
CHAPTER- II
DESCRIPTIVE STATISTICS FOR MULTIVARIATE MODELS

2-1 Introduction :

As discussed in the previous chapter, the descriptive 
statistics for univariate models have been investigated in many 
works. It is difficult to generalise to these concepts for 
multivariate cases. In this chapter we discuss such measures. In 
this chapter we discuss the following points
1) Some preliminary definitions of matrix, random vector and 

some their preliminary results,
2) Measure for location,
3) Measure for scatter,
4) Measure for skewness, and
5) Measure for kurtosis.

Generally multivariate statistics represents the expansion 
of more familiar univariate and bivariate statistics. Univariate 
and bivariate statistics are special cases or just 
simplifications of more general multivariate models. With the 
help of multivariate statistics we can analyze and study 
simultaneously more than one variable. To begin with we discuss 
some preliminary results which are used in defining the 
statistics for multivariate models :
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2.2 Preliminaries :

In this section we give some elementary definitions 

related to matrices, random vector, and some results on variance 

co-variance matrix, which will be used in the subsequent sections.

2.2. i Matrix 5
'A' is said to a matrix of order p x n if pn elements arrange in 

p rows and n columns.

When n = 1 ' A ' is called as column vector. When p = 1 'A' 

is called as row vector. A = symmetric matrix.

2.2.2 Soma special

1) If a .
for i = j.

for i ^ j.

Then A ' is called as an identity matrix.

2) If
for i = j.

for i * j.

Then a ' is a diagonal matrix It is denoted as

A - diag[a , a a it ’ 22

23) If A = A, then A is called as an idem potent matrix.
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4) If A’ = A, then A is called as symmetric matrix.

5) If AA = I, then A is called as an orthogonal matrix.

6) If a = 1, V ±,j = 1, 2, ...p then A is called as unit matrix.

p
7) Trace ( A ) = T a

L= 1

8) If A P are orthogonal matrix then ,pxp pxp

tr( PAP') = tr( P'AP) = tr(A)

9) If A is idempotent matrix then, 

tr(A) = p(A)

= R(A)

10) If A is any non-singular matrix then,pxp

tr( AA_1) = p

Definition ca.s.n : Eandoia vector
Let C2 together with a c-field be a measurable space. A real 

valued measurable function defined on the space O is a random 
vector.
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Definition ca. 2.23 : DistribatJton function of.
Let X denote a p-variate random vector. Then its 

distribution function is defined as
Fy(x> = Pr [Xt< x. X_< x , ..., X< x ] V x s IRk

Let f(x, ..x ) be the joint density function of X. Theni p —

the marginal distribution of one or more x's say K±, X2, —> X^.

( k < p ) is given by,

f(X ,... xz'---

00 00

^J.-.Jffx^ •-.,x) dx^,-- > dxp (2.2.1)
-CD -00

The integration is over the appropriate range of X, , ...» X .k+± p
If the joint distribution is a discrete one,we shall be 

dealing with the joint probability function and integration will 

be replaced by summation over the relevant variables,while 

finding the marginal distribution.

2.2.3 : Moments of X :

a) We shall use E to denote the expectation operator. So that 

E(X) will be the column vector with elements E(Xl) (i = l,2,..p).
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Thus,

E(X> = [ E(X ), E(X ), E(X ) ] (2.2.2)— a. 2 p

where,
00

E(X ) = r X f(x ) dx.L t L l.—00

b) Let Z = A X where A be any matrix of constants, of order 
mxp. Then,

E(Z) = E(A X)

= A E(X).

c) The symbols V, COV will be used to denote variance and 
co-variance. Then the symmetric matrix

V< X ) cov<x ,x > ... COV(X , x >1 1 z i p

COV(X ,x > V< X > ... COV(X , X )z t z z p (2.2.3)

cov<x ,x > COV<X ,X ) ... V< X >p 1 P 2 p

known as the variance co variance matrix of the vector X and
shall be denoted by V(X). From the definitions of variance and co 
variances it is obvious that ,

V(X) = E [ X - E(X) ] [ X - E(X)]
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This implies that,

= E(XX ) - E(X)E(X )

Now we discuss some elementary results which are used in 
finding multivariate statistics.

T.r>mma C2.2.15 : E is the positive definite matrix.

Proof s Let Z = ot X where ot is any p-dimensional vector of 
constants. Note that Z is a random variable. Then,
V(Z> = V(oTx)

= e[^X - ot E(X)] [ot"x -ot E(X) 3"j 

= E^(ot [X - E(X) 3 ) (ot [X -E(X) ] ) j 

= «'e[[X - E(X)3[X -E(X) 3 )"j ot.

- ot Z a..

> 0 V ot.

This implies that, T. is positive definite matrix.
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r.F>mma C2. 2. 23 : X is symmetric matrix. 

