
CHAPTER III
DESCRIPTIVE STATISTICS FOR NON-PARAMETRIC MODELS

3. i Introduction :
In this chapter we discuss the descriptive statistics for 

non-parametrie models introduced by Bickel and Lehamman (1975, 
1976). In this chapter we discuss the following points
1) Non-parametric neighbourhood model.
2) Measure of location.
3) Measure of dispersion (for symmetric models).

3* 2 Non paremetric neinhbourhood modeIs •
For a given observations an attempts are made to propose 

parametric models. In model fitting some times one can model 
itself. It might due to observations not coming from the specific 
parametric family and/or the observations might be coming from 
contaminated model, wherein a measure part of the observations 
come from the parametric model and few number of observations 
come from contaminated model. This can be well described by 
stating that the observations have come from a mixture model of 
"parametric models with non-parametric". Such a mixture model 
itself is called as non-parametric neighbourhood models. Thus a
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parametric model contaminated by a (small) non-parametric mixture 
is called as non-parametric neighbouhood model.

Note : In non-parametric neighbourhood models the parameters of 
interest are still the parameters of parametric part of the 
model. However, while estimating or testing one has to be careful 
about the non-parametric disturbance. In the following we discuss 
non-parametric models with natural parameters.

Non-parametrie models stith natural parameters :
In many situations by using data it is possible to propose a 

parametric model. But many a times, due to change in situation, 
proposing a suitable parametric model may not be possible. For 
example, for the class of all symmetric unimodal distribution the 
point of symmetry might a quantity of interest, that is, for 
EF = { F(x-0) : O <s R and F is symmetric }» one might be intrested 
in 0, the location parameter. In such situation one may prefer a 
totally non-parametric models. In these models there may exists 
natural parameters which describes an important uses of the 
model. The estimation or testing of such parameters is a very 
active field of 3tudy. Now we see about the neighbourhood of 
non-parametric models with natural parametrs.
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3.2. l Neighbourhood &£ non-pa rams trig. models with natural 
parameters :

Let us assume that we are dealing with a sample from unknown 
symmetric distribution F. Further assume that this F has a slight 
amount of asymmetric contamination. In this case the parameter of 
interest would be the center of symmetry. This is, an example of 
neighbourhood of non-parametrie models with natural parameters.

Note * The types of the models discussed above are the part of an 
important characteristic that there exists natural measures of of 
the model under consideration; measures like location, scale and 
some other measures such as skewness kurtosis. There may be many 
possible estimators of these measures. The main problem is to 
choose suitable measure among these measures.

Now we shall consider the models where such measures do not 
exists that is the model still possess natural parameters. For 
example in a symmetrical model first quantity to be specified is 
& the point of symmetry and the scale parameter can be 
introduced by using the fact that the distribution of ( X - d }/cr 

is symmetric about zero having unit variance (assuming the 2 ’ 

order moment exists). When we are dealing with such situations 
some questions arise like, how to measure the location of 
non-symmetric distribution? or how to measure or describe its
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spread, skewness or kurtosis? such type of questions we have to 
begin with the description of a particular form of distribution. 
It is more convenient to answer these questions by defining in 
each case , a distribution 6 (or random variable Y with 
distribution G) posses the attribute under consideration more 
strongly than the distribution F (or random variable X with 
distribution F).

Definition C3. 2. id : Partial ordering
A reflexive antisymmetric and transitive relation on a set 

X is called a partial order on X, such relation is denoted by the 
symbol i.

For instance, the set theoretic relation c defines a partial 
order in the set of all subsets of a given set X. We find here 
that there can be subsets A, B of X for which A c B is true but 
B c A need not be true (that is absence of symmetry). Also 
neither A c B nor Be A need be true at all. However, if the 
partial order on set X be such that for x, y « X either x ^ y or 
y ^ x is true, then this partial order is said to be a total 
order (or linear order). A example of total order is the familiar 
order relation in the set N of natural numbers the usual order 
relations in Q and R are also total order.

