
CHAPTER III

MULTILAYER FEEDFORWARD ARTIFICIAL NEURAL NETWORK

3.1 INTRODUCTION

In Chapter II, we presented the basic theory of a single 

layer neural network and the associated training rules. We 

implemented these networks for computation of logical operations 

'AND', 'OR', and 'NOT'.

An important function of ANN is pattern recognition and 

classification. This Chapter is concerned with how ANN models 

can be used in classification problems. As is well-known, the 

problem of classification is one of the basic problems in any 

scientific research (Kendall, 1980). There are many statistical 

tools such as, Discriminant Analysis, Cluster Analysis etc. which 

are available for such problems. Recently, ANN's are also being 

used widely as an alternative technique to statistical tools for 
classification problems.

In Section 2 of this Chapter, we discuss the use of single 

layer ANN as a tool for classification purpose and some of its 

limitations on what it can classify. Further, we will discuss a 

generalization called "Multilayer Network" to overcome the
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limitations of single layer ANN, followed by the training method

called 'Back-propagation training method' in Section 3. Examples 

are given to illustrate the theory discussed in this Chapter. 

Finally, Section 4 describes significance of various network 

parameters.

3.2 ANN AND CLASSIFICATION

The problem of computing 'AND', 'OR', and 'NOT* functions 

discussed in previous Chapter can also be viewed as 

classification problems. For example, consider the computation 

of 'AND' function. Here we have a set of four input patterns

(W :
{(Vx2):(°,°), (0,1), (1,0), (1,1)

The operation x .AND.x produces either value 0 or 1. Define two 
1 z

classes n and n as follows :i 2

ni { <VV
n2 - (X ,x ) 1 2

x .AND.x = 1 1
1 2 J

x .AND.x = 0 1 
1 2 J

Thus, we see that the patterns in the above set belong to either 

class n or n . The four patterns are shown graphically in Fig. 
3.1.
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Figure 3.1 Graphical Representation of 'AND' Function

From the above Figure,, it is clear that, a line w!x = w for
O

some suitable w , separates four patterns based on their outputs o
into class n and n . The above discussion leads to formation ofi 2
a classifier or rule for classifying the four patterns into class

n and n as follows :1 2

If w*x > then a pattern x belongs to n

If w'x < w then a pattern x belongs to n o ~ 2

(3.2.1)

Obviously, the value of w and are to be selected suitably 

so that the patterns are classified into appropriate classes 

correctly. Note that w'x is linear in nature. Hence w'x can be 

called 'linear classifier'. In the problems wherein if a linear 

function w'x exists for classifying a set of patterns, the 

patterns are said to be 'linearly separable patterns' A more
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general definition for R classes is given below. Before doing

so, we will reexpress (3.2.1) in the matrix notations for later 

use.

In general, let X = ,x ...... x) be a set of patterns12 p
belonging to either class n or n . Then, we rewrite (3.2.1) as12

W' X = -
' > 0, Xi 77. 1

t = 1,2,. . . ,P
i <k. 0, X 1 £ 71 •3 t = 1,2,. . • ,P

where the first component of w and x are w and -1 respectively.i o
Further, set

x = - x , whenever x £ n , t = 1,2,. . . P.it i. 2
(3.2.3)

Then (3.2.2) can equivalently be expressed as follows

x.' w > 0 , i. = 1,2, . . . ,P , (3.2.4)i.

Or in a matrix notation, (3.2.4) can be written as

Aw > 0 (3.2.5)

where A is a matrix of 'converted1 set of patterns i.e. using

(3.2.3),

A
x '
~ i

x '
p
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Definition 3.1 Linear Separability (Zurada, 1992)

Let X = { x^ ,xz, . . . . ,x^ }■ be a set of P patterns. Let the
set be divided into non-overlapping R subsets say X ,X , ....3C_.12 R
If there exists a linear classifier of the type w'x that

classifies the patterns from X as belonging to class i for i =i

1,2, . . ./\R' then the patterns are said to be linearly separable.

Now, we will illustrate the above concept with the help of 

'OR1 function :
let X = |(x^,X2): (0,0), (0,1), (1,0), (1,1) j- be a set of

four input patterns. Consider the operation x .OR.x . The1 2

graphical representation of the outputs of (x .OR.x ) is shown1 2
below :

Output = 1

Output = 1 
0,0)

Figure 3.2 Graphical Representation of 'OR' Function

Note that the above set is clearly linearly separable.