Proof s We know that,
£ = V(X)

= e[x - E(X)J [x - E(X)j

= e[xX* - E(X)X -XE(x")+E(X)E(x") 
Hence,

£ = E(XX ) - E(X)E(X >
= Vpxp

V < X >1 COV(X , x >1 2 ■ ■ ■ COV(X , x1 p
COV!X , 2 X ) i V ( X )2 * • • GOV < X ,X2 P

cov<x ,*“ p X >1 COV<X , X )P 2 V < X > p

a l i a 1 2 ■ • • aip
a2 1 a2 2 a2 p

aL pi P 2 . , . app

(2.2.4)

This implies that, £ is symmetric matrix. There are [p (p + l)]/2 
distinct parameters in £.
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2. 3 Measures of lQ.ca.tiQH ;
In this section we discuss some measures of location 

introduced by Oja (1983). Before going to the definition of 
measures of location for multivariate models we introduce the 
following notations.

Eotations and preliminarieg :
Let, X4 = (x11,....xik) ---- X^= .... Vlk) be the

kpoints in K . These points determine a k-dimensional simplex. The 
volume of this simplex is denoted by A(x ,-- x, ) and given by

’ w = abs 1
1
Xi,i

1
X2,l

1
. . . Xk+l, 1

k! \k X . 2,k Xk+i ,1
(2.3.1)

Note s i) If k= 1 then A(xi ,x?) indicates the distance between 
the two points x*»x? as follows:

A<xi’ V abs 1 1 1
1! X X11 21 .

= abs(x.21 xn>

(2.3.2)
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ii) I£ k = 2 , then A{xi,xz,xg) gives the area of triangle in 
R2 which is given by,

A(xt, x2, V 1 111= abs X 
o I Xi X2 X3z* 1 y2 y3 _

T.emma C2. 3. ID : If L:Rk--- »Rk is an affine transformation of the

form L(x)= Ax + ^ where A is a kxk matrix and ^ is a k-vector 
then ,
A(Dxtt Lx2), - Lo^+iO = abs( |A| ) A(x±, xz, -- , x^ )

(2.3.3)
Proof : Let (x ,... .x. ) be the points in k-dimensional simplex.1 Jc + $.

Then,

A(x^ abs S
xeS

dx_ ... +i (2.3.4)

where S is the simplex formed by the points x , x2, ...» xk+i and 
A(xt, x2, ..., xk+1) indicates the k-dimensional volume of the 
simplex. Let us transform X to Y using transformation

Y = L(x)

= Ak + f-i

where A is kxk matrix and ^ is a k-vector.

(2.3.5)
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Differentiating equation (2.3.5) with respect to x, we have,

dy = A dx (2.3.6)

Then A(yt, yz, ..., yfc+1) is given by,

A(I*x±>, Dxz>, ..., I/x^O = abs ^ J dyt dy2,---dyk+iL xeS
where S' is the simplex formed by the
points (I/xt>, Iix^, ..., Dxk+1>)
Hence,

A(Dx±>,Dx2).... kx^) = abs [lAl J ^ >-----
X«S

Thus,

A(Dx45,Dx2>.... Dx^O = abs( | Aj ) A(xt ,xz ,. . .x^ )

C 2.3.1} : Let P be the
Jcdistributions in ER , then P « IP is said 

smaller than Q s P if,

class 
to be

of probability 
stochastically

J f dp < J f dQ. (2.3.7)

for all real bo^mded coordinate wise increasing f. This is 
denoted by

P <L Q £2.3.8)
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r,pmma C 2.3.21 : P <lQ is equivalent to the existence of two 
(Rk valued random vectors on the same probability space with 
respect to distributions P and Q such that X ^ Y (a.s.)»
Proof : The property P < Q in terms of the distribution functions 
of corresponding random variables X and Y can be explained by 
taking F as the indicator function given by ,

f(u) = [ u > t ]

Now (2.3.8) implies,
00 CO

J dp < J dQ
t t

That is

Sx(t> < Sy(t) (2.3.9)

where Sx(t) and Sy(t) indicate the survival function of an random 
variables X and Y having Probability distribution P and Q 
respectively. Hence if X is an random variable having 
distribution P and distribution function F & Y is an random 
variable having distribution Q and distribution function G, then,
P <lQ implies F(t) ^ G(t). Now by defining,

Y = G~1(F<x>) > G-1(Gx>) = X we have,

Y > X (2.3.10)
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We can write
x = ( xl,...xk> £ y = (yt-y2».... yk>
T.ftmma C2. 3. 3D : If <J> :Rk—-*Rk is a function satisfying 4>(x) ^ x
V x <s Kk, then the distribution of X is stochastically smaller 

than the distribution of Y.
Proof 1 Consider,

A = { x :4>(x) <t}£{x:x^t> = B 

Hence

P[<f>(x) < t] < P[x£t].