Now we turn to the conditions for 6 to be measure.
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3- 2. 2 Conditions for. © In be. a measure •

Consider a certain proper attribute of distribution 
function. Let be a partial ordering defined on 07, the class 
of all distributions. Further F < G indicate that G posses the 
attribute under consideration is more strongly than F. Let 0 be a 
functional satisfying the following properties,

i) &(F) ^ £(G) where F < G.
ii) &(aX + b) = a 0(X) + b V a,b (3.2.1)

If £ is measure of location then it satisfies this 
condition.

iii) ©(aX+b) = |a| 3(X) Va^O and b (3.2.2)
If S is measure of scale then it satisfies this condition.

Remark : Once these conditions have been laid down, there are 
many functionals satisfying above properties. Then a natural 
question arises is which one of these is to be selected. To 
answer this question we have to define a functional

Definition C3.a. 23 : Functional
A functional is a real valued function defined on domain, 

class of distribution functions. For example mean (whenever 
exist), median are the functionals.
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Further if IP is class of all normal densities with mean 0 
and variance c*, then 
$(p) = Ep[g (x)]
where X has the distribution belonging to CP is a functional. In 
location case, the functional

i

0(F) = J F-1(t) dk(t) (3.2.3)
o

where K is any distribution function on (0,1) and symmetric with 
respect to 1/2 defines a large class of such measures.

Remark :
i) Specifically if K is U(0,1) then 0(F) is our usual mean, 

median corresponds to K(t) degenerate at 1/2.
ii) If K is discrete uniform over (1/4,3/4) then 0(F) is our 

usual mean,median corresponds to K(t) degenerate at 1/2.
ii) If K is discrete uniform over (1/4,3/4) then 0(F) gives an 

average of 1st and 3rd quartile.
iii) Qi corresponds to K(t) degenerate at 1/4.
iv) Q3 corresponds to K(t) degenerate at 3/4.

In general if K is degenerate at q we obtain the qth 
percentile of F. In the following we discuss in detail about 
location parameter.
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3.3 Measure location (location parameter! :
Measure of location means a functional ,u(F) defined over a 

suitably large class of distributions which satisfies the 
following three conditions

Consider a random variable X with distribution F and Ai(X) be 
a functional then <u(X) will be a measure of location if it 
satisfies the following three conditions;
i) If X is stochastically smaller than Y then

iU<X) < ^ (Y) (3.3.1)

ii) Under change of location or scale .

P(aX + b) = afJ(X) + b if a >0

iii) It must satisfy

P(-X) = -^(X). (3.3.2)

Remark : Condition (i)-(iii) are very natural conditions. But 
some reachers have objected these conditions. Because according 
to them, some time location considered only the central part of a 
distribution. Bickel and Lehamman (1975) give the following 
example to illustrate that there is no reasonable version of 
(ii). Because truncation of two stochastically ordered 
distributions on a common point may reverse the ordering.
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Let G(t) = t for 0 < t < 1

and

F(t) = t

B - t
= t +O

o
A - t.

for 0<t<to (<1)

(t - tQ>. for to < t < t±
o

where,

t = t + 1 o
B - t

A - t
(1 - to )

o

for t > t and t < A < B < 1.1 O

Then, G(t) < F(t) for tQ < t < 1.

Let F and G denote the conditional distribution given that 

the random variable is < A. Then,

F*(t) < G*(t) for 0 < t < A.

Related to this remark Bickel and Lehamann (1975) introduces 

the following three classes of measures of location which we will 

discuss after the following theorem.

Theorem C 3. 3.15 : Conditions (i)-(iii) given in section (3.3) 

imply the following four additional desirable requirements.

1. If F is symmetric with respect to &, then, ^(X) =

2. In particular if X = C, with probability 1, ,u(X) = C,
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3. If a 5 X i b with probability 1, then a ^ p(X) ^ b, and
4. If X is stochastically positive then ,u(X) 2: 0.
Proof • Without loss of generality assume that, F is symmetric 
about zero. We know that if F is symmetric about zero, then the 
corresponding random variable X and that of { X) have the same 
distribution.
Now from condition (iii) we have,
P(-X) = ~p(X)
and further X and (-X) have the same distributions, we have, 
fj(X) = ,c(-X)
Hence,
P(X) = ~m(X)
That is p(X) = 0 (3.3.3)
In particular if we take P(X=C)=1 then we get,

^(X) = c. (3.3.4)

We have P(a^Xib) = l then X is stochastically larger 
than constant variable a and smaller than b. We have, the result 
that if F is symmetric about & then /^(F) - and if X = C with 
probability 1 . Then the result follows from these two
statements.

