
Chapter - IV
ESTIMATION OF PARAMETERS FOR A NHPP MODEL

§4.1 Introduction
In previous chapter we discussed inference related to the 

parameters of JM model. This chapter is devoted to the study of 
parameter estimation for a NHPP model. A stochastic model for 
which the software failure phenomenon based on a NHPP is 
suggested by Gaol and Qkumoto (1979). The difference between this 
model and JM model is that- for this model, the total number of 
bugs in the software is a random variable with mean a, while it
is constant in the JM model. Secondly, for this model the times
between failures are assumed dependent, while the JM model
assumes independence. Like JM model, this model is also used
widely.

In section (4.2) we give some preliminary results related to 
NHPP, which are useful for our further study. In this section a
joint pdf of S = (S4,S2,__,Sn) is obtained, where denote the
time to k failure. Also the distribution of residual number of 
faults and conditional reliability is obtained. Section (4.3) 
deals with MLE's of the parameters of G079b model. In this 
section we obtain a necessary and sufficient condition for
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existence and uniqueness of MLE. Distribution of residual number 
of bugs and conditional reliability for G079b model is obtained 
in the same section. In section (4.4} we study the modified G079b 
model given by Hossian and Dahiya (1993). Since there is a 
positive probability, for no solution for ML equations inside the 
parameter space for G079b model and due to the difficulty of 
improper pdf, Hossian and Dahiya modified G079b model by 
introducing a control variable c in the pdf .Hossian and Dahiya 
claims that, the modified G079b model eases the condition of 
existence of solution for ML equation and gives a better estimate 
for the parameters. Distribution of residual number of bugs and 
conditional reliability are also obtained for this model.

§4.2 Some results related with NHPP
Let a sequence of random variables {T.>®=1 represents a 

sequence of time between failures associated with the counting 
process defined in (2.6) of Chapter - II. Then T^ denote the time 
between (i-l)**1 and 1th failure. Define,

Sk = et.i=i

Which denote the time to 'k' failures.

67



4. £. 1 The joint density function of S - CS,S,...,S).— i z n
Lemma C4.2. ID : The joint density function of S = (S .S -— ,S )— X Z I*

is given by,
n

fs(s> = exp[-^(sn)j g± ^'(s1) C4.2.ID

where, ij(t) = E[M(t)3 and ^'(t> = dN(t)/ dt.
Proof s We have,
PCSt > t] = PCTt > t]

= PC no failure before t 3
Since the number of failures in interval (0,t3 has a Poisson 

distribution with mean m(t), we have,
P[S4 > t3 = expC-M(t)3 
Therefore the pdf of S± is,
fg(sl) = /u'(t) expt-^(t)3 (4.2.2)

In order to obtain the joint pdf of ( S4, S2), we proceed as 
follows :
Given S4 = s4, we have,

PCS, > (t+s.jIS, = s, 3 = PC no failure in (s . s+t) 3 2 1 1 1 1 1 1

= PC H(s+t) - M(s ) 3X 1

= exp C - {(^(si+t) - iu(si) >3

due to independent increment property of the Poisson process.
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(4.2.3)

Thus the conditional density function of S2 given is,

fs |S (s2) = ^(s2> expC - (M(s2) - ^(at) >]°2 ' °1

Hence, the joint pdf of (,S2) is, 
fs s (S4,S2) = fg(St) fg .g (S2)

= |/u'(81) expt-M(s1)]| |^'(S2) expt-{^(s2)^M(s1)>]|

= /j'(si) ^'(s2) exp[-M(s2)3 (4.2.4)
Repeating the above argument for Sg, —, Sn ; we obtain the 

joint density (4.2.1).
Hence the proof.

4.2.2 Distribution of residual number of bugs
Suppose that "y" faults have been found by time to. Since 

the Poisson process CH(t), t£0> has independent increments, the 
conditional distribution of M(t) given M(tQ)=y for t > tQ is 
obtained as,
PC M(t)=x | M(t0)=y ] = PC {M(t) - M(tQ)}= (x-y> ]

= fcj(t) - ^(t0)><X_y> exp [-<£<< t> -fj< t > >; 
< x-y>i

C4.2.5>
which is the distribution of additional failures during (tQ,t3.

