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CHAPTER - IV

FIXED-WIDTH CONFIDENCE INTERVALS:

MOM-PARAMETRIC SEQUENTIAL PROCEDURES

4.1. Introduction: -

In chapter II and III we study the construction of 

fixed-width confidence intervals in parametric setup in the sense 

that, the form of the distribution is completely known except its 

parameters. This chapter is devoted to non-parametric sequential 

interval estimation procedures. In non-parametric setup the 

functional form of F, the d.f., is completely unknown and it is 

assumed only that F belongs to suitable family 3* of d.f. In 

section (4.2) we review, in brief, the general method of 

constructing the non-parametric fixed-width confidence interval 

along with the asymptotic properties. We obtain fixed-width 

confidence interval for reliability function. The corresponding 

simulation results are reported, when F has an exponential 

distribution with mean 9 in section (4.3). The results obtained 

are compared with the results of the parametric model in section 

(2.5).

Tahir(1992) has proposed a method to construct a fixed-width
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confidence interval for correlation coefficient of bivariate

normal distribution. We take a review of the results reported by 

Tahir(1992) in section (4.4).

4.2 A Non-parametric Method to Construct Fixed-width Confidence

Interval:
rLet 1 X.,l 1

î
 be a sequence of i.i.d. random variables with 

)

d.f. F defined on !R , for some pi 1 . In parametric model
p

functional form of F is assumed to be known and unknown algebric 

constants associated with this form are regarded as parameters. 

In non-parametric setup, F is of unknown fonn and it is assumed
A

only that F belongs to suitable family & of d.f. For example -f

may be the class of all continuous F on [R or all F isP
(diagonally) symmetric about origin which is taken as location 

parameter of F. In general in non—parametric formulation we 

take the parameter

9 = £?(F) - a functional of d.f. F. ...(4.2.1)

Thus our parameter of interest is «9(F).

The objective here is to locate an Interval, say I , basedn
on sample observatios X ,X ,...,X of a sample of size n, such12 n
that.

C i) 3 0(F) 1-et, as d 0 ... (4.2.2)

90



(ii) Width of I < 2d, d > 0 ...(4.2.3)

Based on sample (X ,X.... X ) of size n, lei

T =T (X ,X , ...,X ) be a non—parametric estimator of 9(F). That isn n t 2 n
T is not based on any specific form of F. If F is samplen n

(empirical) d.f. based on (X ,X ,...,X ) then F is the natural12 n n
(non-parametric) estimator of F so that one may choose T = ^tF)n

as a natural estimator of 9. This is usually termed as a

Van-Mises functional- There are other estimators, which can be 

considered, such as U-statistic.

We assume that as n a>.

nl/2( T - 9(F)) ~ N( 0 , V2(F>), 
n ...(4-2-4)

where V(F), 0 < V(F) < oo, is itself is the functional of F. We
X

also assume that there exists a sequence CV } of the estimators
n

2V (F). (for example, Jackknifed variance estimator).

Note that, (4.2.4) ensures that for large n ,

£ 1-cc,[•'Pi nl/Z|T 0(F) I < Z . ,V(F) 1 a/2 .(4.2.5)

where Z^ is upper 100 (a/z)% point of the standard normal 

distribution. By choosing d (d>0) sufficiently small, in 

(4.2.3), we may set

n min i n: z\ V"(F)d! f~Ct/Z "i ...(4.2.6)
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J

and obtained that as d 0,

P {T * - d 1 0(F) < T < 
F \ n n

>* + d }■ —> U - «>,. . .14.2.7)

o/
so that both i4.f.2) end i4J/. 3) holds for an interval.

I«=4T*-d,T» + dn l n n r
)

* 'l*' -ji
But definition of n in {4.J/.&) reveals that n depends on 
unknown F through the V(F). Hence, n cannot >r satis(4.j/.7) 

simultaneously for all F belonging to,?", the class of d.P. This 

motivates to develop a sequential procedure to achieve the goal.
ft

In view of assumed consistency of {V 3, as an estimator of 

V(F) and (4.2.6), we may consider the stopping rule,
( rN = inN n i. n : nd 
\ o Z" , V i, d>0, 

ixfz n ; (4.2.8)

and define T by T * for n =N - Define,N n

( 1I = -{T - d , T + dk d>0. ...(4.2.9)N X N N !

Mote that for I (4.1.3) holds good.N

Thus, the basic problem is to show that as d —+ 0,
(' 12- 6NF)| (!-a). ...(4.2.10)

It may also be shown that, under the suitable regularity 

conditions,
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----- ► 1, as d 0. . - .14.2.11)*n

For example N 1, as d f 0 or E
n

fJLlU*1 -* 1, as d •-> 0.

