CHAPTER~II

DESCRIPTIVE STATISTICS FOR MULTIVARIATE MODELS

2.1 Introduction :

As discussed in the previous chapter, the descriptive
statistics for univariate models have been investigated in many
works. It is difficult to generalise to these concepts for
multivariate cases. In this chapter we discuss such measures. In
this chapter we discuss the following points
1) Some preliminary definitions of matrix, random wvector and

some their preliminary results,
2) Measure for location,
3) Measure for scatter,
4) Measure for skewness, and
5) Measure for kurtosis.

Generally multivariate statistics represents the expansion
of more familiar univariate and bivariate statistics. Univariate
and bivariate statistics are special cases or Jjust
simplifications of more general multivariate models. With the
help of multivariate statistics we can analyze and study
simultaneously more than one variable. To begin with we discuss
some preliminary results which are used in defining the

statistics for multivariate models :
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2.2 Preliminaries :
In this section we give some elementary definitions
related to matrices, random vector, and some results on variance

co—variance matrix, which will be used in the subsequent sections.

2.2.1 Matrix :
A" is said to a matrix of order p x n if pn elements arrange in
p rows and n columns.
When n = 1 ° A~ is called as column vector. When p = 1 “A°

is called as row vector. A&xp = symmetric matrix.

<.2.2 pDome special matrices :

1) If a. =

1 for i = 3.
)

0 for 1 # J.

Then ~ A ~ is called as an identity matrix.

2) 1f a. =

L

{a. for 1 - j.

o for i = Jj.

Then ~ a ° is a diagonal matrix it is denoted as

A = diag[au} a,,s ---» abp]
3) If A® = A, then A is called as an idem potent matrix.
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4y If A = A, then A is called as symmetric matrix.

5) If AA‘ = I, then A is called as an orthogonal matrix.

6y If a = i1, ¥vi,jg=1, 2, ...p then A is called as unit matrix.
P

7y Trace ( A ) = za"t
=4

8) If Ab“DI%xpare orthogonal matrix then ,

tr( PAP") = tr( P"AP) = tr(A)
9) If A is idempotent matrix then,

tr(A)

c(A)

R(A)

i

10) 1If Awmis any non-singular matrix then,

tr(aa ) = p
Definition C2.2.13 : Random vector
Let ¢ together with a o—field be a measurable space. A real

valued measurable function defined on the space & is a random

vector.
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Definition (2.2.2> : Distribution function of r.v.
Let X denote a p-variate random vector. Then its

distribution function is defined as
k

F)_((i_g) = Pr [X1.<_ X XZS X5 ---> XpS xp] v 35 e [R
Let f(x, ..., x)) be the joint density function of X. Then
the marginal distribution of one or more xi‘s say Xi, Xz, - s Xk

( k <p ) is given by,

f(Xi,...,Xk)(Xi’ Ry oo xk)
[ &3 [¢ o]
=J.o o Jfx o x ) Ak, L, dx (2.2.1)
-0 -0
The integration is over the appropriate range of Xk+1’ e Xp.

If the joint distribution is a discrete one,we shall be
dealing with the joint probability function and integration will
be replaced by summation over the relevant wvariables,while

finding the marginal distribution.

2.2.3 : Moments of X :
a) We shall use E to denote the expectation operator. So that

E(X) will be the column vector with elements E(X) (i = 1,2,..p).
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Thus,

E(X) = [ E(X), E(X), ..., E(X) 1 (2.2.2)

where,

s o}

E(X) = [ x f(x) dx
-0

"b) Let Z = A X where A be any matrix of constants, of order

mxp. Then,

E(Z)

H

E(A X)

H

A E(X).

¢) The symbols V, COV will be used to denote wvariance and

co-variance. Then the symmetric matrix

f VX COVI(X ,X ) .. COVI(X ,X
1 1’72 1" p
COVIX_,X > Vi ) e COV(X_,X >
(2.2.3)
L COVIiX ,X QOVIX ,X 23 PR V(X 1}
P’ 1 P Tz P -

is known as the variance co variance matrix of the vector X and
shall be denoted by V(X). From the definitions of variance and co

variances it is obvious that ,

VX)) =ELX-EX)1 [X-EX1
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This implies that,

s =V
pHp

E(XX ) - E(OEX )

Now we discuss some elementary results which are used in
finding multivariate statistics.
Lemma ¢2.2.1> : ¥ is the positive definite matrix.

Proof : Let Z = « X where &« is any p-dimensional vector of

constants. Note that Z is a random variable. Then,

V(Z) = V(o X)

- E[[g'g - a E(X] [a X «a'E(§>J’]

= E[(a [X - E(OD(« [X —E(g>}>']

i

a'E[[g - E(X)1IX —E<z>3>'] a.

v
<
<
2

This implies that, ¥ is positive definite matrix.
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Lemma €2.2.20

: ¥ is symmetric matrix.