Obviously, not all sets of patterns are linearly separable. 
For instance,, consider the problem of computing exclusive OR
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(XOR). Let (x , x ) be the input pair each takes value either 0 1 2
or 1, and the corresponding output of x .XOR.x is given in Table1 2

3.1
TABLE 3.1

X ■l X2 x .XOR. x1 2 Class

0 0 0 n2
0 1 1 n i
1 0 1 ni
1 1 0 n2

Here, input pairs (0,0) and (1,1) belong to class n and2

(0,1) and (1,0) belong to class n . The patterns are shown1

diagrammatically in Fig. 3.3

Output = 1 Output = 0 Output = 1 Output = 0

Figure 3.3 'XOR' - Problem

From Figs. 3.3(a) and Fig.3.3(b), it can be observed that 

the given patterns are not linearly separable, for the reason

56



that there does not exist any single line which can

discriminate between n and n . However, if one more line (showni 2
by dotted lines) in Fig.3.3(b) is drawn, then two lines together 

separate the patterns.

The classification problems of this type are called as 

'linearly nonseparable1 or 'nonlinearly separable'. Clearly XOR 

is a linearly nonseparable classification problem. In such 

cases, finding a 'suitable' classifier is quite a difficult task.

Before proceeding further, below we prove a theorem 

(Schalkoff, 1997) which is useful to determine whether a given 

set of patterns is linearly separable or not.

Theorem 3.1 : Let X = ( x ,x ,... . ,x^ )• be a set of P patterns.12 P
sThen, X is linearly nonseparable if there exists constant^scalar)

q. > 0, i = 1,2,. . . , P, such that

p
(3.2.6)

i =1

with at least one q. > 0, i = 1,2,...,P.

Proof : If possible, suppose that the set

is linearly separable set . Then using (3.2.4)

we get
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x'w > 0 , i= 1,2,...,P ,

Now, assume that there exist some q. > 0, i.i
least one q > 0 such that

V
PI q. x.

On premultiplying (3.2.8) by w', we obtain

w' > q.X, =0 , . L iti. = i

which implies

5 qx'w = 0 ,
£ X. I

1=1

Since

(3.2.7) 

1,2,...,p and at

(3.2.8)

(3.2.9)

(3.2.10)

x'w > 0 , i. = 1,2, . . . , Pi.
we get

q = 0 , i. = 1,2 ,. . . , P
J.

which contradicts the assumption that X is linearly separable. 

Hence, the theorem.
D

Now, we give two examples to demonstrate the utility of the 

above theorem.

Example 3.1 : 'XOR* Function

The Table 3.2 gives the initial and converted set (using

(3.2.3)) of patterns (x ,x ) required for computing XOR function.1 2
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The vectors have been preprocessed using Eq.(3.2.2)

TABLE 3.2

Initial Set Converted Set
Input (x X X

i 2
o> Output <d> Input (x X

1 2
* ) o

0 0 -1 0 0 0 1
0 1 -1 1 0 1 -1
1 0 -1 1 1 0 -1
1 1 -1 0 -1 -1 1

Looking at the converted set of Table 3.2, we note that,

there exists a set of coefficients q.=l, v = 1,...4 thati
satisfies Eq.(3.2.6). Thus, this set is clearly nonlinearly 
separable.

Example 3.2 : 'OR' Function.

In a similar fashion, we give the set (x ,x )'s for OR Function12
in Table 3.3.

TABLE 3.3

Initial Set Converted Set
Input (x X X 1 2 o» Output <d> Input (x X1 2 X) o

0 0 -1 0 0 0 1
0 1 -1 1 0 1 -1
1 0 -1 1 1 0 -1
1 1 -1 1 1 1 -1

Note that there is no positive set of coefficients(for 

converted set) that satisfies Eq.(3.2.6). Hence, this set is 

linearly separable.
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As mentioned earlier, the ANN models which are discussed in

Chapter II are useful for certain types of classification 

problems. Below, through a theorem, we obtain a condition under 

which a single layer ANN can classify the given set of patterns 

and thus such a model can be used as a 'linear classifier'.

Theorem 3.2 : Let X = -{ } be a set of P patterns

belonging to either of the two classes with each x. is n x 1. If

the patterns are linearly separable by hyperplane in
n-dimensional space R\. then an ANN model(with the training 

method given in Section 3 of Chapter II) classifies the patterns 

correctly.

