
CHAPTER 1

* _ Introduction

It is very important to see that the farm machinery 
can be repaired and its life is as long as possible. How­
ever, from the point of view of interests of individual 
farms and society as a whole, of a particular significance 
is the reliability of these machines in the sense of high 
probability of failure free work in the course of a period 
of field work. The loss to a farm will be great if tractors 
and combines of great longevity '.often fail to function 
during sowing or harvesting and if time is lost in their 
repair during the most important time of year. Similarly, 
in the case of aeroplane, it is necessary to have the maxi­
mum probability of failure free functioning during the per­
iod of the entire flight.

In this dissertation we will consider the problem 
originated in the context of reliability of a component 
of strength X subjected to a stress Y* The component fails 
if and only if at any time the applied stress is greater 
than its strength. Since the stress is a function of 
enviornment to which the component is subjected, it can 
be treated as a fandom variable, also the strength of
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component is mass-produced, depends on material properties^ 
manufacturing procedures etc. and can be treated as a random 
varaible. The reliability of the component in success­
fully completing its mission time is defined as the prob­
ability that its strength exceeds the maximum stress en- 
coured during its operation. If X is the strength and

f

Y is mamimum stress.than R - Pr (Y < X) will be the prob­
ability that systems will be in the functioning state 
under stressestrength model.

Under this stress-strength model, there will be vari­
ous cases regarding the form of distribution, nature of 
the parametersjthat is either some parameters are known or 
all are unknown and dependenceor independence of X and Y 
etc.

In the case when X and Y are identically distributed, 
it is very easy to obtain that

R = P (Y < X) = 1/2
and there does not arise any problem of estimation. *

When the form of the distributions of X and Y are
unknown then based on (X^y^) , (X2,Y2)»---(X ,• Y ),
n pairs of observations from X and Y respectively, one 
can obtain the estimator as,

f Yi < xi
otherwise,
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- -1 nthen Z = n~ Z Z. is an unbiased estimator of R 
and it has variance n_1 P(X± < Y±). P(X, > Y,,.

But, when there is further information regarding the 
form of the distributions of X and Y that is, form of the 
distributions is known but the parameters are unknown, 
then it is possible to find better estimators.

In this dissertation we discuss the method of obtain­
ing MVUE of R, when the form of distribution of X and Y 
is same and it is known but the parameters for X and Y 
are different and we consider the cases when some parame­
ters are known and when all the parameters are unknown.
And we assume that X and Y are independent of each other.

In manycases we observe that after the period of random 
failures the unit or the system may gradually deteriorate 
with time, that is#unit or system is subject to wear-out. 
For example thfe break system of a vehicle. The wear-out. 
Failure distribution is close to normal distribution and 
that the use of this distribution for predicting the relia­
bility is valid. So in Chapter 2 we consider the case 
when X and Y are independent normal variates. In sec­
tion 2.2 we obtain the MVUE of R when the distribution
of Y is known with one case dealing with the mean p of '

oX is known and variance a unknown and in section 2,3 we
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suppose that distribution of Y is known and X has mean
2 2 \i and variance c with two cases; one is when a is known

2and remaining when a is unknown. In section 2,4 we 
obtain the MVUE of R when the parameters of X and Y are 
unknown.

In some cases we observe that the failures are of 
random nature for example the failure of electrical ins­
truments, These kinds of failures are well described 
by an exponential law. In chapeter 3 we obtain the MVUE 
of R when X and Y follow exponential law with parameter;
^ and ji. In section 3,2 we obtain MVUE of R when both 
^ and \x are unknown and in 3.3 we assume that \x is known
In chapter 4, we obtain the MVUE of R when the r.v.s 

X and Y belong to the truncated exponential family. Here 
the results are derived for only the lower truncated exp­
onential families, because our main interest was to obt­
ain the MVUE of R for the normal and exponential distri­
bution. However, the corresponding results for the upper 
truncated and double truncated distribution can similarly 
be derived.