To prove the fourth condition first we have to define 
stochastically positive random variable.
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Lition C 3.3.13 : Stochastically positive random variable 
X is said to be stochastically positive if there exists a

random variable U symmetric about zero and such that X is 
stochastically larger than U.

Therefore by the first part of the theorem ^(U) = 0. Hence
the result follows from the condition (i).

Example ^3.3.13 :
The functional aj(F) = F^(a) with 0 < a < 1 a *

satisfies (i) and (ii) but not (iii). Consider a random variable 
X with distribution function F and be a functional,
iJ(X) = F” 1(X) with 0 < X < 1 and X * 1/2 (3.3.5)

We know that,
F~ 1 (1/2) = Median.

But we are given that X ^ 1/2. Hence the distribution is not 
symmetric. Therefore the condition ^(-X) = ~^(X) do not 
satisfies.

Now X is stochastically positive therefore condition (i) 
follows from the requirements 4 of the above theorem. For the 
second condition we proceed as follows:
AJ(X) = F-1(X) (3.3.6)
Replacing X by aX + b in the above equation, we get
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jU(aX + b) = a £i(X) +b (3.3.7)

Thus the functional
^(X) = F-1(X) for 0 < X < 1 and X * 1/2.

satisfies the conditions (i) and (ii) but not (iii).

Example C3.3.3> : The functional
ju(F) = 2E(X) - F_1( 1/2)

satisfies (ii) and (iii) but not (i).
Consider the random variable Y which is stochastically 

larger than X having distribution 
Y ~ G = 1/2 U(0, 1/2) + 1/2 A(l) 
then,

E(Y) = 1/2 (1/4 + 1)

and

m(Y) = 1; where, m(Y) is the median of Y. Therefore,

*j(Y) = 2 E(Y) - m(Y)

= 5/4 -1

= 1/4.
Hence, ,u(X) ^ ij(Y) is not satisfied.
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Now using, ,u(X) = 2 E(X) - m(X) we have

/j(aX + b) = 2 [ a E(X) + b] - (am + b)

= ap(X) + b.
and

^(-X) = 2 E(-X) - m(-X)

= -2 E(X) + m(X)

= -^(X)

Thus the functional given above satisfies (ii), (iii) 
not (i).

Example C3.3. 33 *
3iKX) - [ E(X) ] satisfies (i) and (iii) but not (ii).

We know the result,
+oo o

[ 1 - F(x)
O - 00

Since, the random variable X is stochastically smaller than Y 

F^(x) > Fy(x) 

l-F^(x) < 1- Fy(x)

^(X) = E(X) = J dx - J F(x) dx (3.

but

3.8)
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Therefore using equation (3.3.8) we can write,

+00

ex =;
o

O +00 o
1 - Fx(x)jdx -J Fx(x)dx < J |l - Fy(x)j dx -J FY(x)dx = EY

-00 O -00

That is, E(X) < E(Y)

Hence,

C E(X) f < [ E(Y) f (3.3.9)

Thus the condition (i) is satisfied.

Consider,

S-1(aX + b) = J E(aX + b) j
= E(aX)3 + 2 E(aX)zb + E(aX)bz + E(aX)zb + 2 E(aX)bz + b3 

* a E(X)3 + b (3.3.10)

Hence the condition (ii) is not satisfied.

To prove the third condition consider,

M(-X) = [ E(-X) f

= - [ E(X) f

= - ^(X). (3.3.11)

Hence the condition (iii) is satisfied.
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From the above three examples one may say that the

conditions (i)-(iii) are independent of each other.

