APPENDIX C

C. 1 : The alias structures for 2^{7-2} design d_{1} and d_{2} as follows.

Design $\mathbf{d}_{\mathbf{1}}$:

$$
\begin{array}{ll}
\mathrm{I}=\mathrm{ABCF}=\mathrm{ABDEG}=\mathrm{CDEFG} & \mathrm{~A}=\mathrm{BCF}=\mathrm{BDEG}=\mathrm{ACDEFG} \\
\mathrm{~B}=\mathrm{ACF}=\mathrm{ADEG}=\mathrm{BCDEFG} & \mathrm{C}=\mathrm{ABF}=\mathrm{ABCDEG}=\mathrm{DEFG} \\
\mathrm{D}=\mathrm{ABCDF}=\mathrm{ABEG}=\mathrm{CEFG} & \mathrm{E}=\mathrm{ABCEF}=\mathrm{ABDG}=\mathrm{CDFG} \\
\mathrm{~F}=\mathrm{ABC}=\mathrm{ABDEFG}=\mathrm{CDEG} & \mathrm{G}=\mathrm{ABCFG}=\mathrm{ABDE}=\mathrm{CDEF} \\
\mathrm{AB}=\mathrm{CF}=\mathrm{DEG}=\mathrm{ABCDEFG} & \mathrm{AC}=\mathrm{BF}=\mathrm{BCDEG}=\mathrm{ADEFG} \\
\mathrm{AF}=\mathrm{BC}=\mathrm{BDEFG}=\mathrm{ACDEG} & \mathrm{AE}=\mathrm{BCEF}=\mathrm{BDG}=\mathrm{ACDFG} \\
\mathrm{AD}=\mathrm{BCDF}=\mathrm{BEG}=\mathrm{ACEFG} & \mathrm{AG}=\mathrm{BCFG}=\mathrm{BDE}=\mathrm{ACDEF} \\
\mathrm{BD}=\mathrm{ACDF}=\mathrm{AEG}=\mathrm{BCEFG} & \mathrm{BE}=\mathrm{ACEF}=\mathrm{ADG}=\mathrm{BCDFG} \\
\mathrm{BG}=\mathrm{ACFG}=\mathrm{ADG}=\mathrm{BCDFG} & \mathrm{CD}=\mathrm{ABDF}=\mathrm{ABCEG}=\mathrm{EFG} \\
\mathrm{CE}=\mathrm{ABEF}=\mathrm{ADCDG}=\mathrm{DFG} & \mathrm{XG}=\mathrm{ABFG}=\mathrm{ABCDE}=\mathrm{DEF} \\
\mathrm{DE}=\mathrm{ABCDEF}=\mathrm{ABG}=\mathrm{CFG} & \mathrm{DF}=\mathrm{ABCD}=\mathrm{ABEFG}=\mathrm{CEG} \\
\mathrm{DG}=\mathrm{ABCDFG}=\mathrm{ABE}=\mathrm{CEF} & \mathrm{EF}=\mathrm{ABCE}=\mathrm{ABDFG}=\mathrm{CDG} \\
\mathrm{EG}=\mathrm{ABCEFG}=\mathrm{ABD}=\mathrm{CDF} & \mathrm{FG}=\mathrm{ABCG}=\mathrm{ABDEFG}=\mathrm{CDE} \\
\mathrm{ACD}=\mathrm{BDF}=\mathrm{BCEG}=\mathrm{AEFG} & \mathrm{ACE}=\mathrm{BEF}=\mathrm{BCDG}=\mathrm{ADFG} \\
\mathrm{ACG}=\mathrm{BFG}=\mathrm{BCDE}=\mathrm{ADEF} & \mathrm{ADF}=\mathrm{BCD}=\mathrm{BDFG}=\mathrm{ACDG} \\
\mathrm{AEF}=\mathrm{BCE}=\mathrm{BDFG}=\mathrm{ACDG} & \mathrm{AFG}=\mathrm{BCG}=\mathrm{BDEF}=\mathrm{ACDE}
\end{array}
$$

Design d_{2} :