69



Let M(t) be the number of errors remaining in the system at
time t, then M(t) = CM(co) - M(t)}. Thus substituting tQ= t
t=*» in the equation (4.2.5) and since M(t) and M(t) 
independent, we have,
PC M(t)=x 3 = P[ M(t)=x | M(t)=y 3

exp [- <jji oo) -p< t > > I
ifj(OO) - ^(t)><x-y> < *-y>1

and
are

= v(t)m expC-v(t)]/ m! ;for m = 0,1,2,... (4.2.6)

where,
v(t) = E t H(t) 3

= E [ M(oo) ] - E [ M(t) 3
= ^(«>) - A^(t) (4.2.7)

and m = (x-y).
The distribution of M(t) given in (4.2.6) is important in 

deciding the software system can be released or not. Such a 
decision can be based on the number of faults remaining in the 
software, because it plays an important role in software 
reliability.
4.2.3 Conditional reliability function

The conditional reliability function given that 'n' failures 
occurred at time is obtained as,
R(t|Sn= an> = PC T>t | Sn= sn ]

= P[ no failure in (sn, sn+t) 3
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Thus,
R(t|Sn= sn) = PC{M(sn+t> - M(sn)> = 0]

Using equation (4.2.5) we have,
R(t|Sn= sn> = exp[-{^(sn+t) - ^(sn)>] C4.2.8>

§4.3 Estimation of parameters for G079b model
For G079b model given in section (2.9), we have, 

M(t) = a (1-expC-bt]) 
and
p'(t) = a b expC-bt]

From lerama (4.2.1), the likelihood function for given 
s— ( s^, 1 * • « , ) is,

n
L(a,b|s) = expC-a (1 - expC-b sn])] ^ a b exp[ b 8i] |

Hence the log-likelihood is, 
Q-(a,bjs) = log L(a,b|s)

(1 - exp[-b sn])} + n log(a) + n log(b) - b

(4.3.1)
The MLE's are the values of a and b that maximize equation 

(4.3.1). Differentiating equation (4.3.1) w.r.t. a and b 
separately and equating to zero we obtain the following ML 
equations.
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(4.3.2)n/a - (1 - exp[- b sn 3 = 0 
and

n
n/b - a sn exp[- b on ] - E s, = 0.i=i

Substituting (4.3.2) in (4.3.3) we have,
n s exp£-bs I n n n n

b < a-©xp[-bs^I> E a. = 0i=i 1

n
”E"

n sn
< ©xp I bs^-1 >

n
Es. = 0
i=i

n
< exp £ bs^I -1> s = 0

exptbs I n i - bsn
b<exp( bs^I -*> s = 0

n
where s E s, / n .

i=i

(4.3.3)

(4.3.4)

Now we define,
exp[bs

g(b) n bsn
b<exp[ bsn i > (4.3.5)

Now first we solve g(b) = 0 for 'b' and the same in equation 
(4.3.2) we get 'a'. In order to see the existence of b such that 
g(b) = 0 we study behavior of g(b) in the following lemma.
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Lemma C4.3.1!) : The function g(b) is a decreasing function of b.
Proof s Differentiating equation (4.3.5) w.r.t. b we have,

g'(b) = Hb [ g(b>]

= £ {b(exp[bsn)-l)(exp[bsn]sn-sn)} - {(exptb sn3-l-b sn) 

t{exptb sn]-l} + b snexp[b sn)J/ Eb2 {exptb sn3-l}2)

= £ {bsn(expCbsn]-l)2> - £( exptb sn3-l)2+ bsn exptbsn3 

{exp[b sn3-l> - b sn(exp[b sn3-l> - b2s2 exptbsn3 JJ 
/ Eb2 {exptb snl-l>23

= jjcbsn(exptbsn]-l)2> - ^(exptb sn3-l)2+ bsn{exptbsn]-i}2 

- b2s2 exptbsn3 JJ / Eb2 {exptb sn3-l}23
= ^2 exptbsn] - expt2bsn]~ 1 + b2s2 exptbsn]J 

/ tb2 {exptb sn3-l>2]

= [2 - exptbsn3 - expt-bsn] + b2s2 J exptbsn]

/ tb2 {exptb sn3-l>2]