Remark : Standard measures of location namely mean and median 

satisfies these three conditions. 

l -> The mean : EX :

AJ(X) = E(X)

Consider the random variable X is stochastically smaller 

than the random variable Y. Therefore,

Fx(x) > Gy(x)

o
-J Fx(x)dx
-co
o
-J FY(x)dx
-00

= EY 

Hence,

1 - Fy(x) < 1 - Gy(x)

Hence,

+C0
EX = J 1 - Fjj(x) | dx

+00

<- J [l - FY(x)]dx

o

E(X) < E(Y) (3.3.12)
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Now.

m(aX + b) = E(aX + b)

= a E(X) + b

- a fj (X) + b (3.3.13)

Consider, ^(-X) = E(-X)

E(X)

= -^<x> (3.3.14)

Thus, from equation (3.3.12), (3.3.13) and (3.3.14) the mean

satisfies the all three conditions.
25 Median :

Let m(X) - m(X) be the median of random variable X with 

distribution function F and Y be the random variable with 
distribution function G which is stochastically larger than X.

F(x) > G(x)

F 1 (t) < G~1 (t) V 0 < t < 1.

In particular t = 1/2 we get
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This implies that

m(X) < m(Y) (3.3.15)

Let, ju(-X) = m(-X)

= - m(X)

= -P(X) (3.3.16)

and p(aX + b) = m(aX + b)

= am(X)+b

= ap(X)+b (3.3.17)

Thus, form equation (3.3.15), (3.3.16), and (3.3.17) the
median also satisfies the all three conditions.
The doubly trimed mean defined by,

F 1 < i -oi >
E*(X) = J x dF(x) (3.3.18)

F 1<<s>

is a class of location measures.

The mean and median are limiting cases with respect to 
ot —► 0 and cn —► 1/2.
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Let

I 1
" l-2«

F < i-ot>
J x dF(x) (3.3.19)

Let us assume that differentiation and integration may 
interchangable. Differentiating (3.3.19) with respect to ot we 
get,

-is- = as- [h'1-31' -h«»]
♦

Taking limit as a—->1/2 we get,

(3.3.20)

lim d I
ot—n/2 da

lim 1 d 
Ot--------->1/2 -2 dot H( l-oi) -H(ot)

1 t-m - m]
2

= m
This implies that, as a-- ► 1/2 equation (3.3.19) gives the

median of F and at ot = 0 we get,
-i

F < 1)

I = _± J x dF(x) (3.3.21)
F < O)

which is the mean of X. Thus, mean and median are limiting cases 
corresponds to ot = 0 and ot = 1/2.
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De.finl.tion C3. 3.ai : Pseudomedian
Let X , X2 are independently distributed according to F. Then

the median of distribution of —i—(X, + X,) denoted by (F) is
1 2 4,

called as Pseudo median.

Lemma C3. 3.11 : If F is continuous then, (u (F), the pseudo median4

is the solution of equation

J F ( 2© - x ) dF(x) = 1/2 (3.3.22)

Proof s Consider,

Y = <Xt + X2) (3.3.23)

then by the definition of median if 0 is the median of Y we have ,

P [ -1TCX. + V < ® ] = -4" (3.3.24)

That is,

P [ (X + X2) < » ] = -±-

P [ Xt < 2© - X2 ] = (3.3.25)

Thus,
o
J F ( 2© - x ) dF(x) = 1/2
—00
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Which implies that, B is the median of Y - —i—(X + X ).
* 2

Hence the proof.

a£ Location Parameter :
A3 If ju(X) satisfies conditions (i) and (ii) of section (3.4) but

not (iii) then JLf
’ 2 l ^(X) - M(-X) satisfies all these three

conditions that is the above function can be considered as location 
parameter.
i) ^<X) < M(X)

y(X) P(Y)

- *u(~X) ^ - M-Y) since - ju(X) = ^(-X)

,u(X) - u(-X) i ;U(Y) - ju(-Y)

(j(Y) - ,u(~Y) J
ii) —^(aX + b) - ^(-(aX + b))

= ~y\ ^(X) + b “ a^(-X) + b ]

= -§-[ ^(X) - ^(-X) ] + b.