That is the distribution of x is stochastically smaller than the 
distribution of <f>(x). This implies that X is stochastically 
smaller than <J>(x). ■.

Note : It is natural to associate with the distributions in IP in 
a consistent way with the stochastic ordering , an R valued 
measures of location. This can be done in the following way.

Definition 3-2P : Measure of Location
k kSuppose yt : 0?--- >0? is a function such that

i) P,Q « P P < QL»

This implies that, V'(P) ^ V'(Q).
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k k n-vii) For any affine transformation L : R--- * R and Bar such
that PL_1e R.

W (PL~ 1) = ]>(P).

Then w is said to be a measure of location. If P is the 
distribution corresponding to X then PL ^is the distribution 

corresponding to LX.

T.f>mma C2. 3.4D : By using w(X) interchangably with *(P) whenever X

has the distribution P, the requirement (ii) of definition 
(2.2.2) can be stated as

y( L(X) ) = L( *(X) ) (2.3.11)

Proof : Let y = L(X) = aX + b be an affine transformation. Let 
Q = PL ^be the distribution of Y and Qs R, the class of all 

distributions. Now for simplicity let us define

'A’(P) = EX, where X ~ P

Then,
Mean (Q) = Mean (PL 1)

= E(Y)
= E(aX + b)
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Thus,

Mean <Q> = AE(X> + b 

= LE(X).

Hence the proof. *.

Remark : If k = 1 then the property of function w defined in the 
definition (2.2.2) satisfies the property of a measure of 
location in the non-parametrie models defined in Bickel and 
Lehamman (1975, 1976). We will discuss about location parameters 
for the non-parametrie models in the next chapter.

Def.ini.tlpn ca. 3.33 : Symmetric Distributipn
If an random variables X and (-X) have the same 

distribution, that is, f(x) = f(-x), then the random variable is 
said to have a symmetric distribution (about zero).

Lemma C2. 3. 5!) : If the distribution is symmetric about m « 0? , 
That is, the random variables (X-u) and (jU-X) have the same 
distributions, then necessarily, V'(x) = ju.
Proof s First we prove this lemma for the distribution of X 
which is symmetric about zero.Then using this fact we write it 
for /j as general case. Since X and (-X) have the same
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distribution we have

^(X) = v'(-X)

= 0

= ¥(-IX)

where I is the identity matrix.
Hence, by using condition (ii) of definition (2.3.2) we get,

¥(X) = -I v>(X)

= -V'(X).
This implies that, 

v(X) = 0

Thus in general if X is symmetric about (J then w(X) = ,u.
Below we describe the class of measures of location introduced by 
Oja (1983). Suppose the functions

!u : IP-- ► for 0 < ot < oo
'a.

are such that

(2.3.12)

where A is defined in (2.3.1) and xl,xz,...xk is a random sample
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of size k from p. Then the functions ^ are the measures ofx a,
location.

Lemma ca.3.63 : The lemma (2.3.1) implies that for any affine
k ktransformation L : £R ----* £R of the form L(x) = Ax + ^ where A

is a kxk matrix and ms a k-vector.
V(PL-1) = LHp)

where P « IP such that PL 1e IP
Proof i To prove this lemma we have to prove

¥>(Y) = a vy(X)+b (2.3.13)

Now consider 
EjtAty,. y2. ... yk,

= *in|t E {[ A<yi. yz.....yk, v* )]“]
<£: IK >■ J

%where, ^ - L(iu)
= a m + b

Hence,
e{ fA{y^. yz. , yk,

= abs|[A(X ,x_ ^^(P))]1
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Thus we have,
e{ [A(y4, y2- • • - , yk, ^a(Q>3a}

= absjAj^injfE/ IXx^x^. . . (P)) ]a|

= abs|A|a e| [A(Xi,x2,. . . a^,n(p))]a}

That is,

aU Q) = a/J (P) + b ■ -

Note : Thus functions ^ 0 < a <oo are measures of location. If
the value of ^ (P) a > 1 exists ,it is unique.

i) If k = 1 and a = 1 then,
E [ A(xt, /ut(P) )f = E[ | x4 - P) | 3

= inf Ej x - M |

The value of above derivation is infimum if ^ is equal to 
the median of distribution P.(by the property of median.)
Hence,
/u = median.