This shows that* for d sufficiently small, H is closed to 

optimal N and hence the two procedures share a common 

efficiency.

Suppose that C V j satisfies the condition thatn
V —> VZ(F), as n -t to , ...{4-2.12)
n

and the sequence CT } satisfies the Anscombe's conditions.n
That is,

max

then asymptotic consistency 1n (4.2.10) holds in the a.s. mode of 

convergence. In order to establish,

m: m-n 1"t/Z i T - m 0, as 6 -•* Q,n (V (4.2.13)

ii.m rEfJL_)l .« L l n* JJ for all f e y. (4.2.14)

we need some additional conditions on tV 1. These conditions aren
as follow.

(C-I)t Suppose that there exists a sequence {Z,3 of the i.i.d.t
random variables such that,

(i) Z s are non negative.
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<ii ) E(Z ,) exists

(iii) V i ((n-m) T Z, for all n»n >m.n . i f?
\ .^n

In this setup, we take E(Z ) = VZ(F) then (4.2.14) holds.
u

ft(C-II): Suppose that V is expression as a linear combination ofn
reversed (sub)martingales, so that,

[ sup * 1El v V \ < oo , for some n i2, ( n>n n ! v o '
... (4.2.15)

then condition (4^/r. 14) holds.

(C-III)j Suppose that, for some r>? (not necessarily an integer).

E|jnt/Z IV VZ(F) ,]* ’
t -S' C <for all n>n , .(4.2.1&)u

then condition (4.2.14) holds.

It is also possible to replace (4.2.16) by the probability 

inequality,

|V - vZ(F)| >v ) < C^nr, for every n>n ,
n j <L‘ O

where, r>1, (for all c>0, C <co).
£

In any case, condition (C-III) 1s more restrictive than 

conditions (C-I) and (C-II) and in majority of cases it may be 

possible to incorporate (C-I) or (C-II) and to avoid the extra 
moment condition in (C-III). In (4.2.8) often ZZ is replaced

Ct/ 2
2 2by a sequence la }, where a -> Z , as n •* a> and the conclusionn n a/2
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above remains the- same. Also n may be replaced by monotonic 

function y(n) and parallel results holds.

In following example we illustrate the general method of 

constructing the non-parametric fixed-width confidence interval 

by constructing the fixed-width confidence interval for 

reliability function.

Example(4.2.1) *.

Let X ,X ,... be a sequence of i.i.d. random variables from 1 2
distribution with d.f. F, which is nonnegative and continuous. 

For some t>G, define

R(t)

Given two preassigned numbers d (d>0) and a (a<=(0,1)), we have to 

construct a fixed-width confidence interval for R(t).

Define

1 , if X, > t
i.

" 1 0 , if X, < tv i *

> t > = R(t), that is, Y. ia an unbiased / 1
estimate of R(t).
Now let

1 nU = --- V Y . , for all n >n n , l 1 = 1

then E(Y,)
?.

-I

*5
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Rtt) isthen E(U ) = Rtt) and VartU ) =R {t M 1 -R11)) / rt. Thus U
n r> n

an unbiased estimate of Rtt)

■Let

U ,
?.n

“ T^TT t M \
!C= 1

Je#i

^ -i** 
*

and W = nU - ( n-1 ) U , \*1,2,...,n.
in n vri

Then W , W ,.. - ,W are identically distributed random variables
tl 22 nn

and W = n"Ar W = U . 
n in n

■>.= t

Now, let,

■’ 1 n f - 1
C ss_________ V IW — W t

n (n-1) L 1 m n J *
i = t v ^

then S'* converges to R (t) t 1-R11 i), as n —> <$.

Sequential confidence interval for Rtt):
1 n/

Choose a real number ’a’ such that •$(a) * tl-tg/2)), where § is

standard normal cumulative distribution function and define for

d>0, Stopping rule as follow.

N
(

inf^ n>2 nd

a
)•

n

and propose the confidence interval for Rtt) of form
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I * i R (t) - d , R It) + d 1.
N N N \

The sequential procedure, given above, satisfies the following 

properties.

(1) N + oo with probability one as d 0.

? 7 2
(2) d~N ♦ t?"a with probability one ad d » 0-

C3) d*"E(N) -+ c/Za' as d 0.

( )
(4) P-j I s R (t) ^ *(1-cO as d ■* 0.I N j
In the following section we report simulation results for 

example(4.2.1), by taking F{x)= 1 - exp(-x/£).

