## APPENDIX A

LEMMA A. 1 : A $2^{k-p}$ design of even resolution $R=2 l$ must contain at least

$$
\begin{equation*}
\sum_{i=0}^{l-1}\binom{k}{i}+\binom{k-1}{l-1} \tag{A.1}
\end{equation*}
$$

runs.
PROOF : In the design matrix, let $X_{1}^{(1)}, \ldots X_{k}^{(1)}$ be the column vectors associated with the $k$ main effects, $X_{1}^{(2)}, \ldots X_{k}^{(2)}$ be the column vectors associated with the $\binom{k}{2}$ two-factor interactions, . . . , let $X_{1}^{(l-1)}, \ldots X_{k}^{(l-1)}$ be the column vectors associated with the $\binom{k}{l-1}(l-1)^{t h}$-factor interactions and the matrix $X$ be given by,

$$
X=\left[X_{1}^{(1)}, \ldots X_{k}^{(1)}, X_{1}^{(2)}, \ldots X_{\binom{k}{2}}^{(2)}, \ldots X_{1}^{(l-1)}, \ldots X_{\binom{k}{l-1}}^{(l-1)}\right]
$$

Let $Z_{0}, Z_{1}, \ldots Z_{\binom{k-1}{1-1}}$ represent the column vectors associated with the grand mean and the interactions of the first factor with the $\binom{k-1}{l-1}$ $(l-1)^{\text {th }}$ factor interactions which do not include the first factor. Let the matrix $Z$ be given by,

$$
Z=\left[Z_{0}, Z_{1}, \ldots Z_{\binom{k-1}{1-1}}\right]
$$

The columns of the matrix $\left[\begin{array}{ll}X, & Z\end{array}\right]$ are orthogonal to each other and linearly independent.

Suppose the design contains $N \leq \sum_{i=0}^{l-1}\binom{k}{i}+\binom{k-1}{l-1}$ runs. Let $s=N-\sum_{i=1}^{l-1}\binom{k}{i}$. Then select any vectors $W_{1}, \ldots W_{s}$ such that the ma$\operatorname{trix}[X, W]$ is of $\operatorname{rank} N$.
$\Rightarrow N \geq \sum_{i=1}^{l-1}\binom{k}{i}$. Since $\left[\begin{array}{ll}X & W\end{array}\right]$ is of full rank $N$ there exist matrices $H_{1}$ and $H_{2}$ such that $Z=X H_{1}+W H_{2}$.

The model for underlying design is, $Y=X \beta_{1}+W \beta_{2}+Z \beta_{3}+\epsilon$ where $\underline{Y}$ is the $N \times 1$ vector of responses, $\beta_{1}=\left(\sum_{i=0}^{l-1}\binom{k}{i} \times 1\right)$ vector of parameters to be estimated and $\beta_{2}=\left(N-\sum_{i=0}^{H}\binom{k}{i}\right) \times 1, \beta_{3}=\left(\binom{k-l}{l-1} \times 1\right)$ vectors of parameters not to be estimated. Since $E\left(\hat{\beta}_{1}\right)=\beta_{1}$ and $\hat{\beta} 1=J Y$ for some matrix $J$, we have
$E J Y=J E Y=J\left(X \beta_{1}+W \beta_{2}+Z \beta_{3}\right)=\beta_{1}$
$\Rightarrow J X=I, J W=0, \& J Z=0$.
But $J Z=J\left(X H_{1}+W H_{2}\right)$
$J Z=J X H_{1}+J W H_{2}$
$J Z=H_{1}+0 H_{2}=H_{1}$
$\Rightarrow H_{1}$ must have zero, therefore $Z=W H_{2}$. But there are more linearly independent $Z$ 's than $W^{\prime}$ 's, which contradicts the assumption $N \leq \sum_{i=0}^{H}\binom{k}{i}+\binom{k-1}{l-1}$.