In section 4.2 we obtain the conditional density of 
X^ given the sufficient and complete statistic by using 
Laurent's approach. In section 4.3 we obtain the MVUE 
of R. In section 4,4 we obtain the MVUE of R for two
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particular cases of the exponential family, namely, the 
two parameter exponential and two parameter pareto distri­
butions.

In this dissertation we often use the following 
results :
Theorem 1.1 (Rao-Blackwell-Lehmann-Schaffe) : ,

Let be i.i.d r.v*s. with p.d.f. h(*, 9),
@ 6- ® , and let T = (1± ,T2,.. .T^) * , Tj(X1,.. ,Xn) ,
j = be a sufficient statistic for 9. Let
f(, ; 9) be its p.d.f. set F = {_f(. j 9), 9 9 and
assume that F is complete. Let g = g(X^,..,X ) be an 
unbiased statistic of a real-valued function g of 9, which 
is not a function of T alone, (with probability 1).
Set 0(t) = HgCg^T =t) then we have,
i) the r.v. 0(T) is a function of sufficient statistic 

T alone.
ii) 0(D is an unbiased statistic for g(9).
iii) Cg [0(T)] < dgCg), 99®), provided

Eg g < ~ .
iv) 0(T) is the unique unbiased statistic for g(9) 

with the smallest varianco in the class of all 
unbiased statistic for g(9)* in the sense that if 
V = V(t) is another unbiased statistic for g(9), 
then 0(T) = V(T) , a.e. 9 9®.

c.
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Proof:
(i) That 0(T) is a function of the sufficient statistic 

T alone and does not depend on 9 is a consequence of the 
sufficiency of T.
Now (ii) is also true because,

g(e) = E(g ) = Eg ( E0 (gfT)J

= Eg [ 0{T)]

To prove (iii) part, we use the Jensen's inequality,
let C be a continuous convex function of a real vari­

able,^ u is a r.v., then c£e(u)J< E .(_C (u)Jr , this 
inequality holds for conditional expectations also,
Now

Eg{c (g)j = Eg (Eg[ C(g)}Tjj 
so, by Jensen's inequality,

Eg [ Egfcc(§)p-j ] > Eg[ C lEg(gJ'T)} ]

= Eg[ C (0(T)J]
r OIf we now set, C(u) - |u- g(Q') j f we get the result 

that,
0Q (g) > aQ (0(T)), 9 6 provided

Eg ('S2) <

Finally to prove (iv) by unbiasedness of 0(T) and V(T) we 
have,

Eg( 0(T)) = Eq(V(T)) = g(0) , 0 S ©
or equivalentely,

Eg [ 0(T) - V(T) ] = 0 , 6 6®
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Then by completeness of F, we have 

[ 0(T) - V(T) j = 0
i.e. 0(i)=V(t), for all t G Rm.,

except possibly on a set N of t's such that
Pg(T G N) = 0 for all 9 G @ .

This proves the theorem.

Definition 1.2*

A statistic V(X) is said to be ancillary if its dist
ribution does not depend on 9,
Lemma 1.3. ( D. Basu)
————— • and

If T is a sufficient^ complete statistic for the
family p = (V 9 6 ©} , then any ancillary statistic

V is independent of T*
Proof :

If V is ancillary, the probability,
Pa = P ( V 9 A) is independent of 9 for all A.

Let
nA(t) = P(V G AfT=t) , then ,

_ , , E8[jy(^ ] = Eg (p[V 6 A{T=t]}
' ' = / P(Vfe A|T=t)dFT(t) l)

= P(V£ A)

. * PA
>•5

that^Egf nA(t) - PA] = 0. \ '
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but T is complete statistic, which implies that

nA(t) - PA

or
P[V € A|T=t ] = P(V € A )

This establishes the independence of V and T, 

Hence the lemma.