Therefore when we put k=l and a - 1 in (2.3.3) then we get 
the median of univariate distribution.
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ii) Similarlly if k = 1 and a - 2 then

E LA(xm <P))]2 = infE | (x - ^(P))|Z
1 2 fjsD?1 1

The infimum is obtained when jU(P) is equal to the mean of 
distribution P

Remark : The sample version of ^(P) is obtained by 
^ (P),whenever P the estimate of P, is the empirical distribution 
based on the sample X , X , X . Thus, if X ,X ,.. .X is an12 n 12 n

observed sample from P, natural estimates ^(PjjOf ^a(P) (for 

0 < ot <co ) are given by,

(2.3.14)

where the summation is over 1 ^ i < ...< l < n.1 k

2.4 Scatter *
Definition C2.4. i:> : A symmetric univariate distribution P
(symmetric about v ) is said to more dispersed about tu than 
another symmetric distribution Q about v if ,

31



P(iU-a,jU+a) i Q(v-a,v+a). V a > 0. (2.4.1)

For example let P corresponds to N(0,1) distribution and Q 
corresponds to N(0,2). Then it is clear that for 0 <a <1
P ^ (n-a), (M+a) J ^ (^-a), (A^+a) j

and for a > 1

Q ((U-a), (^+a) ]£ R ( (i^-a), (M+a)

Hence P and Q are not comparable. In case of k-variate this 
statement can be stated as

P(c+tu ) Q(c+v) (2.4.2)

for all convex symmetrical sets c <= R .

Definition C2. 4. 2> : Suppose : Rk-- > Rk is a function such that

A( ^x^, --- ^x^J) ^ A( x± 7 - - - 7

v Xt. *lc+1 R

and let P be the distribution of X and Q be the distribution of 
#(x). Then we say that Q is more scattered than P. This is 
denoted by ,

P < Q.3 (2.4.3)
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Remark ^ i)If we take <£(x) = y = Ax + b where A is an orthogonal 
matrix then we have,

A(^xt>,---^(3W> = A(xi’• * •xv.+i) (2.4.4)
since A is an orthogonal, matrix. Thus by orthogonal 
transformation spread does not change.

Lemma C2. 4. ID : If P and Q are multinormal distributions and 
X A X A ...AX and r - Y - .. .A y are ordered eigen values12 k 1 2 k
of the respective covariance matrices then >

X Ay Vi- 1,2,. . . k.
L t

This implies that P<Q (2.4.5)S »

Proof : Let X ( (j, A ) where A = diag( X^, ..., X ).

Let Y = A X be the transformation of X. Then,

Y ^ Nk ( A~\>^, v ) 

and

a(y,. yk„) = |A~X| a( x,, .... x^)

= iJll A< x,. --->
I A|
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That is

A<v •••■ yk.i> > i<x,----xk„>-
nx.i

This implies that , P <g Q

Definition ca. 4.33 : Measure of Scatter
The function w : P—>0? is a measure of scatter if

i) P < Q =* ^(P) ^ V(Q) V P, Q«P.3
k kii) For any affine transformation L: P-- >0? of the form

L(x) = Ax + )U and p e P such that PL [P

¥/(PL_1) = abs(| A| ) ^(P) -

Note : i) Condition (ii) in above definition can be stated as

V(Ax + aO = abs (|A|) W(x).

ii) If A is a singular matrix then, jAj =0.

Hence vKAx+aO = 0.
iii) For k = 1 the usual measure of scatter like standard 

deviation satisfies the above properties.
kThe functions :P—»R « > 0 defined asa

^<P>
7—■------------/ E [ A (xt ,x2 , 3°* (2.4.6)
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where x^, x2, . .. , ^ is a random sample form P are also a 
measure of scatter.

Lemma C2.4.23 : The function defined above satisfies the
condition (ii) of Definition (2.4.3).
Proof : Let Y = Ax + ^ be an affine transformation where A is a 
nonsingular matrix and id is a mean vector and let Q be the 
distribution of Y. Then by definition (2.4.3) we have,

°a(Q) = C A (y1,y2,...yk,vo((Q) ]a

7—■-----------------------------= y E[A(Ax 2+^,.-AXj^+aj jAa^p)-^)

✓ % -i01

abs|A|
CK,-- ,--------/ E t A (x± ,xz , Xk^o,<P> a

= abs|A| o^(p)

Hence the condition (ii) satisfied.

(2.4.7)

■.

The function,

CX,------------------------*a(P> = /E [ A( xl,-..xk + 1)3°' (2.4.8)
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is also a measure of scatter, where X4, Xg, ..., 5^+l is a random 
sample from P.
Following are some simple measures of scatter;
1) For k = 1, ot = 1 we get,

o-(p) = E [ A (xi,^i<p> ) 3

= E | Xr | = inf E | Xr

The value of <?(p) is minimum if v is median of P and in this 
case <?(p) becomes mean deviation about median.
2) For k = 1 and a = 2 we get, it is minimum if ^ is the mean of 
P.

Note : 1) The sample version of this measure is given as follows: 
If X , X , ...,X is a random sample of size n form P then12 n

the natural estimates s of a are given by,
CA Ot

„ a y------—-----------------------^-------
(2.4.9)

1 k

where the sum is over 1 < t < < n.1 k

Similarity the estimate for (P) is given by,
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= V^^'3"2 C a(xl )1®~ (2.4.10)
1 k+ 1

where the stun is over 1 S i < ...Si S n.l k

2) A smallest convex set containing set S is called as convex 
hull. The convex hull generated by S is the minimal convex set, 
which contains the set S.Convex hull can be interpreted as a 
scatter set. The area or volume of this convex hull R ,which is 
generalized range is a measure of scatter.