4.3: Simulation Result.s:

Let X ,X .... be a sequence of i.i.d. random variables from1 <u

exponential distribution, that is from distribution with d-f-

F(x) = 1 - exp (-x/0).
*

By following the sequential procedure reported in example 

(4.2.1), we have the stopping rule,

N = inf| n>2 , <y* 1 2 < 1,
# n 2 *v a *

n„ . n
2 1 — 2

where a = ------- £ (Y -Y ) , Y is defined in example (4.2.1).
n n— 1 in ii =*

An algorithm to simulate the results is provided in appendix 

(A—III) as well as the corresponding BASIC program is provided in
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appendix (A-IV).

f

Following table gives the simulation results for different 

values of fi?, t and d, for a - 0.05 (Table Nos. 4.3.1 to 4.3.5) 

and for a - 0.1 (Table Nos. 4.3.6 to 4.3.10). The results are 

based on 500 simulations. R(t) is an actual value of reliability 

function.

Table 4. 3.1

& = 4 t = 3 R(ti = G.4723666

d E (N) Var(N) EER(t)J

0.20 22.436 32.12586 0.4687734
0.18 28. 18 43.88355 0.4665056
0.16 35.92 69.49378 0.4671592
0. 12 63.382 272.408 0.4607748
0. 10 91.494 429.3535 0.4685915
0.08 141 .2 1231.172 0.4669953
0.06 248.046 4451.461 0.4656341

Table 4.3.2

e = 7 t = 5 R(t) =0.4895417

d ECN) Var(N) ECRCt)]

0.20 22.298 32.83319 0.4835564
0.18 28.342 42.84017 0.4940436
0.16 36.326 56.59571 0.4829034
0.14 46.674 117.0039 0.4798471
0.12 62.404 273.4529 0.4765310
0. 10 89.946 562.3033 0.4798537
0.08 138.966 1563.803 0.4712047
0.06 250.282 4115.586 0.4956596
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Table 4.3,3

B — 15 t=1 3 RCt)=0.4203504

d ECN) VarCN) EIRCt))

0.20 21.858 31.80858 0.3930772
0.18 27.476 46.62549 0.4051344
0.16 34.456 82.5719 0-4025202
0.14 45.128 126-1317 0.3992306
0.12 62.006 203.2578 0.4039202
0.10 8&. 95 476.6001 0.4018636
0.08 135.094 1566.707 0.4044673
0.06 238.428 5156.887 0.3955913

Table 4. 3. 4

9-27 t * 23 RCt) » 0.4266242

d ECN) var(N) ^ E t R (t) 3

0.20 21.638 37.96695 0-3900407
0.18 27.726 45.4469 0.4054049
0.16 34.558 86.31079 0.3994609
0.14 45.686 109.3953 0.3998339
0.12 60.56 304.7024 0.4119602
0.10 84.072 834.6631 0.4027766
0.08 136.93 1364.676 0.4008311
0.06 243.416 4305.094 0.4078117

Table 4.3.5

9 = 35 t * 33 RCt) = 0.3895134

d E(N) Var(N) EIRCt))

0.20 21.130 37.59714 0.3576850
0.18 26.674 51.79975 0.3623140
0.16 33.284 92.63135 0.3689130

. °-14 43.090 167.2983 0.3598566
0.12 57.826 339.5879 0.3531236

, ' 0.10 82.462 731.0020 0.3513969
- r‘o.06 132.14 1442.457 0.3663331
V* 0.06 225.622 6309.379) 0.3577929
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Table 4. 3.fi
u - R(t) * 0.4723686

d E(N) Var{N) ElR(t)]

0.20 16.084 14.74396 0.4691321
0. 18 19.482 21.56155 0.4629694
0.16 24.88 35.00964 0.4542325
0.14 32.144 72.9.192? 0.4736802
0.12 44.44 114.7103 0.4829786
0. 10 64.026 225.0772 0.4684693
0.08 98.436 640.4147 0.4631527
0.06 177.254 1631.379 0.4715123

Table 4. 3. 7

e * 7 t = 5 R(t> =0.4895417

d E(N) Var(N) EIR(t) ]

0.20 16.19 12.80968 0.4904125
0.18 20.254 14.7655 0.5034966
0.16 25.486 26.73779 0.4804335
0.14 32.664 64.59497 0.4980311
0.12 44.346 114.7103 0.4829766
0. 10 64.642 197.4383 0.4757278
0.08 99.374 590.583 0.4915036
0.06 177.224 1695.697 0.4455253

Table 4.3.8

0-15 t - 13 R(t) =0.4203504

d E(N) Var(N) ECR(tl)