Proof : We know that,

T = V(X)

H

r

- e[

Hence,

-

E[g - E(X)] [g - E(Z)]

- E(g)g’—XE(gJ)+E(§)E(§*)]

S = E(XX ) - E(OEX )

=V
pxp
r VX 3 CovIiX ,X
1 1772
COVI(X ,X : VX )
_ 2" 7y 2
L COVIX _ ,X COVIX ,X
P’ 71 P’ 2
[ o o .. &
11 12 1p
o o o o
_ 21 22 2p
L o o ... o
pt p2 PP

This implies that, ¥ is symmetric matrix.

distinct parameters in Z.
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z P

VIX 3
P

(2.2.4)

There are [p (p + 1)1/2



2.3 Measures of location :

In this section we discuss some measures of location
introduced by 0ja (1983). Before going to the definition of
measures of location for multivariate models we introduce the

following notations.

Notations and preliminaries :

Let, X1 = (Xu P 'x1k) e Xk+1: (xk+1,1 """ xk+1,k) be the

. . k . - - - .
points in R . These points determine a k-dimensional simplex. The

volume of this simplex is denoted by A(x1, - -xkﬂ) and given by

11 1
AR, o5 x, ) =abs | 1 (T Foa (L0 B (2.3.1)
ktdx, X, Rirt 1

Note ¢ i) If k= 1 then A(xt,x2) indicates the distance between

the two points xt,x2 as follows:

- 1 1 i
A(xl, xz) = abs [ 1 x,, X, ’ ] (2.3.2)
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ii) If k = 2 , then A(xi,xz,xa) gives the area of triangle in

R® which is given by,

1 1 1 1
&(xi’ Ry xa) = abs 21 );1 );2 I;a
1 2 a

Lemma €2.3.1) : If L:R*—»R* is an affine transformation of the
form L(x)=- Ax + @ where A is a kxk matrix and u« is a k-vector
then ,

A(Lxp Lixp, ..., Lx ») = abs( [A] ) Ax, x

25

R
(2.3.3)

Proof : let (xi,-...:g(ﬂ) be the points in k—-dimensional simplex.

Then,

(X, X,, ---» X, ) = abs [ Jax ax, ... dax ] (2.3.4)
xéS

where S is the simplex formed by the points x, x,, ..., x_ = and

A(xl, X5 ---3 xkﬂ) indicates the k-dimensional volume of the

simplex. Let us transform X to Y using transformation

t

Y = L(x)

= Ax + u (2.3.5)

where A is kxk matrix and 2 is a k-vector.
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Differentiating equation (2.3.5) with respect to x, we have,
dy = A dx (2.3.6)

Then A(yi’ yz, ] yk+1) is given by,

A(Lx)p, Lxy, ..., Lx ) = abs [ [ av, dyz,....dykﬂ]
XE5

where 8- is the simplex formed by the

points (Lixp», Lixy, ..., Lx )

Hence,

&(Dx1>,I1xz> ...... L<xk+1>) = abs []AI f dx1 dxz, - .- .dxkﬂ]
x5

Thus,

ALx Lix),. - ... Lx ) = abs(|A}]) A(X X, 5---X )

Defipnition ¢ 2.3.10 : Let P be the class of probability
distributions in ﬂ?k, then P = F. is said to be stochastically

smaller than Q € P if,

J£dp = [ £ da. (2.3.7)

for all real bounded c¢o-ordinate wise increasing f. This is

denoted by
P (L Q 2.3.8)
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Lemma (2.3.2) ¢ P <LQ is equivalent to the existence of two

R" valued random vectors on the same probability space with
respect to distributions P and Q such that X = Y (a.s.).

Proof : The property P <LQ in terms of the distribution functions

of corresponding random variables X and Y can be explained by

taking F as the indicator function given by ,
f(w) = [u>¢t]

Now (2.3.8) implies,

a0 @X
Jdao = [ dQ
L L
That is
Sx(t) = SY(t) (2.3.9)

where 5 (t) and 5,(t) indicate the survival function of an random
variables X and Y having Probability distribution P and Q
respectively. Hence if X is an random variable having
distribution P and distribution function F & Y is an random

variable having distribution Q and distribution function G, then,

P <LQ implies F(t) = G(t). Now by defining,

-1

Y = ¢ Y(Fxo) 2 @

H

(Gx») = X we have,

Y

v

X (2.3.10)
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We can write,

x=(X,...5) 2y = (¥, -¥yr------ v.)

Lemma €(2.3.3) : If ¢ -R*—+R* is a function satisfying $(x) 2z x
vV x = Rk, then the distribution of X is stochastically smaller
than the distribution of Y.

Proof : Consider,

A={x px)=t s {x:x=t =8B
Hence

Pid(x) £ t1 < P[xst].