/U(X) - p(-X)
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T.firnma C3.2.13 : If (x)^ is a countable collection of 

functional which satisfies (i)-(iii) then so does 

Sodjui.(x) for any ot non-negative, also satisfies (i)-(iii)

Proof t Proof is trivial.
Consider the functional p(x) F ^(a) for some fixed a

between 0 and 1. This functional satisfies the conditions (i) and 
(ii). Now p (—X) = -F ^(1-a). This follows that

1 T -1 -1 1—2~ F (a) + F (1 - a) is also a location parameter for any 

0 < a < 1.

EO To find the second class of location consider the probability

p ( | X - 0 | i x ) = p(-x ^ (x~0) 5 x)

= P(e-x < X < x + &)

~ F(x f 0) - F(~x f

Therefore 9 can be defined as the center of F for which the 
above probabilities are as large as possible.

Let L be an increasing convex function on [0,1] which is 
bounded and such that L(0)=0. Define ,u(F) as the number & which 
maximizes

J | L [F(x + 9) - F(~x + ©)] - L[F(x) - F(-x)]| dx (3.3.26)
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The subtraction o£ L[F(x) - F(-x) ] under the integral sign 
is intended to aid convergence.

Renaa&k :
1) L'is bounded in absolute value.
2) It is more convenient to extend L so that it is an even 
function on [-1,1], then, it is equivalent to maximize

J | L [F(x + ©) - F(-x + 0)]-L[F(x) - F(-x)]j dx
00

oo

= J { L [F(x) - F(20 - x)] - L[F(x) - F(-x)]J dx (3.3.27)
-00

If we suppose F has density f, L is continuously 
differentiable, that M = L' and that above equation can be 
differentiated under the integral sign.
C'J The third class is obtained by using Huber's M-estimat or .Hence 
first we describe the definition of Huber's M-estimator.

These estimators are just a slight generalization of MLE's 
so it is also known as generalized maximum likelihood type 
estimators.

Let X , X , ..., X be a random sample from f(x,0) where1 2 n

unknown parameter 0 belongs to some parameter space © .Consider 
estimators of Q which are functional (real valued statistics)
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T = T ( X , X , . . . , X ) based on sample. The estimators ofn ri 1 2 n

type M are the solutions of the more general structure proposed 
by Huber (1964).
n
Y P(x ,T ), (3.3.28)
Li l n
i ~t

where p is some function on « . X ,0^ being the sample space.

Suppose that p has a derivative P (x, 0 ) _6__p(x,0), so the
s&

estimate Tn satisfies the implicit equation
n
y 0(x_,Tn) = 0 (3.3.29)
1 -1

Any estimator defined by (1) or (2) is called an 
M-estimator.

Remark : If is the empirical distribution function
corresponding to the sample, then the solution T of (2) can also 
be written as T(Hn), where T is functional given by

J>(x,t<h>) dH(x) = 0 (3.3.30)

Thus for each distributions define functional H for which the 
integral

JV>(x,t<h>) dH(x) = 0 (3.3.31)
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is defined [Ref. Hample (1986) page 101].
Another class of measures of location is obtained from the 

quantities estimated by Huber's M-estimator. These are quantities 
Q - p (F) which minimize

I = Jp(x - 0)dF(x) (3.3.32)

where we shall assume p to be positive, even convex and 
twice differentiable with derivative p' - 4>. Alternatively I can 
be viewed as risk function corresponding to the loss function 
P(x - 9) = L(x,©(x>), the loss incurred by proposing © as
location, when x is observed.

In the following theorem Bickel and Lehmman (1975) show that 
only one parameter sub class of (c) satisfies the conditions 
given for © to be a measure.