THEOREM A . 1 : Let $N=2^{k-p}$, let $H$ be the largest integer such that $N \geq \sum_{i=1}^{H}\binom{k}{i}$ and let $I$ be the indicator function. Then

$$
\begin{equation*}
R_{\max } \leq 1+2 H+I\left[N \geq \sum_{i=0}^{H}\binom{k}{i}+\binom{k-1}{H}\right] \tag{A.2}
\end{equation*}
$$

PROOF : Suppose $R_{m a x}=1+2 l$ is odd. Then the parameters estimated include the grand mean, the $k$ main effects, the $\binom{k}{2}$ two-factor interaction, $\ldots$, and the $\binom{k}{l} l$-factor interactions. This requires a mini-
mum of $1+\binom{k}{1}+\binom{k}{2}+\ldots+\binom{k}{l}=\sum_{i=0}^{l}\binom{k}{i} \leq N$ runs. Then $l \leq H$ and $R_{\max }=1+2 l \leq 1+2 H$ so that (A.2) holds. Now suppose $R_{\max }=2 l$ is even. From the definition of $H$ we have $H \geq l-1$. If $H=l-1$, then $R_{\max }=2 l=2+2 H$ and (A.2) is satisfied since $N \geq \sum_{i=0}^{l-1}\binom{k}{l}+\binom{k-1}{l-1}$ by the preceding lemma. If $H \geq l$ then $R_{m a x}=2 l \leq 2 H$ and ( $A .2$ ) holds.

## APPENDIX B

## LEMMA B. 1

$n(O)=2^{p-1}, n(E)=2^{p-1}-1$, where $n(O) \& n(E)$ are defined in (4.1).

## PROOF

Consider a set $\phi=\left\{i_{1}, i_{2}, \ldots i_{s}\right\}, 0<i_{1}<i_{2}<. . \quad<i_{s}<p+1$. There are $2^{p}-1$ such subsets. Let $S$ denote the set of entire collection of these subsets.

Let $s$ be an odd number. Clearly there are $2^{p-s}$ members of $S$ which intersect $\phi$ in only $i_{j}, j=1,2, \ldots s$ and no other members of $\phi$. Similarly there are $\binom{s}{3}$ possible triplets $\left\{i_{j_{1}} i_{j_{2}} i_{j_{3}}\right\} \subset \phi$ and for each of these triplets there are exactly $2^{p-s}$ members of $S$ which intersects $\phi$ in this triplet and no other members of $\phi$. Continuing in a similar manner, for $i_{j_{1}}, i_{j_{2}}, \ldots i_{j_{s}} \in \phi$ there are $2^{p-s}$ sets in $S$ which intersect $\phi$ in $\left\{i_{j_{1}}, i_{j_{2}}, \ldots, i_{j_{s}}\right\}$ and no other members of $\phi$. The totality of these members give the number of symbols in $O$ and is given as,

$$
n(O)=\binom{s}{1} 2^{p-s}+\binom{s}{3} 2^{p-s}+\ldots\binom{s}{s} 2^{p-s}
$$

$$
\begin{equation*}
=2^{p-s}\left[\binom{s}{1}+\binom{s}{3}+\ldots\binom{s}{s}\right] \tag{B.1}
\end{equation*}
$$

We know the Binomial Series,

$$
\begin{equation*}
\left[\binom{s}{0}+\binom{s}{1}+\ldots\binom{s}{s}\right]=2^{s} \tag{B.2}
\end{equation*}
$$

If $s$ is an odd then, we have

$$
\begin{equation*}
\binom{s}{1}=\binom{s}{s-1},\binom{s}{3}=\binom{s}{s-2}, \ldots\binom{s}{s}=\binom{s}{s-s} \tag{B.3}
\end{equation*}
$$

(B.2) can be written as

$$
\left[\binom{s}{1}+\binom{s}{3}+\ldots\binom{s}{s}\right]+\left[\binom{s}{0}+\binom{s}{2}+\ldots\binom{s}{s-1}\right]=2^{s}
$$

Then (B.3) $\Rightarrow$

$$
\begin{align*}
& 2\left[\binom{s}{1}+\binom{s}{3}+\ldots\binom{s}{s}\right]=2^{s} \\
& {\left[\binom{s}{1}+\binom{s}{3}+\ldots\binom{s}{s}\right]=2^{s-1}} \tag{B.4}
\end{align*}
$$

substituting (B.4) in (B.1), we get

$$
n(O)=2^{p-s}\left\{2^{s-1}\right\}=2^{p-1}
$$

Since Cardinality of $S=$ Cardinality of $E+$ Cardinality of $O$ i.e. $O \cup E=S$ and $\# S=2^{p}-1$, we have

$$
n(E)=\left(2^{p}-1\right)-\left(2^{p-1}\right)=2^{p-1}-1
$$