Proof: Consider the iterative procedure given in Section
*(2.3). Assume that a solution weight vector w exists for a

given training set and is normalized such that
K *■>w

Using this solution, expression (3.2.2) can be written 

for 6, a small and arbitrary selected constant (0 <6 < 1) as 
follows :

w x > 6 > 0 for each x c n
w x < -& < 0 for each x e n

(3.2.11)
Now let
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(3.2.12)<j)(w) = w w / J| w |j 
Since <j>(w) is a scalar product of normalized vectors, we have

cj>(w) = cos $ < 1

where & is the angle between the vectors w and w. Rearranging 

the numerator and denominator of (3.2.12), we obtain for the k-th 

training step
k+l *' k ** ** kww = ww+wx>ww+6,

(3.2.13)

and

I W I = (w + X ) ( W + X ) i | w | + 1 ,

(3.2.14)

for the normalized pattern used for training, and for learning 

constant C = 1.

For total k training steps, (3.2.13) and (3.2.14) can be o

rewritten as

w kO+lw > k 6 o

and
kO+1,,2 ^ .W < ko

The function (3.2.13) now becomes for w = wkO+l

(3.2.15)

(3.2.16)

, . kO+l.<)>(» ) =
*' kO+lw w

kO+ 1w

and from (3.2.15) and (3.2.16) we observe that

(3.2.17)
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(3.2.18)» , kO+1 . v /7 <b(w ) > y « * r o
}'"0 ■f'lsince |(wl ) < 1, inequality (3.2.18) would be violated if a

--- -
solution were not found for yk 6 < 1. Hence the proof.o

D

Thus, from the above theorem, it can be observed that when 

the patterns are linearly separable, the ANN model(with training 

rule given in Section 3 of Chapter II ) correctly classifies the 

patterns. There are many applications of this result which are 

reported in the literature, however, in this dissertation only 

statistical applications will be discussed later.

Now the question arises: can such a ANN model be used for a 

general classification problem wherein the patterns are linearly 

nonseparable?. The answer is, No (which is clear from the 'XOR' 

example). However, such problems can be solved by a 

generalization of ANN structure and such a generalization is 

referred to as "Multilayer Network". The next Section is 

concerned with such type of network models.

3.3 MULTILAYER NETWORK

The networks which are constructed with layers of 

units(neurons) are termed as multilayer network. Multilayer

networks are mainly constructed with three types of layers as 

shown in Fig. 3.4 namely :
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1. Input Layer

2. Hidden Layer

3. Output Layer
Below, we give definitions and functions of these three 

types of layers.

1. Input Layer : The first layer of multilayer network is

termed as 'input layer'. It consists of input units, x . Inputi
layer sends inputs(or input signals) to the next layer of network 

through synaptic connections.
2. Hidden Layer : The layer between the input layer and output

layer are referred to as 'hidden layers', and units contained in

these layers are called as 'hidden units'. Hidden layers are

those whose outputs are not directly accessible. 
x5

x2

x,

Input layer Hidden layer Output layer

Figure 3.4 Multilayer Neural Network
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3. Output Layer: The final layer of multilayer network is

'output layer', which contains 'output units'. It gives the

actual output y of the ANN model for a given input.

In the multilayer network, connection between any two units

are unidirectional and are represented by arrows as shown in Fig. 
3.4.

CONVENTION

The convention followed in the literature is to use the term 

"layer" in reference to actual number of processing neuron 

layers. Therefore, we will not count the input layer because it 

does not perform any computations, but simply passes data onto 

the next layer. So a network shown in Fig 3.4, is a "two-layer 

network" which contains one hidden layer. It is also referred to 

as n-J-R model, where n, J, and R stand for number of units 

contained in input layer, hidden layer, and output layer 

respectively.

NOTE 1. Note that an N-layer network has N-l layers whose

outputs are not directly accessible (i.e. hidden layers).

2. We also note that, there is only one input layer and only 

one output layer but there will be more than one hidden layers.
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3.3.2 Types Of Multilayer Network

Multilayer networks are of two types depending on the manner 

in which the neurons of ANN are structured, namely :
1. Multilayer Feedforward Network

2. Multilayer Feedback Network

In the present Chapter, we discuss in detail only multilayer 

feedforward network (as this network is useful in developing the 

statistical tools in the present dissertation).