That is the distribution of x is stochastically smaller than the
distribution of ¢(x). This implies that X is stochastically

smaller than ¢$(x). LI

Note ¢+ It is natural to associate with the distributions in P in
a consistent way with the stochastic ordering , an R* valued

measures of location. This can be done in the following way.

Definition (2.3.2> : Measure of Location

Suppose ¥ : R*——aR" is a function such that
i) P, e P P <@

L

This implies that, w»(P) = »(Q).
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k
ii) For any affine transformation L : Rk — R and PP such
that PL le P.
1,

w(PL 7)) = Iw(P).

Then » is said to be a measure of location. If P is the
distribution corresponding to X then Pthis the distribution

corresponding to LX.

Lemma (2.3.4) : By using v(X) interchangably with ¥(P) whenever X

has the distribution P, the requirement (ii) of definition

(2.2.2) can be stated as
w( LX) ) = L{ ¥(X) ) (2.3.11)

Proof : Let v = L(X) = aX + b be an affine transformation. Let

1

Q = PL “be the distribution of Y and Q P, the class of all

distributions. Now for simplicity let us define

v(P) = EX, where X ~ P
Then,
Mean (Q) = Mean (PL 1)

= E(Y)

= E(aX + b)
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Thus,

Mean (@) = AE(X) + b
= LE(X).
Hence the proof. . L

Remark : If kK = 1 then the property of function ¥ defined in the
definition (2.2.2) satisfies the property of a measure of
location in the non-parametric models defined in Bickel and
Lehamman (1975, 19768). We will discuss about location parameters

for the non-parametric models in the next chapter.

Definition (2.3.3) : Symmetric Distribution
If an random variables X and (-X) have the same
distribution, that is, f(x) = f(-x), then the random variable is

said to have a symmetric distribution (about zero).

Lemma C2.3.5) : If the distribution is symmetric about u < [R5,
That is, the random variables (X-u) and (#-X) have the same
distributions, then necessarily, ¥(x) = u.

Proof : First we prove this lemma for the distribution of X
which is symmetric about zero.Then using this fact we write it

for 2 as general case. Since X and (-X) have the same
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distribution we have,
w(X) = w(-X)

=0

= yw(-IX)

where I is the identity matrix.

Hence, by using condition (ii) of definition (2.3.2) we get,
»(X) = -Iw(X)

= ~p(X).

This implies that,
w(X) = 0

Thus in general if X is symmetric about # then »(X) = wu.
Below we describe the class of measures of location introduced by

0ja (1983). Suppose the functions
Hy ot P —s R* for 0 < & € w

are such that

E{[A(xi, X, s X, ;ua(P))}o‘}

- ing E{[A(xi, X, - xk,u(Pn}""} (2.3.12)
=

where A is defined in (2.3.1) and.xi,x%,-..xi is a random sample
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of size k from p. Then the functions H, are the measures of

location.

Lemma €(2.3.62 ¢ The lemma (2.3.1) implies that for any affine
transformation L : R —, R* of the form L(x) = Ax + » where A

is a kxk matrix and » is a k-vector.

»(PL Y = Lw(p)

1

where P « P such that PL, e P

Proof : To prove this lemma we have to prove
w(Y) = a »(X)+4b (2.3.13)

Now consider

E{[A(yi, Yy oo Yo uam)]‘”‘}

. *
= *mﬂgk E {[ Ay, ¥, -5 ¥, B )]a}
Mo

where, u* L)

au +b

Hence,

E{ (A, ¥, > ¥» uam)]“"}

= absIAlaiél,fE{ [A(x, X .- xk,u(P))]a}
Iy
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Thus we have,

E{ [A(y‘t' yz' A § Yk’ fua(Q)}a}

i

abs{Alainng{ [‘5(X1,X2.- . Xk,H(P)):ia}
ueR

11

abs]AIOl E{ [A(x{xf.--x§,u(9))]a}
That is,

(@) = au(P) + b -

Note : Thus functions M, 0 < o <w are measures of location. If

the value of pa(P) a > 1 exists ,it is unique.
i) If k = 1 and &« = 1 then,

ELAMx, u(PY )" =E[ | x -#(P) | 1
1 1 1
= inf E|l x — u
uemfli I

The value of above derivation is infimum if 2 is equal to
the median of distribution P.(by the property of median.)
Hence,
# = median.

Therefore when we put k=1 and o« = 1 in (2.3.3) then we get

the median of univariate distribution.
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ii) Similarlly if k = 1 and ¢ = 2 then,
E [A(x.4, (P))T = infE [(x, - n(®N]|
uelR

The infimum is obtained when L (P) is equal to the mean of

distribution P

Remark : The sample version of ua(P) is obtained by
ua(P),whenever P the estimate of P, is the empirical distribution

based on the sample X&, Xé, .- Xn- Thus, if Xi,X%,---X% is an
observed sample from P, natural estimates ;a(P),of ya(P) (for

O <« <w ) are given by,

oL
PRLCIE IR

k I
= inf ) [A(x .x ....x 11" (2.8.14)
pelR 1 2 k
where the summation is over 1 = L, = .. b =< n.