It-‘J.3) If S is a subset of lesser dimensional space (Sc ER ) then 
the value of convex hull of S is zero.

4) With the help of measure of scatter we can compare the two 
distributions with each other,for example if we comparing normal 
with Caushy using variances, then we can not compare them because 
for Caushy distribution variance does not exist,but if we take 
the measure of scatter we can compare both the distributions.

For example let , X2, ..., X be a k-valued sample of size 
n, then for k = 1 the closed interval [x , x ] and its length<1> <n>

{x<n) " xa>> is a measure of scatter.
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2.5 : Measure for. skewness •

In this section we discuss a measures of multivariate 

skewness introduced by K. Mardia (1970).

Definition ca. s.13 : Cumuiants

The cumulants k4,kz,....kr are defined by identity in t.

exp| kA t + k_t + z
~2J

+ k t +r
rl }

— i + ^. t + jj't + 1 2 + (1 't + .r
2! r!

It is some time convenient to write the same equation 

with (it) for t. Thus,

exp^ kA (i) t + k2 (it )2+... + kr (it )r +
2!

-}
r!

- 1 +/J±~it + '(it) + ... + Mr ' (it) + ...
~2\ rl

00

= J exp{i tx}dF
-00

= 4>i t)

where is the coefficient of (it)r in $(t) characteristic
r!
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function kr is the coefficient of (it)r in log[ (pit) 3 if the
ri

expansion is in the power series. [ Ref. Kendal and Stuart, 
1948].

_ r -\l/2Lemma CS.5.13 : corr( XjS2) % | fi±/(2+rz)j (2.5.1)

Proof * Let X4, X2, ..., X be a random sample of size n from a 
non-normal population with mean P and finite variance . Let X and 
S2 be the sample mean and variances. Now by definition 
of correlation coefficent we have,

corr(X ,S )
cov(X,S )

/v(x) / V(S2 )

Now for large n,

V( X ) 9

V( s2 ) % and

cov( X, S2 ) % —-n
where pz , Pa and P4 are central moments. [Ref. Rhohatgi, 1976, 
Page 304]. Therefore,
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corr( X, S ) / jj (ju2 4
A* ,2)

Hence,

. 2 3 2
= ^ /|U /jUl<3 2 4 2 }

1/Z

P,/(/52
■v 1/23 + 3-l)J-

{
xl/Z^t/(2+r2 ) J

Thus correlation between X and S2 itself is a measure of 

skewness. Mardia uses this concept to define measure of skewness 
for multivariate distribution. When developing the measure he has 
considered the canonical correlations between X and S2.

Note s If the non-normal population is symmetric then odd ordered
— 2 —central moments are zero. Therefore, corr( X,S ) = 0. Hence X and 

S2 are exactly uncorrelated and independent. So that normal 

theory will be hold for n large enough.

Further assume that u is negligible. Then the equation4

(2.5.1) reduces to,

corr( X, S2) = j fi±/2l (2.5.2)
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which can be regarded as measure of univariate skewness.
The above discussion suggests the following extension of ft 

to the multivariate case as follows. Before introducing the 
measure of multivariate skewness we consider a definition of 
cannocical correlations.

Definition €2.5. an : Caimonical Variables
Let X and Y be two column vectors of p and q random 

variables respectively with p ^ q. Let variance co-variance 
matrix of all these (p + q) elements be

r x i z z11 1 2
Y z zb. ml 2 1 2 2
Let us consider the transformations,U=LXand V-MY from

(2.5.3) 

X, Y
to U, V such that

where,

(2.5.4)

P = [diag (P , P , . ..,p , 0, 0, ...,0)| 0 ]

r being the rank of Zi2, and are non-singular. The U are 
linear combinations of x±, x^, —, xp; the elements of X and V

41
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are combinations of y± * Yz > __ , y^; the elements of Y_ U are

called cannonical variables of X-space and V are called canonical 

variables of Y-space. The columns of L' and M' are called 
canonical vectors. If p2, p 2, . . ., ,P 2 are so arranged that

12 p
p 2 > p 2 > ... > p 2 than U is called first canonical variable
12 pi
of X-space and V is called as first canonical variable of — 1

Y-space. U2 will be second and so on. The entire relationship

between p-variables of X and q variables of Y is expressed only
2 2 2in terms of r parameters p , p , ...» p . Hence the name12 r

canonical variables.

Form (2.5.4) we can observe that the variances of each uL

and v. is 1 and the co variances are correlations. Form (2.5.4) 
we find that,

Corr(u , v ) = p.L J t

= 0

only when t = j 

otherwise.