1. Multilayer Feedforward Network :

In this network, the input layer supplies input 

vectors(patterns) which constitute input signals applied to 

neurons in the first hidden layer. The output of first hidden 

layer is used as input for second hidden layer and so on. The 

set of outputs of the neurons in the final layer(output layer) of 

the network constitute the over all output of the network for 

given pattern. This network passes(feeds) signals only in 
forward direction. Hence the name 'Multilayer Feedfoward 
Network (MFN)'. Fig. 3.5 shows the MFN with two hidden layers.
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1
Xi

Figure 3.5 MFN With Two Hidden Layers

3.4 TRAINING OF MULTILAYER NETWORK

Unlike ANN model with the training rule given in Chapter II, 
there was one fundamental problem about multilayer network. Till 

1980s, the problem was that there was no convergent learning rule 

that could be used to train the network. Because of this reason 
research and development in neural network field slowed down 

after the concept of multilayer network was first developed in 

1960s.
However, Rumelhart, Hinton and, Williams (1986) developed a 

learning rule and renewed interest in Neural Network theory.
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Historically, the rule had been discovered earlier by

Werbos(1974) and others, but the research in Neural Network field 
became intense after the work of Rumelhart and his colleagues. 

We will now describe this method of training MFN - a method known 
as the 'Back-propagation training method’ which is a dominant 

learning technique in neural network literature.

As will be seen in the next Section, this method is not 'new1 
to the statisticians because it is essentially a recursive 

least-square method.

3.4.1 Back-propagation Training Method

Before we discuss the back-propagation training method, we 

need the following notations. For this, consider two-layer 

network as shown in Fig. 3.6

Fixed input

Input Layer Hidden Layer Output Layer

Figure 3.6 Two-Layer Feedforward ANN
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Notations:

Let a training set, H be as follows:

H {■ x , d ), p = 1,2,. . . P.
p p }

where, x is a p-th training pattern of dimension (n x 1) defined
p

as
x = (x x --- ,x )' , p=l,2,. . . ,P.p pi p2 pn

and a vector d is desired output corresponding to x , ofP p
dimension (R x 1) defined as

d = (d ,d ,. . . ,d )' , P=1 /2.... P.p pi p2 pR

The hidden layer response denoted by vector o of dimension

(J x 1) is given by

o = (o ,o ,. . . ,o }' , P=1,2,. . . ,P.p pi p2 pJ

and the final R-dimensional output of network denoted by vector

y is defined as
p

Implementation of Network

The process starts with input values being presented to the 

input layer. Suppose p-th input pattern is presented. Then the
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weighted sum of inputs, denoted by h (for p-th pattern), is
pj

given by

h . = T v..x j=l,2,. . .J. (3.4.1)
pj . ", J«- P>-i = i

Here, n is the total number of input units(observations), 

v is the weight connected from input i to hidden unit j , and 

x is value of the i-th input for pattern p. The output
pi.

produced by the j-th hidden unit for p-th pattern is

o . = f(h .), j=l,2,...,J (3.4.2)PJ PJ

here, f(.) is the activation function given in (2.3.4).

Now, the output produced at j-th hidden unit is input signal 

for the next layer (from Fig. 3.6, next layer is output layer). 

Therefore, output unit r (r =1,2,...,R) receives a netinput :

a
net = g = Fw o , r=l,2,..., Rr pr ._t rJ PJ

(3.4,3)
where, w represents the weight connecting from j-th hidden unit rj
to output unit r.

The actual output at output unit (i.e. the final output of 
network for p-th pattern) is

y = f(g ), r=l,2,...,R (3.4.4)pr pr
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Back-propagation training Rule

Now, using the given training set (x ,d ), p=l,2,,..P, thep p
objective is to train the network. For this, the objective 
function(or error function) to be minimized with respect to 

weights, is
p R

E = — £ E (* -Y (3.4.5)Z , pr prp = 1 r = i

NOTE: Eq. (3.4.5) is similar to the Eq. (2.3.8). Also, we

observe that (3.4.5) is similar to the Error sum of squares used 

in Least-Square method.

To minimize (3.4.5), we proceed as follows: First, we 

differentiate partially (3.4.5) with respect to weioht w , 

connecting from j-th hidden unit to r-th output unit. We note 

that the partial derivative of the error function with respect to 

a weight represents the rate of change of the error function with 

respect to weight(that is, back-propagation method uses a 

gradient search technique to minimize a objective function). 