2.4 Secatter :
Definition ¢2.4.1> : A symmetric univariate distribution P
(symmetric about & ) is said to more dispersed about & than

another symmetric distribution Q about » if ,
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P(u—a,u+a) < Q(v—a,v+a). ¥ a> 0. (2.4.1)

For example let P corresponds to N(0,1) distribution and @

corresponds to N(0,2). Then it is clear that for O <a <1

P ( (#~-a), (u+a)] < Q{ (#-a), (u+a)]

and for a > 1

Q[ (u-a), (u+a) ] < p ( (w-a), wa) |

Hence P and Q are not comparable. In case of k-variate this

gtatement can be stated as
P(c+u) z Q{c+v) (2.4.2)

k
for all convex symmetrical sets c <« K,

Definition (2.4.2) : Suppose ¢ : R*—» R* is a function such that
ACER), .., &% 0) 2 ACX, .., X )

k
v Ko =m0 xkﬂe[ﬁ

and let P be the distribution of X and Q@ be the distribution of
#(x). Then we say that @ is more scattered than P. This is

denoted by ,

| < Q. (2.4.3)
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Remark : i)}If we take ¢(x) = vy = Ax + b where A is an orthogonal

matrix then we have,
AERD 5. ix D) = AKX ,...% ) (2.4.4)

since A is an orthogonal, matrix. Thus by orthogonal

transformation spread does not change.

Lemma (2.4.12 : If P and Q are multinormal distributions and

xi > kz > .2 kk and 7, = v, . ¥, are ordered eigen values

of the respective covariance matrices then »

}\,L 2 Y. ¥ i = 1,2,...k.
This implies that P <S Q (2.4.5)
Proof : Let X ~. N&( t#, A ) where A = diag( ANs e A )

Let Y = A"l X be the transformation of X. Then,

Y~ Nk ( A-lv,u, v )
and
_ -1
Ay, ~--s v ) = A ACx, .., x )

= J__v_] A( Kyo =ees xk+1)
| Al
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That is,

A(yi’ Tos yk«u) = I:I—LitA(xi""xki.i) > A(xi""xl<4~1)'
X

15

This implies that , P <s Q

Definition (2.4.3) : Measure of Scatter

The function v : F-»Rk is a measure of scatter if
i P <SQ 2 w(P) 2 v(@Q) VvV P, QelP.
ii) For any affine transformation L: Rk—”*mk of the form

1

L(x) = Ax + # and p € P such that PL e P

w(PL™Y) = abs(]A]) v(P).

Note = i) Condition (ii) in above definition can be stated as
w(Ax + 1) = abs (|A]) w(x).

ii) If A is a singular matrix then, |A| = O.
Hence w(Ax+u) = 0.
iii) For k = 1 the usual measure of scatter like standard

deviation satisfies the above properties.

ke
The functions oa:F~—+R a > 0 defined as

o

o (P) = TELA (%,,%,,...% ., (P) 1 (2.4.6)
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where Xo» X5 ---3 X is a random sample form P are also a

measure of scatter.

Lemma ¢2.4.2> : The function defined above satisfies  the
condition (ii) of Definition (2.4.3).

Proof : Let Y = Ax + » be an affine transformation where A 1is a
nonsingular matrix and © is a mean vector and let Q be the

distribution of Y. Then by definition (2.4.3) we have,

Ve z
o (@) = ELA (y,,7,,.-.¥.,v,(Q) ]

i

o -
#fE[A(Ax 2+u,..Axi+u,Aua(p)+u)

o

v abs|A|°E[A(x, . . .x, .ugp)1°

1

o v =
= abs|A| YET[ A (x,,%,,---%_,4,(P) ]

= abs|A| o (p) (2.4.7)

Hence the condition (ii) satisfied. ",

The function,

[24

X
K@y = YELACK,...x 1" (2.4.8)
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is also a measure of scatter, where Xi, Xz, e Xk+1 is a random
sample from P.
Following are some simple measures of scatter;

1) For k = 1, o = 1 we get,

o(p) =ETL A& (x,u® ) ]

3]

E|X1-#|:infElX1—ul

The value of ¢(p) is minimum if » is median of P and in this
case v(p) becomes mean deviation about median.
2 For k = 1 and ¢« = 2 we get, it is minimum if ¢ is the mean of

P.

Note : 1) The sample version of this measure is given as follows:
If Xi, Xz, .- as Xn is a random sample of size n form P then

the natural estimates s, of o, are given by,

~ 2 =
o, = Yk A(xii,...xw,ua)]a (2.4.9)

where the sum is over 1 = i £ ... b £ n.