0.20 15.484 13.62891 0.4051969
0.18 18.916 26.18494 0.3928824
0.16 24.276 38.00787 0.3938440
0.14 31.824 62.48499 0.3980503
0.12 43.238 120.2734 0.4097313
0.10 61.224 286.6781 0.3924973
0.08 95.944 652.0811 0.4063156
0.06 169.192 2233.838 0.4041339
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Tab! e 4.3.9

8-21 t = 23 R(t) * 0.4268242

d E(N) Var(N) EIRttll

0.20 15.68 15.2816 0.4008805
0.18 19.578 19.64798 0.4170588
0.16 24.43 37.46509 0.3973231
0.14 31.812 64.56464 0.3985085
0.12 42.602 139.1195 0.4120696
0. 10 61.888 273.9033 0-4057366
0.08 97.234 537.9024 0.4068593

!

t£>
oO 

11!

170.8 2086.664 0.4120506

e « 35 t

Table

= 33

4. 3.10

R(t) - 0.3895134

d E (N) Var(N) ElR(t)J

0.20 15.1 16.926 0.3542059
0.18 18.816 24.61014 0.3654689
0.16 23.274 46.66291 0.3535811
0. 14 30.580 66.64362 0.3576914
0.12 41.554 125.5231 0.3535610
0. 10 59.434 281.0418 0.3121628
0.08 93.264 646.7201 0.3663290
0.06 158.792 3017.735 0.3555142

Remarks(4.3.t);These results are compared with parametric method 

reported in section (2.51» we observe the following things.

(a) E(N) in the parametric model is considerably small as 

compared to the non-parametric model. The betterness 1n the 

parametric method is achieved without sacrifying the coverage 

probability.

(b) The variation in the values of N in the parametric method is
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less as compared to the variation in H in the non-parametric 

method.

(c)Tbe values of E(R(t>) in the parametric method are approaching 

to the actual values of R(t) as d, the width of confidence 

interval, decreases whereas the E(R(t)) are not giving any trend 

in the non-parametric method.

In the following section we review the results reported by 

Tahir(1992) to construct a fixed-width confidence interval for 

correlation coefficient of bivariate normal distribution.

4.4. Fixed-Width Sequentinl Confidence^Interval for Correlation 

Coefficient ot Bivariate Normal Diet rebut ions

4.4.1:Introduction:

Let (X , Y ), (X ,Y )... be a sequence of independent pairs of 11 2 2

random variables and suppose that for each i - 1,2,... (X,,Y.)i t
? 2has a bivariate normal distribution BN(0,0,cr-,u' ,p). Thus thei 2

joint p.d.f. f(x ,y.) of (X.,Y.) is given byl t. 6

f ? 2 i~l/2 rf(x,,y.) =*-(2rTC' a (1-p ) i- exp{1 1 l *2 / l
Q(x ., y , > ^i i. ! ...C4.4.1 )

—xX (x, y) < co

a ,o >0,IpI<1 12 ' '

where,
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Q(x.,y .)i i

f xy

n-p)" <y
x ,y ,i l i i- }----- ■ 2p----\ 'f
n O'1 2

yt 1
C I

I°\ J

where </', o' and p are unknown constants.t 2

Given two numbers d (d>0), and a (Q<a<cO, we have to 

construct a sequential fixed-width confidence interval for p.

In the following we introduce an unbiased estimator for p 

and find an estimator of its unknown variance.

Lemma(4.4.1): Let (X , Y ) and (X * Y be independent random--------------- ! i 2 2

variables and suppose that for i 1,2 (X,, Y.) followsl i
BN(0,0,o'2,o’2 p). Then

t 2,'
f 1 1+pP XY+XY > 0 =* —.[ t t 2 2 J 2

Proof: Let U . *---and V----- t <?- i

Y . t - for i 1,2.then f®v each

£ = 1,2 , (U ,V.) has bivariate normal distribution BN(0,0,1,1,p)t i

Consider,

♦ (U V + UV)t i 2 2 ( U *V ) i l
!+(U +V )2| /F(U -V )2+(U

? 2 J L 1 1 2 v )'2

- A - B (say)..

A BWhere —- and vrrj—t are independent random variables, each of2 l ■ J Z l 1 p) —* ... I*-... ..  «i- ..*.. ..

which follows a Chi-square distribution with 2 degrees of freedom
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From these,it Follows that.

P f XY+XY
L 1 1 2 2 > °J 4 ( U v +u v y ol

1 1 2 2 J

= P^A-3>ol 
L .i

= »r jl >
L 8

P j F {2,2 ) > -IX- | 

L ‘ J

dx.