Mathematically, this can be represented as

Aw . = - 77 -P— , (3.4.6)
r * #W r j

r=l,2,...,R; j=l,2,...,J

where, 77 is known as learning rate parameter (or learning
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constant) and it simply scales the step size (more about it will

be discussed in next Section).

Now, we will derive an expression for (3.4.6) for

calculating the adjustment for the weights w , connecting the
rj

hidden unit j to the output unit r. For this, by substituting 

Eqs.(3.4.1) to (3.4.4) in Eq. (3.4.5), we get

E 1
2

P R
EE Cdpr

J Ti

f(£w . f( E v..x . )))
, rJ - . J1 Pl

2

Now, expanding Eq. (3.4.6) using chain rule we get

(3.4.7)

but

~T)
dE
dw

r j

dE dy dg^ pr pr
^ dy dg dw

P r pr r j

dE = -(d -y ),pr pr

(3.4.8)

(3.4.9)

dy
= V (g ), (3.4.10)g prpr

and
dgpr------- = o .dw . pj 

r J
(3.4.11)

On substituting these results into Eq. (3.4.6), the change

in weights w is aiven by rj
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(3.4.12)Aw . = - ’/} [-(d -y )3 f' (9 )o .r.) pr pr pr pj

for r=l,2,...,R ; j=l,2,...,J

This gives a formula to update the weights w , from the 

hidden units to the output units. The weights are updated as

jar?
W . = W . - ?? —T— , (3.4.13)rj r| OW r j

for r=l,2,...,R; j=l,2,...,J 
or

w = w + Aw , for r=l,2,.,.R; j=l,2,...,Jrj rj rj
(3.4.14)

To update the weights, v , connecting the i-th input units
ji-

to the j-th hidden units, we will follow the similar logic as in 

Eq. (3.4.12)

Av„ = -v -rf— , (3.4.15)ji dv
J i-

for i=l,2,...,n; j=l,2,...,J 

expanding (3.4.15) using chain rule we get,

dE r dE &Y dg do dhor or or p \
^ dv ^ ^ dy dg do dh dv

ji r =1 pr pr pr pj ji

(3.4.16)
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Here —r--- and —  are given m Eqs. (3.4.9) and (3.4.10)dy dg
P r P r

respectively. Also,

dgpr
do = w

P J
r.) (3.4.17)

dop r = f# (h .) ,dh pj
p J

(3.4.18)

and
dh

Pi
dv = x

j t-
pi. (3.4.19)

On substituting Eqs. (3.4.17) to (3.4.19) into Eq, (3.4.16) we get

Av. =-r/ £ (d -y ) f' (g )w . f' (h )x ,j\. " pr pr pr rj pj pi.r = 1

(3.4.20)

Here summation is taken over the number of output units, because 

each hidden unit is connected to all the output units. So, if 

the weight connecting an input to a hidden layer changes, it will 

affect all the outputs.

Now, the weights from hidden units to output units are 

updated as

v = v + Av , (3.4.21)
J’- Jl jl
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The computation of weight adjustment factors as in (3.4.12)

and (3.4.20) requires 

function used is given by

f(net)

the specification 

(2.3.4) namely

2___________
1 + exp (-X.net)

for the

1 ,

activation

with activation constant X=1 and value of f' ( . ) is expressed in 

(2.3.19) as

f' (net) = —— (1 - f (net )*f (net))2

This completes the description of the Back-propagation method.

The algorithm of this method is enclosed in Appendix C(l). 

Due to the lack of availability of software for this method, we 

have developed a software 'Back-Prop' in 'C' language. The 

source code is enclosed in Appendix C(2).