Similarlly the estimate for o'::(P) is given by,
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ol

~ / ~

X = Ay s rax ,...x, 1 (2.4.10)
1 k+1

where the sum is over 1 = ﬂ < ...= % < n.

2) A smallest convex set containing set 5 1is called as convex
hull. The convex hull generated by S is the minimal convex set,
which contains the set S.Convex hull can be interpreted as a
scatter set. The area or volume of this convex hull R ,which is

generalized range is a measure of scatter.

3) If S is a subset of lesser dimensional space (S < R~ %) then

the value of convex hull of § is =zero.

4) With the help of measure of scatter we can compare the two
distributions with each other,for example if we comparing normal
with Caushy using variances, then we can not compare them because
for Caushy distribution variance does not exist,but if we take
the measure of scatter we can compare both the distributions.

For example let Xi, Xé, i X% be a k-valued sample of size
n, then for k = 1 the closed interval [xh), qu3 and its length

(xm) - xu)) is a measure of scatter.
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2.5 : Measure for skewness @

In this section we discuss a measures

skewness introduced by K. Mardia (1870).

Definition (2.5.13 : Cumulants

of multivariate

The cumulants ka,ké,_-..k% are defined by identity in t.

exp{ Kt + k,t° + ... + kKt + }

It is some time convenient to write the

21 r!

=1+ ui’t + uz'tz + ... + ur'tr-+ e

21 rt

with (it) for t. Thus,

exp{ki(i)t + kz(it)2+_._ + k_(it)" + }

where ur”

21 r!

same

equation

= BTG L R R €10 S S VIR € £ LR S

21 r!

[14]

= [ exp{i tx}dF
_m
= $(t)

is the coefficient of it)r in @(t)

~

* ’
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function k- is the coefficient of (it) in log[ #(t) 1 if the
r!

expansion is in the power series. [ Ref. Kendal and Stuart,

19481].

_ 12
Lemma ¢2.5.1) : corr( X,SZ) x { 31/(2+y2)} (2.5.1)
Proof : Let Xa’ Xi, ey X% be a random sample of size n from a

non-normal population with mean ¢ and finite variance . Let X and
S? be the sample mean and variances. HNow by definition
of correlation coefficent we have,

cov(X,5%)

Y vxy ¥ vt

Now for large n,

corr(i ,52) =

Iy,
s . _ =z
V(X ) = -
vy
V(SZ)*“'—“—D"—”“‘ and
u
cov( X, & ) = >
n

where Mo, My and #, are central moments. [Ref. Rhohatgi, 1976,

Page 304]1. Therefore,
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= ¥4 ’ua

corr{ X, § )

1/;12(#4 T

2

i

2 a » 1/2
{,ua O —1)}

1

12
{éi/(ﬁé -3+ 3 - 1)}
Hence,

. 12
corr( X, § ) -‘—{ﬁi/(ZH’z )}

Thus correlation between X and S2 itself 1is a measure of
skewness. Mardia uses this concept to define measure of skewness
for multivariate distribution. When developing the measure he has

considered the canonical correlations between X and Sz.

Note : 1f the non-normal population is symmetric then odd ordered
central moments are zero. Therefore, corr( X,Sz) = 0. Hence X and
5 are exactly uncorrelated and independent. So that normal

theory will be hold for n large enough.

Further assume that H, is negligible. Then the equation

(2.5.1) reduces to,

_ 1.2
corr( X, §°) = { 81/2} (2.5.2)
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which can be regarded as measure of univariate skowneas.

The above discussion suggests the following extension of ﬁi
to the multivariate case as follows. Before introducing the
measure of multivariate skewness we consider a definition of

cannocical correlations.

Defipnition ¢2.5.2)> : Cannonical Variables
Let X and Y be two column vectors of p and gq random
variables respectively with p = gq. Let wvariance co-variance

matrix of all these (p + q) elements be

(2.5.3)

z q
Let us consider the transformations,U=zILXand V=MY from X, Y

to U, V such that

U I P P
v - = — (2.5.4)
= Pl Ie q
where,
p = [diag (¢, @,, .-.,f,5, 0, 0, ...,00] O__ ]
r being the rank of Eizu 211 and Zzz are non-singular. The U are
linear combinations of x, x,, ..., %3 the elements of X and V
41

13497



are combinations of Vy» Yy ---s Vi the elements of Y. U are
called cannonical variables of X-space and V are called canonical
variables of Y-space. The columns of L° and M~ are called
canonical vectors. If p:ﬁ #32, ...,,p§2 are so arranged that

pfzpfz ...z apz than U is called first canonical variable
of X-space and V; is called as first canonical wvariable of

Y-space. E& will be second and so on. The entire relationship

between p-variables of X and q variables of Y is expressed only

in terms of r parameters ﬁuz, pzz, .. p@z- Hence the name
canonical variables.