Also we observe that,

Corr(u , u ) =0 for 1 * j^ J

and

Corr(v , v) = 0, for i * j
^ J

In other words, the first canonical variable of x-space is 

correlated only with first canonical variable of the Y-space, and 

so on.
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Definition C2.5.33 : Msasmis for, skewness
Let us denote the measure of multivariate skewness by .A,p

This measure is obtained by considering the canonical 
correlations between X and S2 under the following assumptions.
i) The second ordered moments of X and S2 are taken to order n
ii) The cumulants of order higher than 3 of X are negligible.
Let,
V = the mean vector of population,

2 = the covariance matrix of population and
X' = (x , x£ , ..., x ) for i = 1, 2, n be a random

it i

sample of size n from p-variate population with random vector 

X' = ( x . x , — , x ).1 Z p

X = (X^ X2, ..., X ) be sample mean vector.

S = {Sj} be the sample eo variance matrix.

For simplification let us assume that fj = 0 and £ be a 
non-singular matrix. Now write the elements of S = {S } as 
vector U as follows;

U = (S ,...S ,S ,....S ,....S S )J which has p + q— 11 pp 12 2p p-l p ^

elements where q = p(p-l)/2. Since S has p(p+t)/2 elements.
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The first p components of U are diagonal elements of S while 
the remaining q components are the elements above the diagonal. 
Let

n 12A —

A A
<- 21 22 J

be the co variance matrix of (X,U) where 
matrix of X and so on. Then the 
X , X ...» X of X and U are found by1. 2 p

determinantal equation,

(2.5.5)

A is the co variance 11

canonical correlations 
finding the roots of

IA 1 A A 1 A - X2I| = 0,
1 11 12 22 2 1 1 ’ (2.5.6)

where I is the identity matrix of p x p. The roots of this 
equation which are X , X ..., X are canonical correlations of12 p

X and U [Ref. Kendal and Stuart, 1968 p_305].
Now any function of X 2, X 2,

1 2 , X can be taken as ap
measure of skewness ftt , provided that this function satisfies 
an invariance property. Let us choose a specific function given 
by,

p
fti,p 2 Z X. (2.5.7)

Here multiplier 2 is taken because for p = 1 (2.5.7) reduces to 
(2.5.1).
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Case. I • Consider the case £ = I. 
We have, from (2.5.6) and (2.5.7)

|A 1 A A 1 A - A2I| 
1 11 12 22 21 1 0, and /? - 2 £ A.i.p . , it=±

Now since trace is equal to the sum of characteristic root 
we can write
fti,p 2 tra(A 1 A A 1 A ) 

11 12 22 21 (2.5.8)

Since A = I/n the above equation reduces toXI

fti.p 2 n tra( A11 A A ) 21 12 (2.5.9)

Now from result (2.5.1) we have,
2

V<Sn>
iu — fj4, ~2

and by normal approximation it is equal to 2/n, and

V(Sl2)
1_
n I Ax,.l X ~ N( 0,1) (2.5.10)

■bE [1 X X,ll 2.x.

-~z E F y X?. K - + 2yx,x,x x ln L Li It 2l L ll 2l lj 2jJ
i#j

Hence.
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1 r
v<si2> ---2n n - 2 .0

= -±- (2.5.11)n

Hence approximation up to order 1/n we have,

Azz = diag(2, 2, __ , 2, 1, ---,1 )/n with p 2's and q l"s.

Substituting Azz in ft^p we get,

ft*-P = n
p
Z cov

. , j , k= i

ft-8*}' (2.5.12)

Under the assumptions (i), (ii) and |U = 0 we have,

cov (X, Sk) = E(X X, \)/n V i,j,k.

So that,

ftt - i (e(X x x^)) 4»p i.jlk L J ^ / (2.5.13)

To verify invariance property of this measure consider the 
following lemma. Befor we start lemma we define some functions.

Let <£(x) be a functional defined on random vector X with 
mean zero and co variance matrix 2. Let 2 be positive definite 
matrix. Therefore there exist a nonsingular matrix U such that U

46



Z UJ = I _ Define a random vector Y such that 
X = UY
equivalently,
Y = U_1 X (2.5.14)
corresponding to 4> as,
#*<Y) = 0(UY) (2.5.15)
keeping in mind U Z U' = I the co variance matrix of Y is E.

The equation U 2 U'= I does not define U uniquely for given 
Z. So <p defined above may not extend 4> uniquely. For this 
situation we have to discuss the following lemma which gives 
sufficient condition under which 4> will be unique.

Lemma C2. 5. 21 : The function <P (Y) is uniquely defined for given 
Z if <P(X) is invariant under orthogonal transformations.