Let (1+x) = t,then dx = dt, then,

P F X Y +X Y > ol

L * • 2 2 J
It)

1* f — dt J z 
__ 2 t
(t+p)

Now let

_ {1+p)
_ - .

u = —.—r I(X,Y,+ X Y ,) 
n n(n-1) ~ , it j jt<J J J

and

p = 2U - 1, for n> 2,
n n

where C.J denotes the indicator of set {.}

ICX Y +X V ) = ( ' • if *,VV2>0 
112 2 j

'*'0 , otherwise.

Then by lemma (4.4.1), we have,
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ef.u 1 - *i±ei. 
L nJ 2

Hence p is an unbiased estimator of p.

Since U is U-statistic we can use the properties of
n

U-statistic to construct an estimator of the unknown variance of

From the result of Hoeffding (1948), we have.

Var(p ) 4Var(U )
n

l*Si + of JL
n la

, as n -* fti j (4.4.2)

where,

t = Var
‘ t

. X Y . ,

I*
t l '

(4.4.3)

with,

h(x,y) = P|
f X YI •>
i a a
L 1 2

> - xy

f X Yf ± if
Note that ? depends only on p since ----- ,----- has bivariate

t ! a a I
v i zJ

normal distribution BN(0,0,1,1 ,p).

1
From (4.4.1), if the terms of order are neglected, the

n

problem of estimating Var ip i reduces to that of estimating f ,
n ‘ t

So let.
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u,
tn

and

{ n-1 )"(n-2 )
2 Z I(XJ +X Y ! 

h<l •' * ‘

a<, ?.#?:

W. = nu - (n-2 )U, for >>i,2,..,n.
L n r. ; n

Then W , ...,W are identically distributed random variables and 
11 n n

n
w = n*1 r W . - 2(J .

n .in n>. = t

Now let,

s"
n

(W. - W )In n for n:..2,

then SZ ■+ 4? as n w [Sen (1977) J.
n ' l

In the following subsection we propose sequential 

interval for p and describe the sequential procedure.

confidence

*.4.2 Sequential confidence interval for p 

Define stopping time by.

N inf n>2
V

ndZ ]

2 2 2where a - 4S . Note that a converges to 16f as n -» no, and a -*a
n n n '1 n

as n -t co.

Finelly construct the confidence interval for p of the form

■[- h=> - d
N P.N for p.
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2Theorem (4.4.1): Let a - IS? , where t 1s defined by ---------------- *i i

(4.4.2), then

(1) N -» ® with probability one as d •» 0.

(2) dZN + ff2a2 as d -* 0.

(3) d'E(N) -> tr~a' 49 d i 0.

(4) PCI 2. pi ■♦(1-a) as d + C.d

Proof; Results (1),(2) and (3) immediately follows from
-2"? 2-2 z 7 -2lemma(2.2.1), by letting y -a a , fin)* naa and t =a??d .n n n

To prove(4), we write,

p[!d » pj - P [p - d < 0 < p -»-dl
l> N J

* p{jpH ~ P\ 5 d]

« P
V.t/2 ,N p,N PI N,/2d

a . (4.4.4)

Note that nl/Z(p - p) converges in distribution to a normal 
n

2random variable with mean zero and variance a as n * ®, since 
^1/2 - ^

I u - —ie asymptotically normal with mean zero andl n 2 J
variance 4f as n 00.t
We finelly use Anscombe’s theorem( 1.2.1) to obtain that

107



Hi^Zip -p)
f N 1 t. % '£----------- -♦ N(0,1) in distribution as d+0, since d N ■* a o' as

r ]d + 0 and conclud from (4.4.4) that Pjl =? p as d t 0 byLd J
(2) and convergence theorem of Cramer{1.2.2).

In the following subsection we describe sequential procedure 

for constructing fixed-width confidence interval for p.

4.4.3 Sequential Procedure:

The sequential procedure for constructing fixed-width 

confidence interval for p can be described as follow.

First boserve the pair (X ,Y )i t
of observation, one at a time, at 

sampling process. Calculate p andn
unknown variance. Check whether,

and (X ,Y ), t •» ->•Ci c.
hen take a pai r

each stage ni (n>3) of the

an estimate of t/2 of itsn

n > is satisfied or not. After an inequality is satisfieddz
r - "1declared that p - d , p + d as a fixed-width confidenceL n n J

interval for p.

Remarks(4.4.1):

(1) The procedure described above is valid only if mean
%

is a null vector.

(2) The author has not reported any simulation results to

vector

get an
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Idea of the average sample observations required to obtain the

desired level.

(3) It may be interested* to (looty the problem in the parametric
1

setup, that is using Fisher's Z-statistic and its asymptotic 

distribution, with this the problem of non-null mean vector can 

also be solved.
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