Theorem C3.3.21 : Suppose that p(F) is defined as minimizing

Jp(x - ©)dF(x) (3.3.32)

on set F, which is convex, contains all point masses, is closed 
under changes of scale, and contains a distribution F° symmetric 
about 0 such that,

j4;'(x)dFp (x + t) <oo for all t and
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Differentiating with respect to x we get,

g|- J* 4>{x - tJdE^x) = -J <fo ' (x - t)dfP(x)

Let Y = x/c? and F be the distribution of Y. Suppose 
;j(F ) = <yp(F) for all F <= F > 0 
Then,

0(x) = c |x|04 sgn x for some a > 0,c > 0

Proof : The measure ju(F) is the solution of the equation

J<£(x - ©)dF(x) = 0

Using assumptions, we have,

/j (1
lim
£-- >0

+ ea-K ^ (F° )

and similarly,

0(X)
00

J&' (xidlf* (x)
-00

jj
lim

J\ 1 - e)^* + ^<5x - /j(EP )
--»o

(o-x)
00
f<t>' (o’y)dtf* (y)

-00

that
(3.3.33)
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Form equation (3.3.29) we get.

<P (s-x) O' ^(x)

‘90

J 2 ’ (-'• y )dFu (y) JV ' (y)dF° (y)
~ ‘90 -00

Differentiate both the sides with respect to x for x > 0 leads to

(O'x) 4>' (x)
00 ~~

JV' (o-yjd^ (y)
00

(yjdl^ (y)
- 00

and hence
— 00

4>" i&X.)
<P" (x)

——- for some x > 0.
W'(x)

put x = 1 in the above equation we get,

4> {<?) _ (1)
^(<y> <y0(l)
or log<£ = ^(1)

4>(1)

Hence the proof.

log a + c

Remark : This theorem also holds under a weaker set of 
conditions not including differentiability.
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3. 4. Measure q£ diSBexainn :
A measure of dispersion is defined as a functional which 

satisfies the certain equivariance and order conditions. Here we 
discuss measures of dispersion for symmetric distributions. This 
functional also has an addition property that it assigns a larger 
value to G than to F if G is more dispersed than F.

Let X be a random variable with distribution function F 
which is symmetric about zero. Then the dispersion can be 
interpreted in terms of distance of X from the center v. In terms 
of magnitude.

Definition C3.4.1) :
Let Y be a random variable with distribution function G 

symmetric about v. Then Y is said to be more dispersed about v 
than X about ,u if,

3 . t
| Y - v | < | X - | (3.4.1)

That is magt».if,i^; J Y - v j 1iy smaller than
the magnitude | X - m |.

Remark :
i) Any symmetric random variable is more dispersed than a 
constant.
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ii) If a > 1 , then, aX is more dispersed than X.
iii) If we take ,u - 0 and v = 0 in the definition 3.4.1 then, we get, 

P(|Y| < x) < P(|X| < x)
Hence,
g(x) = P(-x ^ Y ^ x) < P(-x < X 5 x) = f(x)
Therefore, g(x)/f(x) is increasing function in x for x > 0.

r.emma (3. 4.1 ) : Let X be a random variable with the distribution 
function F and Y be the random variable with the distribution 
function G.Consider both the random variables symmetric about 
zero and G is more dispersed than F. Then the random variable Z 
having distribution function Hq(x) as,

^(x) = d G(x) + (1 - 0) F(x) (3.4.2)

is more dispersed than F for any 0 < O < 1 and less dispersed
than that of G.
Proof jl Proof is trivial.

Theorem £3.4. ID : Let Yt (i = 1,2) be independent random
variables with distributions F^, Gt (i =1,2) which are symmetric 
about zero.Suppose that, 
i) Y^ is more dispersed than X^ . i = 1,2.and 

ii) F and G£ are unimodal densities and possibly some
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probability mass at sero.
Then Y + Y is more dispersed than X + X .12 12

Proof Consider the probability,
P(|X + X | < C ) = P(-C < (X + X > < C)1 1 2 1 1 Z

= P( C-X<X<C+X)
00

JdFz(x) (3.4.3)

We are given that F is the unimodal density, therefore, the 
integrand on R.H.S. in the above integral is decreasing function 
of X. Since Y is more dispersed than X^ it satisfies

|X - < | Y - H

Therefore if we replace Fz by Gz in above integral it is
also a decreasing function. Thus,

00

P(|X + X | < C ) > 21 X 2 1 F (x + c) - F (x - c) 1 1 dGz(x)

This implies that,
00

P (IX + X I < C ) = 2 Gz(x + c) - Ga(x - c) dF^x)

Since Gz is unimodal density here again we got R.H.S, xs
decreasing function, that is,
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(3.4.4)P< \Xx + Xj < C ) > P{ |Yt + Yz| < C )
Which implies that, (X± + X2) is stochastically smaller than 
(Y + Y ), that is, (Y + Y„) is more dispersed than (X. + X ).
Hence the proof. ■.

