CHAPTER - ¥

INEQUALITIES FOR PROBABILITY CONTENTS OF
CONVEYX, SETS VIA GEOMETRIC AVERAGE

This chapter is based on a paper by Moshe Shaked and
Y.L. Tong [13]. It establishes an inequality in
probability contents among sets ordered by majorization at
the same time comparable through their dgeometric averades.
In other words it is a technique of locating the exact
parametric values of a set with fixed shape and volume that
vwould maximize the érobability content. In specific it deals
with rectangles and ellipsoids of fixed volume.

5.A. Conceptual Backdround :

Consider n random variables. Call them X,, X,, ..., X,.

Let f kbe the joint p.d.f. which is absolutely continuocus,
with respect to Lebsedue’s measure. Define the set of
points

A{a) = { x @ oix3l < a3 1 =1,...,n }.
From a result published by Tong [{14] we know that if f is
Schur-concave function of X then P{X = A(&)} is also a

Schur-concave function of a.
Which means that if

a<b
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then
P{X = Ala)} ¥ P{X = A(D)}
But if we consider the volumes of'the sets; volume of A{(a)

would be larger than that of A(b).

Hence the corresponding probability content could be larger.
To overcome this situation it is sudgdgested the inequalities

via majorization
(log &,, ..., log a,} > (log b,...., log b,}.

Such a majorization depends on the diversity of elements

of a; vhere 'Rl a3 is kept fixed. Hence the volumes of all
: iz

sets under consideration of all inequalities would be equal.

The same concept applies to the n-dimensional ellipsoid

. . X - 2 -

B(a) = {x : Y. [ g% ] <1}
i

5.B THEORETICAL ASPECTS :

5.B.1. Arrangement Increasing Function

5.B.1.1 Definition : Let a = (a,,...,a,) where

a, £ a;, £...¢ a,.

We say that the function f(a;x) is arrandement increasing if

(a) f{(am; xn} = f(a; x) for all permutation matrices n and
vectors x and a as given above and

(b f(a; x) 2 f(a;‘y) whenever x >V v

where x >t ¥ 1implies whenever x and v agree in all
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but two coordinates say 1 and j such that i

AN
Ce

i<xj and yizxj,yjzxi.

5.B.1.2 Example
fla;x) = (a, x, )% + (a, x,)* + {a, x3)°
Let a,= 1, a,= 2 , a; = 3 .
x = (2, 4, 6) vy = (2, 6, 4)
Observe that x >t ¥,
fa;x) = (1L % 2)° + (2 % 4)" + (3 % 6)°
= 392
fla;v) = (1 x 2)% + (2 % 6)% + (3 » 4)°
= 292
Thus f(a;x) > f(a;y)
vhere x >t v,

Hence f{a;x) is arrangemeht increasing.

5.B. 1

.3  Remarks

i)

ii)

Any natural domain F < RP x RD for an Al function has

the property that (x,¥) = ¥ implies (x n‘**, v n'%"y = ¥
for all permutation matrices n't’ and n¢%*,

If g,,...,dx are Al functions on a;set TF satisfying
(i) and if h : RK —= R is increasing in each
argument, then the composition h(g,,...,dy) 1is an Al

function on ¥F.



iii) If g is AT on R®P * R® and if ¥ : R —* R, ¥ : R —3 R

are monotone in the same direction then g* defined by

g¥(xy) = @(F(x), . L B (xR0, ), L B(x,)) ds AT on
¥ -{_(u,v} Du s (E(R), .. GE(X) )LV = (EB(x ), L, B (x|
for some (xX,y)} = F.

iv) If g has the form g(u,v) = Fu+v) u,v = R then g

is Al on RP x RIY; 4if and only if F is Schur-convex
on RY.

Proof : It is sufficient to prove this for n =- 2

x <y on R* if and only if x 4+ and v + have the fornm

Xy %(zy) = (r,

<

+ 8, r, +8 3

i

(y(,): y(i))

{(r, + 8, r, + 5,)

vhere re <r, 8, <8

If g is ALl on RP x R% it follows that

i) | g(?,, ., 8., 8,) = g(x,, r,; si, s, )
£ glry, ry5 8y, 8.) = &(r;, ry; 8., 5,)

ii) (r, + 8., r, + 8,) = ¥ry + 5, vy + 85,)
$®(ry v s, v, +8,) = ¥, 48, v, +os,)

Consequently ¥ is Schur-convex on R® conversily if

¥ is Schur-convex on R*, then (ii) holds whenever



r,< r;, 8, < 8,

ie,

iii) If € has the form

g{u, vy = ¥lu - v}

Al on R, if

¥

Shaked and Tong’s Theorem

Let (X,,...,X,) have a density

subset of RP. If f and

such that f(x/a,,...