Form (2.5.4) we can observe that the variances of each u
and v, is 1 and the co variances are correlations. Form (2.5.4)

we find that,

Corr(ut, vj) = p only when t = j

L

= 0 otherwise.

Also we observe that,

Corr(ui,\ﬁ) = 0 for i # J
and
Corr(vi, v&) = 0, for 1 # J

In other words, the first canonical variable of x-space is
correlated only with first canonical variable of the Y-space, and

50 0On.
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Definition (2.5.3) : Measure for skewness
Let us denote the measure of multivariate skewness by ﬁ’ip.

This measure is obtained by considering the canonical

correlations between X and S’ under the following assumptions.

i} The second ordered moments of X and S* are taken to order n-l-
ii) The cumulants of order higher than 3 of X are negligible.
Let,
# = the mean vector of population,
Z = the covariance matrix of population and
XL‘ = (x:1 s X, 5 s xp) for i = 1, 2, ..., n be a random
i i i
sample of size n from p-variate population with random vector
X" = ( X5 X5 wnns xp).
X = (Xu Xz, e Xp) be sample mean vector.
S = {S‘;j} be the sample co variance matrix.
For simplification let us assume that ©« = 0 and £ be a
non-singular matrix. Now write the elements of 8§ = {Si.j} as

vector U as follows;

U=«(5, ,...5

S, » pp,Siz,-.--Szp,‘-.-89_189) which has p + g

elements where g = p(p-1)/2. Since S has p(p+t)/2 elements.
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The first p components of U are diagonal elements of S while
the remaining q components are the elements above the diagonal.
Let

An A12
A = (2.5.5)

A
21 22

be the co variance matrix of (X,U) where Aﬂ is the co variance
matrix of X and so on. Then the canonical correlations
Ki, Kz, . Kp of X and U are found by finding the roots of

determinantal equation,

bAoAl oA - %1 = o, (2.5.6)

l 11 12 22 21
where I is the identity matrix of p x p. The roots of this

equation which are hl, A ey lp are canonical correlations of

2’
X and U [Ref. Kendal and Stuart, 1968 p.3051].

F4

Now any function of Riz, A, s

e sz can be taken as a
measure of skewness ﬁip, provided that this function satisfies
an invariance property. lLet us choose a specific function given

by,

P
3 = 2Z A . (2.5.7)

1,.p

Here multiplier 2 is taken because for p = 1 (2.5.7) reduces to

(2.5.1).
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Case 1 : Consider the case £ = I.

We have, from (2.5.8) and (2.5.7)

Wla al A - 2] = 0, and 5, = 2 A
11 12 22 21 - 4 1.0 -

Now since trace is equal to the sum of characteristic root

we can write

— -1 -1
ﬁi,p = 2 tra(Aii A1z Azz A21 ) {(2.5.8)

Since An = I/n the above equation reduces to

3 = 2 n tra( A;:' A A (2.5.9)

1,p 21 12

Now from result (2.5.1) we have,
V(Sii) =
and by normal approximation it is equal to 2/n, and

1
V(s,,) = [T Exnxza] X ~ N( 0,I) (2.5.10)

1 2
= E [ 2 Xiv;xzt]

_ —;’;zE[zxfi)i_L+22xxx.x]

17202

L]

Hence,
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1

= n (2.5.11)
Hence approximation up to order 1/n we have,
Azz = diag(2, 2, ..., 2,1, ...,1 )/n with p 2°s and g 1 s.
Substituting Azz in ﬁip we get,

2 P = 2
3 = n I cov {XL,SA} (2.5.12)
1,0 .. v gk
L, i,k=1

Under the assumptions (i), (ii) and # = 0 we have,
cov (X, S,) = E(XX X X)/n v oi,i.k.
So that,

a3 2
Pie = f‘j{f‘}% X, Xk)} (2.5.13)

To verify invariance property of this measure consider the
following lemma. Befor we start lemma we define some functions.

Let ¢(x) be a functional defined on random vector X with
mean zero and co variance matrix Z. Let £ be positive definite

matrix. Therefore there exist a nonsingular matrix U such that U
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zZ U° = I. Define a random vector Y such that

X = UY
equivalently,
y-ulx (2.5.14)

corresponding to ¢ as,
3 (Y) = #(UY) (2.5.15)
keeping in mind U X U” = I the co variance matrix of Y is Z.

The equation U Z U= I does not define U uniquely for given
Z,. So ¢* defined above may not extend ¢ uniquely. For this
situation we have to discuss the following lemma which gives

sufficient condition under which ¢* will be unique.

Lemma (2.5.2) ¢ The function ¢*(Z) is uniquely defined for given
=z if ¢(X) 1is invariant under orthogonal transformations.
Furthermore ¢*(Y) will be then invariant under non-singular
transformations.