= [ - {exptb^) + expt-b^3> + {2+b2f£}J exptbi^3 

/ tb2 {exptb sn3-l}Z3
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Using result 1(b) given in appendix A, we write the right
side of above equation,

g'(b) < [ - {2+b2s2 } + {2+bzs2}] exp[bsn] / [b2 {expCb sn]-l>2]

= 0
Which shcms that, the function g(b) is a decreasing function

of b.
Theorem C 4.3. i 3 : The necessary and sufficient condition for 
equations,
n/a - (1 - exp[- b s ] = 0 (4.3.2)n
and

n
n/b -as exp[- b a, ] - E s. = 0. (4.3.3)n n . ii=i
to have finite positive root is
sn > 2 s (4.3.6)

n
where s = [ si / n .

is*
Proof t From equations (4.3.2) and (4.3.3) we have, 
exptbs I - i - bs."b<.ex^rSI.I.-I)" " 5 = 0 (4.3.4)

n

It suffices to show that (4.3.6) is the necessary and 
sufficient condition for the existence of positive root of 
(4.3.4).The l.h.s. of equation (4.3.4) is the function g(b) 
defined in (4.3.5).
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1 bs
Now,
lim g(b) = 11m , . r ,* B r~ I b< exp [ bs . -1)b —>o b —>o *■ n

exptbs I - ± n n

Applying L'Hospital's rule we obtain,

lim g(b) = lim 
b —>o b —>o

exp tbs Is- sn n______n_________
bs exp tbs I < exp tbs I -1 > n n n

8 ]
Again applying L'Hospital's rule we have,

lim g(b) = lim
b —>o b —>o

s exp t bs : n n
exp t bs

= lim 
b

n
[ bs2- 
*■ n

■ [,bi- s ]
—>o n •»

exp t bsn s ••■exptbs I sn r n n

n

and

lim g(b)
b —>oo

= lim [ r-— --- - S ]
7~ I < bs + 2 > Ib —>ao •- n Jb —>oo u n 

(- s ) <0

(4.3.7)

(4.3.8)

Since, g(b) is decreasing function in b, using (4.3.7) and 
(4.3.8) we conclude that, the equation (4.3.6) has a positive 
root if and only if

lim g(b) > 0
b —>o
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This implies that,
8n /2 > a or 8n > 2 s .
Hence the proof.

Since g(b) is decreasing for all b&O £ by lemma (4.3.1),
g(b)=0 has unique solution if and only if sn > 2 s. By
substituting this root into equation (4.3.2) we obtain the unique
solution for a. Hence the MLE's for a and b are unique if and
only if the condition s_ > 2 s is satisfied.n

4.3.1 Distribution of MCtl for G079b Model 
For this model we have,
*j(t) = a (1-expC-bt])

Using (4.2.6), we obtain the distribution of number of 
failures remained ; M(t) in the software as,
P[ M(t)=x ] = ^(t)m exp[-J->(t)3/ m! ; for m = 0,1,2, 

where,
v(t) = E [ H(t) ]

= E £ M(oo) 3 - E [ M(t) 3 
= M(<») - /U(t)
= a - a (l-exp[-bt3)
= a exp£-bt3 (4.3.9)

and m = (x-y) ; x failures are remained and y failures are 
observed.
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4.3.2 Conditional reliability function
Using (4.2.8) we obtain the conditional reliability function as, 
R(t|Sn= sn) = expt-{M(sn+t) - ^(sn)}]

= exp£-{ a (l-exp[-b(sn+t)]) - a (l-exp[-bsn3)J

= exp£~{ -exp[-b(sn+t)] +exp[-bsn]) J C4.3.101

In table (4.1), we report Maximum Likelihood Estimate for a 
and b. Also we report estimate for residual number of bugs for 
6079b model. These estimates are computed for the data which 
collected from an automization project at the Dutch Aerospace 
Laboratory (NLR).