$$
\begin{array}{ll}
\mathrm{I}=\mathrm{ABCD}=\mathrm{CEFG}=\mathrm{ABDEFG} & \mathrm{~A}=\mathrm{BCD}=\mathrm{ACEFG}=\mathrm{BDEFG} \\
\mathrm{~B}=\mathrm{ACD}=\mathrm{BCEFG}=\mathrm{ADEFG} & \mathrm{C}=\mathrm{ABD}=\mathrm{EFG}=\mathrm{ABCDEFG} \\
\mathrm{D}=\mathrm{ABC}=\mathrm{CDEFG}=\mathrm{ABEFG} & \mathrm{E}=\mathrm{ABCDE}=\mathrm{CFG}=\mathrm{ABDFG} \\
\mathrm{~F}=\mathrm{ABCDF}=\mathrm{CEG}=\mathrm{ABDEG} & \mathrm{G}=\mathrm{ABCDG}=\mathrm{CEF}=\mathrm{ABDEF} \\
\mathrm{AB}=\mathrm{CD}=\mathrm{ABCEFG}=\mathrm{DEFG} & \mathrm{AC}=\mathrm{BD}=\mathrm{AEFG}=\mathrm{BCDEFG} \\
\mathrm{AD}=\mathrm{BC}=\mathrm{ACDEFG}=\mathrm{BEFG} & \mathrm{CF}=\mathrm{ABDF}=\mathrm{EG}=\mathrm{ABCDEG} \\
\mathrm{CG}=\mathrm{ABDG}=\mathrm{EF}=\mathrm{ABCDEF} & \mathrm{CE}=\mathrm{ABDE}=\mathrm{FG}=\mathrm{ABCDFG} \\
\mathrm{AE}=\mathrm{BCDE}=\mathrm{ACEG}=\mathrm{BDEF} & \mathrm{AF}=\mathrm{BCDF}=\mathrm{ACEG}=\mathrm{BDEG} \\
\mathrm{AG}=\mathrm{BCDG}=\mathrm{ACEF}=\mathrm{BDEF} & \mathrm{BE}=\mathrm{ACDE}=\mathrm{BCFG}=\mathrm{ADFG} \\
\mathrm{BF}=\mathrm{ACDF}=\mathrm{BCEG}=\mathrm{ADEG} & \mathrm{BG}=\mathrm{ACDG}=\mathrm{BCEF}=\mathrm{ADEF} \\
\mathrm{DE}=\mathrm{ABCE}=\mathrm{CDFG}=\mathrm{ABFG} & \mathrm{DF}=\mathrm{ABCF}=\mathrm{CDEG}=\mathrm{ABEG} \\
\mathrm{DG}=\mathrm{ABCG}=\mathrm{CDEF}=\mathrm{ABEF} & \mathrm{ABE}=\mathrm{CDE}=\mathrm{ABCFG}=\mathrm{DFG} \\
\mathrm{ABF}=\mathrm{CDF}=\mathrm{ABCEG}=\mathrm{DEG} & \mathrm{ABG}=\mathrm{CDG}=\mathrm{ABCEF}=\mathrm{DEF} \\
\mathrm{ACE}=\mathrm{BDE}=\mathrm{AFG}=\mathrm{BCDFG} & \mathrm{ACF}=\mathrm{BDF}=\mathrm{AEG}=\mathrm{BCDEG} \\
\mathrm{ACG}=\mathrm{BDG}=\mathrm{AEF}=\mathrm{BCDEF} & \mathrm{ADE}=\mathrm{BCE}=\mathrm{ACDFG}=\mathrm{BFG} \\
\mathrm{ADF}=\mathrm{BCF}=\mathrm{ACDEG}=\mathrm{BEG} & \mathrm{ADG}=\mathrm{BCG}=\mathrm{ACDEF}=\mathrm{BEF}
\end{array}
$$

LEMMA C.2: When (n / u) is very small,

$$
P(m, n)=1-\binom{u-m}{n} /\binom{u}{n} \approx \frac{m n}{u}
$$

PROOF

Let us consider $m=1$,

$$
\begin{aligned}
& P(1, n)=1-\left(1-\frac{n}{u}\right) \\
& P(1, n)=\frac{n}{u}
\end{aligned}
$$

For $m=2$

$$
P(2, n)=1-\left(1-\frac{n}{u}\right)\left(1-\frac{n}{u-1}\right)
$$

$$
\begin{aligned}
=1 & -\left\{1-\frac{n}{u}-\frac{n}{u-1}+\frac{n^{2}}{u(u-1)}\right\} \\
& =\left\{\frac{n}{u}+\frac{n}{u-1}-\frac{n^{2}}{u(u-1)}\right\}
\end{aligned}
$$

Since (n / u) is not too large $\Rightarrow u$ is large
$\Rightarrow \frac{n}{u} \cong \frac{n}{u-1}$ and $\frac{n^{2}}{u(u-1)} \cong 0$. Therefore,

$$
P(2, n)=\frac{2 n}{u}
$$

For $m=r$,

$$
\begin{gathered}
P(r, n)=1-\left(1-\frac{n}{u}\right)\left(1-\frac{n}{u-1}\right) . .\left(1-\frac{n}{u-r+1}\right) \\
=1-\left\{1-\frac{n}{u}-\frac{n}{u-1} . .\left(1-\frac{n}{u-r+1}\right)+\frac{n^{2}}{u(u-1)}+\frac{n^{2}}{u(u-1)(u-2)} . \cdots\right\}
\end{gathered}
$$

Neglecting higher order terms, we have

$$
\begin{aligned}
& =\left\{\frac{n}{u}+\frac{n}{u-1}+. \cdot \cdot \frac{n}{u-r+1}\right\} \\
& \approx \frac{r n}{u}
\end{aligned}
$$

Hence the proof.