Illustration: Computation of 'XOR' Function

The following example demonstrates the main features of the 

back-propagation training algorithm applied to a two-layer 

network. As already pointed out, 'XOR' problem cannot be solved 

using single layer ANN. Therefore, consider a two-layer 

(modified) network for computation of 'XOR' function, as shown in 

Fig 3.7(a)
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Inputs

Fixed input

Figure 3.7 (a) ANN Model For Computing 'XOR' Function

Training set required for implementation of 'XOR' function 

is given in Table 3.4

TABLE 3.4
r.......... . ■" .............. ............................................................... . ...... ..

x (0,0) (0,1) (1,0) (1,1)
x .XOR.x 0 1 1 0

1 2

For the sake of simplicity, the weights from output layer to 
hidden layer and hidden layer to input layer are expressed in 

matrix w and v respectively(from Fig. 3.7(a)) as follows:

w = f w w w 1•- lO 11 l2-»
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V V ViO 11 12
V V V20 21 22

After executing the program 'Back-prop' enclosed in 

Appendix C(2), the resulting weights obtained for run 1 (1106 

iterations) are summarized below for >> = 0.8

w = [-4.67 1.644 4.244

1.531 4.69 4.786
v = 3.447 2.35 2.358

The results obtained for run 2 (1350 iterations) and yj = 1, 

(with another set of initial weights) are :

w [4.564 1.57 4.474 ]

1.462 4.531 4.431'
-3.753 -2.627 -2.62

Based on the above results, we can analyze the implemented 

mapping of input to output space. From the result of run 1, we 
get,

4.686X + 4.786X - 1.5306 = 0 1 2

2.345x + 2.358X - 3.4474 = 0 1 2

The graphical representation of above lines are shown in Fig. 

3.7(b). It can be seen that the patterns (0,0), (1,1) and (1,0), 
(0,1) are positioned at different sides of the above lines.
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Using the result of run 2, we have Fig. 3.7(c). And, we 
observed that the results of run 2 are very similar to those 
obtained in run 1. As done in case of 'AND' computation, here 

also we can test the trained network with the input vector x. 
Then, for x = (1,0)' , we get the neural output as 0.98 which is 

greater than 0.5, and hence the output is taken as 1 which
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matches the 'correct' output. For x = (0,0)', we get 0.05<0.5 

which means that output is zero.

REMARK : The above example indicates that how linearly

nonseparable patterns can be correctly classified by ANN model 

using back-propagation training method.

IMPORTANT NOTE : Cybenko (1989) has shown that any continuous
function defined on compact set in R1" can be uniformly
approximated by a multilayer ANN with one hidden (Crnit)

3.5 ADDITIONAL COMMENTS ON TRAINING PARAMETERS

It has been empirically observed that the values of various 

training parameters namely, initial weights, the form of neurons 

activation function, selection of the learning constant, 

selection of necessary number of hidden neurons, and training 

error term affect the time required for training of the network. 

The role of these parameters in training the ANN is discussed 

below. The discussion is based on Zurada (1992), Wasserman 
(1992), Haykin (1994), and Mehta and Mhatre (1996).

1. Initial Weights:

The error back-propagation algorithm requires that small 

weights be chosen initially at random. In various studies, it
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has been found out that these initial weights strongly affect the

final training of the network. If equal weights are chosen at 

the beginning of training, the network may not train correctly 

and results in constant and equal output. Hence, the weights 
should be chosen at random initially (usually, the weights are 

selected from Uniform distribution over (-1,1) or (0,1) ).

2. Learning constant (y)):

The convergence and effectiveness of the back-propagation 

learning algorithm depend significantly on the value of learning 

constant n. The size of the step taken in gradient direction is 

determined by the learning constant. It is observed that, the 

convergence will be slow, if y) is too small. Whereas, if it is 

too large, the network might never converge at all. However, a 

small value of ?) always guarantee the convergence. When the 
function has a broad minima, a large value of r/(step size) can 

help to converge, but for narrow and steep minima, a small n 

must be chosen to avoid divergent solution (Zurada, 1992).

Hence, there is no single learning constant suitable for all 
training cases. Initially, a small value of i) % 0.8 should be

chosen to guarantee convergence. As an illustration, consider the 

following:
Table 3.5 shows, how various values of learning constants(n)
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affect (in 'XOR' problem) an error factor for different number of

iterations.

TABLE 3.5

T) \ k 1000 1500 2000 3000

0.1 0.131 0.027 0.017 0.012
0.8 0.005 0.004 0.0035 0.0028
1.2 0.008 0.006 0.0043 0.0063

Foot Note = Learning Constant
k = Number of Iterations

3. Steepness of Activation Function:

As mentioned in Chapter I, the continuous activation 

function f(.),(usually the sigmoid function (2.3.4), is 

characterized by activation constant(steepness factor) X. Also, 
the derivative term of the activation function f'(. ) is one of 

the factors in error signal component (or weight adjustment 

term). Thus, both choice and shape of the activation function

would strongly affect the speed of network training. The
activation constant(X) determines the slope of the activation 
function. Fig. 3.8 shows that for a fixed learning constant(rj), 

all adjustment of weights are in proportion to the steepness 
factor X.
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Figure 3.8 Slope of Logistic Function For Various X Values.

