(u -V 1+ (u v )z] /
£ 22 1.t z 2 1t z 2 S
= A - B (say}.

wWhere —-ﬁ—— a

B . .
FYEEYS nd ETTZET are tzggpendent random variables, each of

which follows a Chi-square distribution with 2 degrees of freedom.

3
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From these, it follows that,

1
L

-

"
w

1

§

i

"
-

|

= PiF(2,2) >
(o8]
= b e
| " ax.
1-p {14+x)
3.+(.>

Let (1+x) = t,then dx = dt,then,

plxvaxy >0l = 1 a
| T 7202 | J 2
2 “t
{1+p)
= {4po)
Z »
Now let
2 N
U = ————— T I(X Y + X Y )
n nin—-1) =~ {1 J g
<
and

-

p =20 -1, for n22,

n n

where {.} denotes the indicator of set {.}

( 1 , iIF XY +X Y >0

I(xv+xv)=i RV PR
. S 2 2

0 , otherwise.

Then by lemma {(4.4.1), we have,
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r
t

nj. 2

-~

Hence o 1is an unbiased estimator of p.
n

Since U s U-statistic we can use the properties of
N

b-statistic to canstruct an estimator of the unknown variance of

e -

n

From the resalt of Hoeffding (1948), we have,

Var{s ) = 4var({y )
n ™
:l&".i-o{...’...),asn..,ﬂ, ‘.'(4.4_2)
n 2}
B
where,
XY .
4 =Var[h‘ R e 14.4.3)
t Lo’ e |1
t 2 7 4
with,
[ %Y, ]
hix,y) = P[m~1~1 >~ xy |.
oo
L 22 ]
X Y
Note that {t depends only on p since {_51 ,.:i} has bivariate
' 1 T2

normal distribution BN{0,0,1,1,p).

From (4.4.1), if the terms of order ~1; are neglected, the
n

-

problem of estimating var (pn} reduces to that of estimating ft,

So let,
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2

= . +
Vin = Tasiviaczy & TG Y0
k<1
ke, LY
and
W = - (n=2}V, for ‘=1,2,...n.
in n n

Then Nz{""’w are identically distributed random variables and

n
- -1
w = =
. n .Z hin ZUn
L=1
Now let,
2 T -2 N
S = T (W, -W)} for nzu2,
n n—-1, in n
=g
then si ~ 42 as n o+ @ [Sen (197T)].

In the following subsection we propose sequential confidence

interval for 2 and describe the sequential procedure.

4.4.2 Sequential confidence interval for o

befine stopping time by,

X
]
-ty
3
~h
(-v-ﬁ\--—\
=
v
N
\’} 3
N
A
F
N i Q
[
—

3

-~ -

2 2 2
where o;= 4Sn. Note that o converges to 1651 as n + o, and a +a
n
as n + .

Finelly construct the confidence interval for p of the form

I = [ p - d » F)N + d], For p-

N i
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Theorem (4.4.1): Let o = 15{1, where {1 s defined by

{(4.4.2), then
{1) N » © with probability one as d » 0.
(2) dzN > o?az as 4 » 9.
2 2 2
(3) dE(N} » 0 a as d + 0.

(4) PII, > £) +(1-c) as d + G.

Proof: Results (1},(2) and (3) inmediately fFollows from

~2"% 2 -2 2 2 -2
Jemma(2.2.1), by letting y =v o fin}= na.an and t =a v d .
N

To prove(4), we write,

172

i
v
A

d
. ..(4.4.4)
o4 4 J

/2,” .
Note that n"z(pn - @) converges in distribution to a normal

. . . 2 .
random variable with mean zero and variance ¢ as n » m, since

1/2
(

n 1+0)) . . .
- i-—e~) is asymptotically normal with mean zero and

L%~ 727

variance 421 as n + .

We finelly use Anscombe's theorem{1.2.1) to obtain that
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1/z2,”
N (pN o)

4

. . . - ) 2 2
+ N{O,1) in distribution as d-+»0, since d'N » azo as

r
d » 0 and conclud from {4.4.4) that P!

L

{2) and convergence theorem of Cramer(1.2.2]).

Id = } +(1-}) as d + O by

In the following subsection we describe sequantial procedure

for constructing fixed-width confidence interval for p.

4.4.3 Sequential Procedure:

The sequential procedure for constructing fixed-width

confidence interval for o can be described as follow.

First boserve the pair (xt,Ytl and (X ,Y }, then take a pair

of observation, one at a time, at each stage n (n=z23) of the

. . 2 .
sampling process. Calculate p» and an estimate of of 1ts
2l 21

unknown variance. Chack whether,

-

o a

e

2
n

3

n 2 - is satisfied or not. AfFter an inequality is satisfied

2
d

declared that { P, = d , p + d] as a fixed-width confidence

L

interval for p.

Remarks{4.4.1):

{1)The procedure described above is valid only if mean .~ vector| ,sow

is a null vector.

(2)The author has not reported any simulation results to get an
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idea of the average sample observations requirved to obtain the

desired level. svﬂpqr :
] " .
{3} It may be interested to 6?;9 the probliem in the parametric
Q
1 ]
setup, that is using Fisher's Z-statistic and its asymptotic
—-——-M

distribution, with this the problem of non-null mean vector can

also be solved.
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