Proof : Let V be another matrix satisfying VI V™= I.

For the first part of lemma it is sufficient to show that
P(UY)= @(VY) (2.5.18)

We have, U Z U= I which implies that

1,1

(U

™
]
<

=
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= BB~

where, B = U—l.
Now,
VvV =1
= V-l(V-l)'
= DD’

where, D = vl
Thus from equation (2.5.17) and (2.5.18) we have,
BB = DD~

(2.5.17N)

(2.5.18)

This happens only when either B and D are identical or D is

multiple of any orthogonal matrix C. That is, B = DC.

these values of B and D we get ,
vulu=vvlcu

This implies that,

V=CU

Under the assumption of lemma (2.5.2) we have,

#(U Y) = ¢(X)

H

P(C X).
Therefore from (2.5.14) we obtain,
P(UY) = (C UY)

Also using equation (2.5.19) we get,
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(2.5.19)



@(UY) = @(VY). (2.5.20)

Now we shall prove the invariance property. Let

Y -AY (2.5.21)

1

be a non-singular transformation and let Zi denote the covariance
matrix of Y;- Using equation (2.5.14) and (2.5.21) we have,

1<

waly =, wal

y- =1 (2.5.22)

Therefore from eugation (2.5.15) and (2.5.22) we get,

1

¢*v) = ew Al v

Using equation (2.5.21) and (2.5.15), above equation reduces to,

(X)) = e
= ¢ ().
Hence the result. n

lovariance property of 7,
Form (2.5.13) we have,

P zZ
fp = 3 {BXXX}

Lk

Consider the orthogonal transformation, Y = CX.
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i

it Mo
Q2
<

Let C = { QJ} then, XU

Substituting X% in ﬁip we get ,

3
2
B, = Z{E (C.Y, C.Y, crkyk)} (2.5.23)
ijk

After simplification we get

P

=3 Y (o) o) o)

r,s,tr s Tt L=t i=1 k=t
. OE(YLYYOE(Y YY)

Since C is an orthogonal matrix the above equation becomes,

P 2
B, = E { E(YrYsYt)} : (2.5.24)

1)
P rst

Hence f31p is invariant under an orthogonal transformation.
Case 11 : Consider the case for general =

We know that for positive defintite matrix % there exist
an orthogonal matrix such that,

cCC =D

where D = diag(dl,cg, Ce dp) and q_>-0; i=1,2,...p.
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Consequently we may take, U = D*C* inUS U = 1 . Then from
equation (2.5.14) we find,

34
XL =z Cri, Yr / dii/z

Let Z*l = { f:-*”’}, then from C" £ C = D we get the result,

o P

& = Z Cncm'/ d_L (2.5.25)
i=d

Substituting for XL in (2.5.13) and (2.5.25) we get

2
_ 12 12 1,2
= 2{ E [(cn Y /47T (C Y /a7 (C Y,/d) ]}

Lk
=3 ) {‘zcnc”/d {zcc /d]{zc C, /dk]
ret r'gs’t " k=
-E(Y Y Y)OE(Y Y_Y.)
- Z 2 orr/ass‘o,tt' E(YFYSYL )E(Yr’YS’YV) (2.5.26)
rst rst”

Therefore from random vector X with mean vector

# = (K, Hys o wens up)’ and co variance matrix ¥ we have ,
rr° as’ tt- . >
ﬁip = Zz o o o uiii(rst) uiii(r s t7) (2.5.27)
rstiriat”
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where ¢  (rst) = E{(Xr -+ WX, H )X 1) }

Note : Form the lemma (2.5.2) we can show that this measure

posses an invariance property under orthogonal transformation

X =AY + b.

2.6 Measure for Kurtosis :

To find the measure for multivariate kurtosis Mardia (1970)
used the following result
Result : In the univariate case for one sample Pitman’s test Box
and Anderson (1955) have shown that the square of t-statistic has
approximately F distribution with ¢ and &(n-1) degrees of
freedom, where,

p, - 3
5 =1+ + o (1/m). (2.6.1)

n

The coefficient of 1/n in ¢ provides a measure of univariate
kurtosis,ﬁz. An extension of it is given by Arnold (1964) which
gives a sensible measure for multivariate kurtosis. Let ﬁ&p
denote the measure for multivariate kurtosis. Now let
X&, Xz, enes X% be the random sample from p-variate population
with random vector X and ¢ be the population mean vector, Z be

the variance-covariance matrix of population.
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Definition C2.6.1> : Hotelling T° statistics

I1f X has p-variate non-singular normal distributions with
mean 0 and variance covariance matrix Z, that is, X . Np(O,Z) and
if positive definite symmetric matrix D has Wishart distribution
with f degrees of freedom, that is,]).,ﬁ%(f,z) and X and D are
independent then T° statistics which is known as Hotelling s

Tzstatistics is defined as,

7 = X (D/e) X

X ). (2.6.2)

Theorem ¢2.6.1) : If X . Np(O, £) distribution and D . W;(f, )

Z
f - p + 1 T

then > : has an F-distribution with p and f-p+l1

degrees of freedom.