Definition C3.4.: Measure. o£ dispersion
Let X be a random variable with distribution function F. 

Consider t(F) be a non-negative functional defined over a 
sufficiently large class of symmetric distributions which is 
closed under changes of location and scale. Then the functional 
r(F) is said to be a measure of dispersion if it satisfies the 
following conditions.
i) T(ax) = |a| r(x) for a > 0.
ii) t (ax ♦ b) -- r (x) for all b.
iii) t(F) ^ t(G) whenever G is more dispersed than F.

i) If F is symmetric then, r ( x) = •: (x).
ii) If C is any constant then from conditions (i) and (ii) it 

follows that, t(c) = 0.
iii) If X = C with probability 1 then, t(x) = ^(c) = 0.

A wide class of measures of dispersion is obtained by the
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functionals,
i

(3.4.5)
o

where F is symmetric about t-i, denote the distribution of
|X and A is any probability distribution on (0.1) is be
any positive number.

iv) The functional defined above satisfies the conditions (i) 
and (ii).

v) Let X be a random variable with distribution function F and 
G Y be the random variable with distribution function G. 
Consider X be stochastically smaller than Y, then from (iii) 
in definition 3.4.2 it follows that
F;1(t) < G~1 (t)

vi) If y -2 and A be the uniform over (0,1) then, the function 
t(F) gives the standard deviation of F which is defined as

-■ 1/2
S.D. = J (x - i-t)Z dF(x)

Classes measures &£
There are three classes of measures of dispersion which are 

obtained as a special cases of t(F) given by (3.4.5).
A) A generalization of the standard deviation is the plh power
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deviation. This is obtained by replacing y by p in r{F} and 
letting X be the uniform over (0,1). It is denoted by r(F;p).

B) Let A be the uniform over (ot,l-/?) with r =2 then doubly 
trimmed standard deviation r(F;<*,/?) is the class of measures of 
dispersion.The definition of doubly trimmed standard deviation 
is given in definition (3.4.3).

C) The third class is obtained by considering that A assigns the 
probability 1 to the point a. We get ath quantile and the 
resulting measure is independent of y.

Note : The standard deviation is a member of classes defined in 
(A) and (B). The otlhquatile is the limit of the doubly trimmed 
standard deviation.

Rel.init.ian C3.4.: Doubly, trimmed standard deviation.
Let X be a random variable distributed independently with 

the distribution function F, which is symmetric about 
origin.Consider Y = X2 having distribution G, then we can write

i-ft

1

1 - a - ft

a.
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Thus
l-1 -ft1

T (F
1 - a I G (t) dt

a
where ,uot is cith percentile of G.

Then t (F;«,f?) defined above is called as doubly 
deviation.
Now consider,

G(t2) = P [ X2 < t2]

- p tlx2! < t2]

= P C|X| < t]
if.= F (t)

That is,
G(t2) = F*(t) = u(say). 

Hence,
tZ = G ^(u) 

and

t = F (u).
Therefore,
G 1 (u) = [F*_1(u)32 .

standard
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Hence
t-ft

r (F;c*,(3)
1 - a - ft

J.F- du.
a

i -ft

1 - at - ft

G (u) du.
Oi

Example C3. 4. 1^ : Let

F(t) =

Then

0
t + i

F(u)
0
u

t < -1 
-1 < t < 1 
t > 1

u < -1 
1 < u < 1 
u 2: 1

Then, G(u) - F*(v1'Z)

Hence,
t-ft

t (F;a,/?)
1 - ot - ft I ■ du.

Oi

!-/?+«

* * * * *
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