§ 4.4 Estimation of parameters for modified G079b model
In the above section we have seen that, with positive 

probability, there is no solution for ML equations inside the 
parameter space. Because of this difficulty and the difficulty of 
improper pdf {time to first failure), Hossian and Dahiya (1993) 
have suggested a modified NHPP model by introducing a control 
variable 'c' into G079b model. They denote this modified model as 
HD/6-0. The HD/6-0 model does not get rid of aforesaid problems 
completely. But eases the condition of existence of solution for 
ML equations of 6079b model, reduces the probability mass at 
infinity and gives a better estimates of the model parameters.
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Table 4.1
MLE & residual number of fail vires for G<J79b model

Sr. No. tA - vk^=1?. si a < b-,to >
1 8802 34303 286041 117605 4750 23680 54970 14.3041 1.8163 96 2407 23008 85709 462010 1060 40470 219780 * * *

11 382012 1480013 177014 2427015 4800 89930 559080 23.1321 1.1625 816 47017 4018 1017019 112020 980 102710 1044970 * * *21 2430022 1750023 445024 486025 640 154460 1773730 64.5329 0.3172 4026 399027 2684028 227029 20030 39180 256940 2719730 35.4919 0.7262 531 1491032 1467033 1631034 3841035 1120 312360 4114530 44.5232 0.4938 1036 3056037 621038 12039 2021040 26400 395860 5921150 50.4479 0.3978 10
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tin the table <4. i>, * indicates that the ocnditicn for
existence of mle is not satisfied and hence mle does not exist
far a, b and residual number of bugs. 1

4.4,1 Development of HD/G-O model
In the 6079b model the pdf {time to first failure} is,

f(t) = P'(t) exp[-M(t)] {from (4.2.2)}

= (a b e *■*) exp[-a( 1 - e **)]

, . -tat. _ -bt_ , a(a b e ) exp [a e }/ e (4.4.1)

Now consider,
CD 00QJ f(t) dt = 0J £(a b e_bt) exp [a e_bt}/ ea J

-fcrt.Substituting (a e ) = y we get,
00 Op -|QJ f(t) dt = aJ exp[y}/ ea J (-dy)

a= J C exp[y]/ ea] dy

dt

. = Cea - 1]/ ea

Which implies that f(t) is improper pdf. The corresponding 
proper pdf is,
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(4.4.2)

ft(t> = f(t) / [[ea - 11/ ea]

= (a b e **) exp [a e **]/ [ea-l]

for a, b, t > 0
This led us to believe that with- 
f4(t) = (a b e”**) expta e **]/ [ea-c] (4.4.3)

for a, b, t > 0 and 0 ^ c ^ 1.

we might do better than the G079b model. The corresponding mean 
value function of this model is,

a V-wfju(t) = log{(e - c)/ (exp[a e ] - c)} (4.4.4)

for a, b, t > 0 and 0 ^ c 5 1.

The model (4.4.3), when c=0, is G079b model and when c=l, 
the corresponding pdf is proper as given in (4.4.2). In this kind 
of model we anticipate that ^(oo) is finite. But when c=l, m(co)=co;
giving rise to a new problem in determining the mean total 

number of failures in the system. So we try to search for a 
{c:0£c^l> that gives a better (in some sense) estimated mean 
number of time failures in the system than the G079b model 
estimate. Therefore we modify the condition on c as

o — c < 1 (4.4.5)
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From (4.4.4) we have, fJ(O) = 0 and 
ju(oo) = log{(ea - c)/ (1 - c)>

f-i(oo) is the mean failures to be detected eventually and finite.

Lemma C4.4. ID : The conditional cdf, F(x|t) corresponding to 
HD/G079b model is DFR.
Proof : From pdf given in (4.4.3) we have,

x
F(x) = QJ f4(t) dt 

Thus,

F(x) = oX ( <a b ©"**) expCa e_bt]/ [ea-c] J dt

Putting (a e ) = y we have,

-bx .F(x) = af* ( eY/ C®a~c3 ) ("dy)

= £ ea - exp [a e ^3 J / £ea-c] ; for x ^ 0 (4.4.6)

Hence,
F(x) = 1 - F(x)

= £ exp [a e -c j / [ea-c] ; for x 2: (4.4.7)

Therefore the corresponding conditional reliability of a 
unit age t is,
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F(x|t) = F(x+t)/F(t)

= £ exp [a e bt5<+t>] - cj / ^ expta e *"*] - c j (4.4.8)

To show that F(x|t) is increasing in t, we show that, 
(d/dt)[logF(x|t)] is positive for all x > 0.