5|CFurthermore <p (Y) will be then invariant under non-singular 
transformations.
Proof : Let V be another matrix satisfying V Z V'= I.
For the first part of lemma it is sufficient to show that

4>(W)= 0(VY) (2.5.16)

We have, U Z U' = I which implies that

Z = U-1(U-1) '

47



= BB' (2.5.17)

where, B = U 
Now,
V 2 V' = I

= V-1^"1)'

= DD' (2.5.18)

where, D = V .
Thus from equation (2.5.17) and (2.5.18) we have,
BB' = DD'

This happens only when either B and D are identical or D is 
multiple of any orthogonal matrix C. That is, B = DC. Putting 
these values of B and D we get ,

V U"1 U = V V 1 c u 

This implies that,
V = C U (2.5.19)
Under the assumption of lemma (2.5.2) we have,
4>{U Y) = 4>(X)

= 4>{C X).
Therefore from (2.5.14) we obtain,
<£(UY) = 4>{C UY>
Also using equation (2.5.19) we get,
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<£(UY) = 0(VY). (2.5.20)

Now we shall prove the invariance property. Let
Y = A Y (2.5.21)X

be a non-singular transformation and let ^ denote the covariance 
matrix of Y . Using equation (2.5.14) and (2.5.21) we have,
(U A1 ) E (U A1)' = I (2.5.22)

1

Therefore from euqation (2.5.15) and (2.5.22) we get,
<£*(Y ) = *(U A1 Y )

1 1

Using equation (2.5.21) and (2.5.15), above equation reduces to,

= 0(UY)

= <P*( Y).

Hence the result. ■ .

Invariance property q£ ft •

Form (2.5.13) we have,

= 2 {E<Wt>}2

v jk

Consider the orthogonal transformation, Y = CX.
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Let C = { C } then, X
'-j u

Z C Y .
r= 1

Substituting X in we get ,
t 3.,p

ft,P = I {E w}'
i .j k

After simplification we get
P P P'V = 11 G crtc,.J C °./vJ (5 wj

r,s ,tr s t' i =1 J=l k=l

(2.5.23)

E(Y Y Y )E(Y ,Y Y )rat r s t

Since C is an orthogonal matrix the above equation becomes,

^{E(Wt>}2- <2-5-24>
rst <■ ■>

Hence ftip is invariant under an orthogonal transformation.
Case II : Consider the case for general Z

We know that for positive defintite matrix Z there exist 
an orthogonal matrix such that,
C'Z C = D

where D = diag(d , d , • • • , d ) and d >0; i = l,2,...p.12 p t
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Then from—1/2Consequently we may take, U = D CJ in U I U' = I .

equation (2.5.14) we find,
P 1/2 X = Z C . Y / dl rv r t
= 1

Let Z then from C' I C “ D we get the result,

i iO'
P
Z C C / drt r't tt = 1

(2.5.25)

Substituting for X^ in (2.5.13) and (2.5.25) we get

'V, = l{ E (<C,. Y/d1"2) <Cj V<0 (CH< ]}2
i j k

= 2 5 fic.c ./dlfsc.c /dlfl 
L \=± rt r t lHjsi rJ r'J jJlk=1

c.c,.rk r'k
r's ' t

. E(Y Y Y, )E(Y Y Y )r s t r' s' t'

= J J </r'<yMVu' E(YrYsYt)E(Yr,Ys Yt,) (2.5.26)
rat r s't'

Therefore from random vector X with mean vector 
.. ., ju )' and co variance matrix Z we have ,— 1 2 p

ri n rr' aS' H' _ __= ) ) O' O’ O' W (rst) U (r s t ) (2.5.27)
i,p Zj L 111 111

rstr 's't '
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where* ^(ret) = E|(Xr -^r)(Xs ~Vs)(\ -^) }

Note : Form the lemma (2.5.2) we can show that this measure 
posses an invariance property under orthogonal transformation 
X = A Y + b.

2.6 Measure for Kurtoais :
To find the measure for multivariate kurtosis Mardia (1970) 

used the following result
Result : In the univariate case for one sample Pitman's test Box 
and Anderson (1955) have shown that the square of t-statistic has 
approximately F distribution with 6 and <5(n-l) degrees of 
freedom, where,

ftz - 3
6 = 1 + ------------ + o (1/n). (2.6.1)

n

The coefficient of 1/n in <5 provides a measure of univariate 
kurtosis,ft . An extension of it is given by Arnold (1964) which 
gives a sensible measure for multivariate kurtosis. Let ftZ,p
denote the measure for multivariate kurtosis. Now let 
Xt, X2, .. ., Xn be the random sample from p-variate population 
with random vector X and ^ be the population mean vector, Z be 
the variance-covariance matrix of population.
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Definition ca.6.13 : Hotelling Ilf statist.los
If X has p-variate non-singular normal distributions with 

mean 0 and variance covariance matrix 2, that is, X „ N (0,2) and- p
if positive definite symmetric matrix D has Wishart distribution 
with f degrees of freedom, that is, D ~ W (f,2) and X and D areP
independent then statistics which is known as Hotelling's 
^statistics is defined as,
T2 = X' (D/f)-1X

= f . ( X' D-1X ). (2.6.2)

Theorem C2.6.13 ; If X » N (0, 2) distribution and D ~ W (f, 2)- p p

f - p + i T2
then ---------------— has an F-distribution with p and f-p+1

degrees of freedom.
Proof : We have, T2 = f ( X' D_1 X )

where X ~ N (0, 2) and D ~ W (f, 2)Xand D are independent.— p p —
Consider the transformation, Z = C ^ Xwhere C is lower 
triangular matrix such that 2 = C C'.