This implies that, using activation function with large X may- 

yield results similar as in the case of large ?). So, Zurada 

(1992) suggested that X be fixed constant at 1 and be adjusted 

rather than varying both X and rf*

Table 3.6 shows number of iterations required to converge 

the procedure at fixed X(=l) and various values of learning

constant(n).

TABLE 3.6

Error = 0.005 Activation Constants.) = 1

T) Number of Iterations

0.1 4732
0.8 1150
1.2 1287

The above table indicates that j) should be taken initially 0.8 at 
X =1
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4. Number Of Hidden Neurons:

The choice of hidden layer neurons is important to the 

networks discrimination ability. This number depends on the 

dimension of the input vector and the number of separable regions 

in the input space. Mirchandini and Cao (1989) gives a formula 

for calculating the necessary number of hidden layer neurons and 

it is as follows :

If the n-dimensional Euclidean input space is linearly 

separable into M disjoint regions, each belonging to one of the R 

classes such that R<M, then there exists a relationship between 

M, n and J, where J is number of hidden layer neurons. One of 

the three parameters can be calculated given the other two. The 

maximum number of linearly separable regions can be given by

nM(J,n) = V Jc , where Je = 0 for J < k
k kk=0

(3.5.1)

For large-size input vectors compared to the number of 

hidden units, or when n>J, we have from (3.5.1)

or
(3.5.2)
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(3.5.3)J = log M 2

Using minimum number of hidden neurons, network has ability 

to learn the patterns properly, while two many increase the 

training period. (Too many neurons may also lead to a problem 

known as "overfitting", which occurs when the network has no 

much information processing capacity). Thus, it is important to 

use a minimum number of neurons in the hidden layer.

As an illustration we present the following example :

Example 3.3: In this example, we will use the above discussed

guidelines to chose suitable network for the two-dimensional 

XOR-problem. In this problem, we have M=4 and n=2, so, using 

(3,5.3) we get

J = 2.

This implies that, for XOR-problem minimum hidden nodes are two.

From Table 3,7 and 3.8 we observe that, for XOR problem 

though the procedure converges with two hidden units, it 

converges faster with more than two hidden units.
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TABLE 3.7

Number of Hidden Neurons == 3

r/\k 1000 1500 2000 3000

0.1 0.131 0.027 0.017 0.012
0.8 0.005 0.004 0.0035 0.0028
1.2 0.008 0.006 0.0043 0.0063

TABLE 3 .8

Number of Hidden Neurons == 2

n \k 1000 1500 2000 3000

0.1 0.071 0.033 0.0197 0.0129
0.8 0.005 0.004 0.0035 0.0027
1.0 0.007 0.004 0.0039 0.0032

Foot Note:?) = Learning Constant
k = number of iterations.

5. Training Error:

Note that, the 'cumulative error' is computed over the 

back-propagation training cycle, and it is expressed as

P RE = ~ E E (d -Y )2 , (3.5.4)2 « " pr prp=1r = t
Eq.(3.5.4) gives the accuracy of the neural network mapping 

after each of training cycle. Such a definition of error, 

however, it not very effective for comparing the performance of
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networks with different numbers of training patterns P and having

a number of output neurons. Network with output units R, when 

trained using large number of patterns in the training set, will 

usually produce large error (E) due to the large number of terms 

in the sum. For similar reason, network with large P trained 

using the same training set would usually produce large 

cumulative error. Thus, a more adequate measure of error can be 

used as follows :

1 / P R
I’ms = “PR" J Z Z (d - y )2V k r k rk = 1 r = 1

(3.5.5)
The above error term is called as 'root mean-square normalized 

error'. This seems to be more effective than E as given in 

(3.5.4) when comparing the outcome of training the neural 

networks.

In our software, therefore we have used (3.5.5) as the error 

function.

CONCLUSION :

Upto this part, we have discussed the basic theory of ANN 

and illustrated its use in computation of simple functions. In 

the following Chapters, we will be concerned with the 

applications of ANN, as an alternative tool to many widely used 

statistical data analysis techniques. _
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