We have from (4.4.8)

logt F(x| t) ] = logjexpta e_bo<+ti] - cj - log(exp[a e_bt] - cj 

Thus,

^P£-|f(x| t)j = |^-ab exp [a eb‘x+t>] e b'x^t>j/^exp[a e fco<+b ] -cj

+ £ab exp [a e-bt] e-btj / £ expta e-bt] -

_ . -fax . -bt .. , -txx«-t)Let u = e and v = e ; then we have, uv = e

c )
and

hence,

d
dt

|V(x|t)j = £-ab expta uv] uvj/|expta uv]

+ lab expta v] v)/[ expta v]

|t(F(x| t)j = abv

We observe that,

expta uv] uj/|expta uv] -cj

+ £ expta v] j / £ expta v] - 

for given ctO=£c<l],

c
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exp[a uv] UMexp[a uv] -cl

is decreasing function of u.
As O^u^l for all x&O, we can write,

dt
£f(x| t)J i abv ^ exp[a v] J/£exp[a v]-cj

+ £ exp [a v] J / £ exp[a v] -

0
Hence the proof.

4.4.2 Estimation of parameters 
For HD/G-0 model we have,
/J(t) = log{(ea - c)/ (exp[a e_bt] - c)>

a ...Kf= log{(e - c)} - log{(exp[a e 3 - c)> 

Therefore,
^'<t> = [/^(t)]

. -bt. -bt ._ expEae . a e < -t»
r -bt.< exp E ae . - c >

_ < ab fixplae bt I >_ * _
< exp t ae . - c >
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Let $ (a,b,t) = a e_bt then,

^(t) = log{(ea - c)> - log{(expti(a,b,t)3 - e)> and

„ _ < ab exp [$ < a, b, t > - btl>^ ~ < exp [$ < a, b, t > I - o
Thus from lemma (4.2.1), the likelihood function for given

s = (s4,s2, ,sn) is,

L(a,b,c|s) = exp[-+i(sn)3 ^'(si) J

<exp[§<a,b,s > I-c> n r explil <a, b, s. > - bs , I n _ I i 1
< & - c > i=i [ <exp[§<a,b,s^>I -c> ab

Hence the log-likelihood, for given c such that G^c<l, is, 

Ma,b|c,s) = log L(a,b|c,s)
n

n log(a) + n log(b) - log(e -c) + E*(a,b,si)
i=i

n n- i
b E si - E logtexpt^Na^^)] - c}

i=i i=i
(4.4.9)

The MLETs are the values of a and b that maximize equation 
(4.4.1). Differentiating equation (4.4.1) w.r.t. a and b 
separately and equating to zero we obtain the following ML 
equations. Here, jfl-(a,b| c,s)J = 0 implies that,
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n
a < & - c > 1= i

n n-i«- €
E expt-bs.^- E -

ijs 4 jLasi. L

n-i r expt$< a, b, s . > I expt-bs
exp[$<a,b,s, > ! - c>1=1 ■- i

ii]=o

n
a

n
+ E *(a,b,s

n-ir expt$< a, b, s^> I expt-bs^

<e -o i=i

il-l r «e'i)/a - E I 7 
1=1 L @xp[$<a,b,s^> I - c> ]=0

n
a —--- + S(a,b,sn)/a

i -C>

n-i r<exp[$< a, b, s . > I -c> - exp[$< a, b, s . > I+ Er_______ =-I ( exp[$(a,b,s. 1—1 " 1 > * - c> $ (a, b, s.^) /a = 0

n-ij. < c/a> $<a,b,s.)
------ -----  + $ (a,b,s >/a - E ---- r*---e---- .--- ------  = 0a -a v * * n" I < exp IS < a, b, s. > . - c > I< i-ca > i=iL i J

(4.4.10)
and -^|tt-(a,b| c,s)j = 0 Implies that,

n n n n-i j- expfff < a, b, > I f<a,b,si)I^
b ~E $(a,b,si) Bf E si+ E I <©xPt*<a,b,s. > :- c> I1=1 1=1 i=iL ^ i J 8i = 0

n
b sn *(a,b,sn)- Esi

i=i

n-i p «
- E 1- 7i = i L

expE$<a,b, > I
exp[$ <a,b,> c >

JsiS(a,b,si) = 0

n
b

n n-i p ,
sn * (a,b,sn) E S± + E I < ©xp t#< a, b, s. > :~c> J si* (®»b1SjL) — 01=1 i = iL r i J

(4.4.11)