1

Proof : We have, T° = f ( XD~ X)

where X . Np(O, £) and D . W;(f, Z)Xand D are independent.

Consider the transformation, 2Z = cl

Xwhere C is lower
triangular matrix such that £ = C C~.
Then Z . Np(O,Ip), that is, components of Zi are distributed

as independent normal.
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Therefore

o

Y zf=z22 . X (2.6.3)
i=1
But 2°Z2 = (x’ChH-clx =xccHrlx =x=x.

. ]
Hence X = 'X . 22 . (2.6.4)
Now consider Tz/f
T/f = X DX x = 1x provided X £ 1X = 0 (2.6.5)
x=" 1x

We know that, [X~ Z"l X1/1X” Ifl X] is distributed as X?qﬂi

1

and it is independent of X, hence it is independent of X & "X.
Therefore,
2 v
T _ Tp
£ z
If-—p-rl
Since xi and quwi are independently distributed,
T . 3,(pr2, (£-p+1)/2) (2.6.6)
f

The probability density function (p.d.f.) can be obtained by

writing Joint density function of x: and xi?+i and making
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transformation

2

™ _ %

-
Xf—p+-1

Hence the p.d.f. of Eiis

f
h {Ii ] = 1/Pz2(pr2,d-prwrz). (T°/£)P %71
£ ‘-1 N Tz/f]<f+1>/z
Also,
P
Tz [xp s p ]p
£ h 2
[ Xf~p+1/(f—p+1)/(f*p+1)}<f~p+1)

Thus,

If £+1 = n then,

n-p T

pin-4> f

~ F(p.n-p).

Hence the proof.

Mardia (1970) remarks that if we use the

(2.6.7)

(2.6.8)

(2.6.9)

n_

permutation moments

of 7 and the method of Box and Anderson then the distribution of
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(n~p)T2/ [p(n-1)] is approximately F distribution with &p and

&(n-p) degrees of freedom where ¢ is given by

E(bY ) - (p+2)

s =1+ 2P , (2.6.10)
o[t - {E®) sy |

with
™
X 2 ~1 2
pr = {(n+2)/n p} z {(X,L - )" 8 (Xm - ﬁi)} (2.6.11)
i=1
Further S is the sample co-variance matrix about 4. We can

write 45 as

$ =1+ (1/n) [ {sz—pm+m}/b] + o(1l/n) (2.6.12)
where,

-1 2
ﬁip = E{ (X —u)’2 (X —) } (2.6.13)

If we compare (2.6.12) with (2.6.10) we get sz as measure

of multivariate kurtosis.

Properties of ﬁz’p=

1) For #« = o and £ = 1 equation (2.6.13) reduces to,

B, = E{ (X’X)Z} (2.6.14)
This measure is invariant under orthogonal transformation.
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Hence by lemma (2.5.1),

-1 2
3, :E{(X )7 (X —u)}
P

is invariant under nonsingular transformation.

Further,

P P 2

2

E{ao + a‘l'z X + az,z X ] 2 0.

1L=1 L=1

p 2 P » P p
2 2 2

E[ (a)® + [a%zixb] + [aztzixb] + 2 a"ai-LZlXLJr 2 a2, )%

2

P <2 P P P
E(a, )2+ ale( ZXR + a:E[E XLZ] + 2 aoa1E {EXL ] + 2 aoazE{z XLZ]

= =1

P P
2
+2aak ZixL zixL] > 0
G

In particular by taking,

T

1

1
v
it
™y

3
a, = P> &4 = -A/p, a, = -1 where A = E [ XL ZXZ] we get

P+ K/p+p, -2p-2 (A/PA 2 0

That is £, > p° + A /p. This implies 3, 2 p’.
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Remark ¢ For p = 1 we get sz Z (1 + ﬁf} which 1is well known
inequality in univariate case. Put 1if we ¢try to find such
relationship between ﬁipand ﬁzp we found that these two

measures are not related in such way.

Let Xi, Xé, . ey I.'(.ﬁ be a random sample of size n from

k-variate population. Then the measure for kurtosis is given by,
b - 1g sl v = 1°
2o ;2{(){;){)’5 (XL-X)}
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For example let X has bivariate normal distribution with
mean # and variance co variance matrix Z. Then sz for this
distribution is given in the following;

By definition of ﬁzp we have,

2
p = E{ (X )= X ) }

2,0

Since, X has N, (&, £) we get,
"l 2 2 2
E{ (X )72 (X —u) } = E [x]

% 2
J t7 £ty at
Q

i

= 2.
2
where t = x .

* ¥ ¥k ¥ %
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