Then Z ~ Np(0,lp), that is, components of Zt are distributed 
as independent normal.
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Therefore
p
y z.2 = z z' „ xL v p

1=1

But Z'Z = (X'C-1)'^1? = X'(CC')_1X = xV1^ .

Hence X S_1X ~ x -- - p

Now consider T2/f

(2.6.3)

(2.6.4)

TVf = X D X Z 1X provided

We know that, [X' Z 1 X]/[XJ D 1 X]

and it is independent of X, hence it is 
Therefore,

x f - p +1

X I V 0 (2.6.5)

2is distributed as x,f-p+i

independent of X Z ^X.

2 2Since x and x~ are independently distributed,p f~p+l

T2 ~ (p/2, (f-p+1)/2) (2.6.6)
f

The probability density function (p.d.f.) can be obtained by 
writing joint density function of x and xt and makingp I —p-*-l
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transformation

.2 X

X f - p + 1

Hence the p.d.f. of T is
f

f~

Also,

= l/ftz (p/2 ,<f-p+l>/2 ). (TZ/f)p/Z 1
|l + TVfJ" *1’"2

T [xl y p )p
"f-p+i/<f-p+i>/(f-p+i> j<f-p+i>

Thus,
f-p+i T2 F (p, f-p+1)

f

If f+1 = n then,
n-P T2

F(p,n-p ) .
p < n-l> f

(2.6.7)

(2.6.8)

(2.6.9)

Hence the proof. ■ .
Mardia (1970) remarks that if we use the permutation moments 

of T2 and the method of Box and Anderson then the distribution of
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o(n-p)T / [p(n-l)] is approximately F distribution with 6p and 
& (n-p) degrees of freedom where <5 is given by

6 1 +
E(b*p) - (■>+*)

n |^1 |E(b* p)/(n.2 )|

with

b*2,P
n

|(n+2)/n2p| J |(X - M)

i= i

(2.6.10)

(2.6.11)

Further S is the sample co-variance matrix about p. We can 
write <5 as

<5 = 1+ (1/n) 

where,

—p(p+2> + o(l/n) (2.6.12)

ft. = e| (X -m)'5:"1(X -m) |

If we compare (2.6.12) with (2.6.10) we get ft, 

of multivariate kurtosis.
2,p

(2.6.13) 

as measure

Properties of ft :
1) For (J. - o and 2 = 1 equation (2.6.13) reduces to,

'\p = e{ CX'X)2

This measure is invariant under orthogonal transformation.

(2.6.14)
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Hence by lemma (2.5.1),

5{<fi = Ei (X -jj)'Z "(X -r
is invariant under nonsingular transformation. 
Further,

E 1 + a, y x + a yo 1 L l z L l1, =1 L ~±
> 0.

E (ao> + KIX-1 + 2 ao \1b = 1
X+ 2L a a o 2 c

p p
+ 2 a a yx yx:

1 2, i l i tL =1
0

E(aQ ) + a,
r-P *> fp 1

2 a a E y x + 2 a a E yx2O 1 [4 * J O 2 [4 - J

+ 2 a a E 1 2
rP P

2yx yx£,1^1l=1 =1

In particular by taking,

0

fp p
a. P, a, = -A/p, a = -1 where A = E 1 2 2x. 2 V= 1 =1

we get

P2 + AZ/p + /?- 2 pZ-2 (A/p)A > 0

That is (3 > p2 + AZ/p. This implies > p2
2,p 2,p
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Remark : For p = 1 we get ft -2,p
(1 + ft*) which is well known

inequality in univariate case. Eut if we try to find such
relationship between ft and f

4 r* 3 wo found7 ft that these two
measures are not related in such way.

Let X , X,, . .., X be12 n a random sample of size n from 
k-variate population. Then the measure for kurtosis is given by,

2,P

nyjix-xi-s^x-xij

For example let X has bivariate normal distribution with 
mean p and variance co variance matrix 2. Then ft for this2,p

distribution is given in the following;
By definition of we have,2,p

ftzp = e{ (x -u)'z1a -u) }2

Since, X has N2(iu, 2) we get,

e| (X -/j)'S_1(X -v) | = E [ x
oo= J t2 f(t) dt

o
= 2.

where t 2= X .
* * * * J*
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