85



Lemma C 4. 4.2D : Let

- . . n fb(a> = a -a<i-ce >

n-ij-
+ S(a,b,sn)/a - £ |^

<c/a> §<a,b,si>
i_il_<exp[8<a,b,si> I - c >

(4.4.12)
then for given b, the function fb(a) is decreasing function of a. 
Proof s Differentiating equation (4.4.12) w.r.t. a, we get,

fb<a> "5b[ fb(a>]

— a n— 4 . r ' >./ o-i a, u, a . / -i£1 + .5_g___ r_±_ f__________________ i_____1
z -a 2 da I < expE8< a, b, s , > . - c > Ia (i-ce > i=* x J

< c/a> 8< a, b,s . >

Thus,

f^(a)

Here,

a r»-in c e— + ------2 a a < e -c > x

< cxa> 8 < a, b, s , >11*"* X , r \ A * x \ A 0 JwJ r a , / ^r___________________ i_____ i
da |_< exp 18 < a, b, - c > J

<c/a> 8 < a, b, s ^ > 
da|_<expl8<a,b, s^> Z - c

= i_r_
> J da

c exp t-bs
expt8<a,b,> I - c t]

= Hc expl-2bs,I exp[8< a, b,s.>Z.
exp [8 < a, b, s , > I -0^2

Therefore,
a n-ir c expf-2bs.Z exp[8< a,b,s.> _ _ n c e _ j ____ ______ 1____ ______tfata) - 2+ a 2 , I <exp[8<a,b,s.>I -0^2a. < e -c > 1=1 l r 1

1
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Hence,

fb(a> c e
< e ■c >

c exp[-2bs^I exp[§< a, b.s^I 
< exp[f < a, b, s /> I -c>A2

1
2a )

2a c 
a

ae
2

< © -C >

n-i
+ Ei=i

2r- c @xp[-2bs^I exp[§<a,b,> 
< exp[$< a, b, > I -0^2

< exp IS < a, b, ) I-o ■)

Now the expression

ca e - (e -c) = ca e - e + 2ce - c

is increasing in c (0$c<l), therefore,

ca e - (e -c) = ca e - e + 2ce - c

^ a e - e + 2e - 1
2 a —a. a.= [a - e + 2 - e ] e 

= [(2+a2) - (ea + e^)l ea

Using result 1(b) given in appendix A, we have,
2 a a 2 _ a -a a —a aca e - (e -c) 5 [(e - e ) - (e + e )} e

(4.4.13)

87



Which is equivalent to,
2a , a .2 . _ _ -a_ aca e - (e -c) 5 C -2 e ] e

= -2 < 0
Similarly we can show that, the numerator of second term in 

expression (4.4.13) is negative. Thus we conclude that ffa(a) 
defined above is a decreasing function

Lemma C4.4.33 : The upper and lower bounds of a is the solution 
of ffa(a)=0 are,

0 < a < n/(l-exp[-bsn3) (4.4.14)

Proof : In the above lemma we have seen that fb(a) is decreasing 
function of a ( a>0).

Also we observe that, the term in the expression of f^a) ,

l <c/a> $<a,b,s^> ]<expt$<a,b,> I - c

is decreasing in a and

Therefore

fb(a) - 2 + $(a,b,sn)/a - 1 (4.4.15)
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By (4.4.15) we have,

f^Ca) < 0 if + $(a,b,sn)/a - < 0

Which implies that,

a £ n/(1-exp[-bsn]) (4.4.16)
and
fb(a) ^ 0 as a ---> 0. (4.4.17)

From equations (4.4.16), (4.4.17) and lemma (4.4.1) we
conclude that for given b, the root of a of ^=)(a)=0 lies in the 
interval (0, n(l-exp[-bsn3 )~*).

Theorem C4.4.11 : The sufficient condition for ML equations
(4.4.10) and (4.4.11) to have finite root is sn > 2 s where 

n
s = E a. / n .

L=i
Proof

ga(b)

Define,
n

g - sn $(a,b,sn)- E si h E 
i = i *- < exp E$ < a, b, s ]s.$ (a,b,s,) 

± ’’i

We need to determine the sufficient condition for fb(a) and
ga(b) to have finite zeros. Here we observe that , ga(b) is
decreasing function in a. To get the sufficient condition for the
existence of finite zeros, we need to determine inf {g (b)} anda a
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siipaiga(b)>.

infa ga(b) > g - n 8n expt-bsn}/
n

(l-exp[-bsn3 )- E sii=i

n*‘rhEL<l = i L exp Ee^ <b> I - c
rh©i<b)

n n ^/(expCbs 3-1)- E si + E [< ixpie ;< b?-;-e>]
i*i i = i»- i J

. . .s.©.(b)b> .-c> 111

[explbs I-i-bs i n n-i..
b<exptbs I-4> J Si +,^ 17 

n J 1=4 i=i *- expte^ < b> I — c>
]8ieiCb)

where,
n expt-bs I

e.(b) = ------- :.J1 ■----i < 4-expt-bs^.>

and it tends to ® as b tends to zero.

P exp tbs I-i-bs nIHd infa ^(b) a n 11m I b 
b —> o b —>o«- r n J 1=4

lim i E T----—xr~----- Is.©,(b)*-* | < exote < b> ,-c> I I i'—>o i=i »- i J
Since,

exp tbs I-4-bsp l . — 3. — kJZZ <m

bTeSp'iEi-^ITl = V2 {..from eq. (4.3.2)3
n J

and applying L'Hospital's rule,
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11m 
b —>o

n-ij-
EL<1 = 4 L expt©^< b> I-c> ]siei(b)

= lim 
b —> o

n"‘rE -
i=i *•

©-. < b> 1
exp[©^ < b> I ©

n-4 j-
11m E r3 --> O i = 4 L expl©^ < b> I a.

0 {due to e^b) -x» as b —>0},
n

lim infa g^b) ^ n sn/2 - E s*
b —> o i=i

(4.4.18)

Again,
n

supa ga(b) 5 n/b - E si
is 4

and
rtlim sup_ g fb) 5 j- E 8,1

b—>oo a a i=4 ^ (4.4.19)

From (4.4.18) and (4.4.19) it is clear that, we will have
finite zeros if,
lim infa ga(b) > 0 

b —>o
which implies that,

n
n s /2 - E s. > 0 or s > 2 s. n “ i ni=4

Therefore, the ML equations have finite roots if sn > 2 s. 
Hence the proof.
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How to control the regularity variable c remains an open 
challenge. One possibility is to look at the sum of square of 
deviations of the observed and estimated values. In HD/G079b 
model, as c increases from 0 to 1, the sum of square of deviation 
decreases. Therefore the method suggested by Hossian and Dahiya 
to control c is to use the mean square deviation (MSD) :
MSD = z (Sj, - sk)2 (4.4.20)

i= t

The estimated c is the minimum for which this MSD is almost 
unchanged for any further increase in c.

4.4.3 Distribution of MCtl 
For this model we have,
£i(t) = log{(ea - c)} - log{(exp[*(a,b,t)] - c)>

Using (4.2.6), we obtain the distribution of number of failures 
remained ; M(t) in the software as,
PC M(t)=x ] = *->(t)m expC-^(t)]/ ml ;for m = 0,1,2,...

where,
v(t) = E C M(t) ]

= E [ M(o°) ] - E C M(t) ]
= iu(oo) - /i(t)
= log{(ea - 0/(1- c)> - log{(ea - c)/(exp[$(a,b,t)] - c)>

= log{(expC*(a,b,t)] - c)/(l - c)> (4.4.21)
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and m = (x-y) ; x failures are remained and y failures are 
observed.

4.4.4 Conditional reliability function 
Using (4.2.8) we obtain the conditional reliability function as,

R(t|S = s ) = exp[-{^(s +t) - v(b

= exp£-^log{(ea - c)} - log{(exp[* (a,b, s^+t)] - c)>

- log{(ea - c)> + log{(exp[$ (a,b,sn)] - c)}Jj

= exp|log{(exp[$ (a,b,sn+t)] - c)}

- log{(exp[$(a,b,sn)3 - c)>J

= exp[log{ (exp[® (a,b, sn+t) ]-c)/( exp[* (a,b, sn) ]-c ) }J 

= {(expt*(a,b,sn+t);i-e)/(expC*(a,b,sn):i-e)} (4.4.22)

4.5 Scope for Further Research
In practice, it is sometimes impossible to achieve "Perfeet" 

debugging procedure. Whenever a fault is encountered, software 
engineer tries to remove the same from the software. Therefore we 
expect from our modeling strategies that, the failure rate should
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