Al in a =(0 «) and x

Schur-concave in (log a,,.

Qutliine of the proof :

—_

Read f(—= ..., @,
& " &n
and
x
Ta(— ..., 20y s
a, ay,
Now write
R R
g(a : b) = ) }
- EC‘ - .é((

for all

u,

, {1) holds so €

M

v

is Al
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on

RY, then

is Schur-concave on R,

f

and let A be a

g

,
R*.

i85

IA {Indicator function of A} are

s Rp/any end Ia(x, /a8,

c o R/ By

aye

R®, then P(Xy/a,,...%,/a,) is

coslod ag).

as g,(a,

g.(x,,..

~ s Xpy s

'*“"n;

By

"an}

g, {a; x) g,(x; b) dx

Which is an Al function.

Through a transformation it is shown that g

ga: by = ¢ B b
g(a; by = (R by ko

b,

a,

« a4y

b

Bp

it £ T

P ¢

n’

(1)

/2

is of the form

Y
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Now write

b, by,

3w ey e

a, 8y,

hia; b) = h{

Which is an Al function.

From this it follows that

h(eb‘ /e, L, etn / e™™) is an AI function on RO,

Hence hie ' ,..., e P) is Schur-concave in ¢ = RP.
i.e. the function h(e;,...,c,) is Schur-concave in
(log ¢,,...., log c,}.
Denote |

¥(a) = f«(. {.m €2, 0, Iy Tk, ..., %) dx

I B a, ay,

Put b= .... = b, =1 in (1) to obtain

x{(a) = h{ay*, ..., ag*).
Since h(a) is Schur-Concave in (log &a,,..., log a,}, ¥x(a)
is also Schur-Concave in (log a,,..., log a,).
i.e. P{ (%, 78, ..., Xp/8,) = A } is Schur-concave in
(log a,,..., log an ).

Proof : It is given that f(x,/a,,..., x,/8,) and

Ig(x /8¢, ..., x,/8,) are Al in a = (¢ «)? and x = RO,
It is required to show that P{ (x;/a,,.;., Xn/8y) = A } ig

Schur-concave in (log a,,..., log ap ).
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i.e. l £¢ Ei—,..., fg---—) dx is Schur-concave in
A 8,y 8y
(log =a,, , log a,).
. e G
I R I 1 TR R N R R
¥ G ay by B by,

Schur-concave in (log a,,..., log a,}.

Let % and + be two n-variate real functions such that

il

g,(a,,...,845 Xy . sXp) (x,/8,,..., X,/8,) is Al on

(0, ) % RB,

and

fl

o {Xys ... sXps 8y,...,8 ¥{x /ag, ..., Ry/ay) is Al on

R % (0, «)D,

Then

0 <«
g(a : b) = ! BN { g,{(a; x) g,(x; b) dx

- — gl

is Al on (0, «}@ x (0, w)B,
{First note that

<0 N
i g,(an; x) g,(x; bn}) dx

-l -

g{an; bn} =

Rearranging the integrals to det

ey <00

‘ g, (an; xv) g,(x7; bn) dxn



- {C -0
l g,(a; x) €,(x; b) dx

-G — e

il
[

g(a; b).

This satisfies condition (1) of an Al function.
Let 7% be the permutation for which

ba® = (b,, b, by,..., by) for all b. It is required to

show that g(a; b) 2 g(a; bn®) when both vector a and b
are arranded in increasing order.

Consider

g(a; b) - g(a; ba®)
= Y [ gy(a; x) g.(x; b) - g,{a; x} g.(x; bHG)} dx

Break the region of intedgration into x, < x, and x, > x;

and make a change in the variables of second region to

obtain

g(a; b)Y - g{a, bn®)

= | [ atas %) g, (x5 b) - g, (a5 x) g, (x; bn®)
X, < X,

+ g (a; xn%) g, (xn% b) - g, (a; xn°) g, (% )] dx

= J [ g, (a; X) €,(x; b) - g,(a; x) g,(x; bun®)
X, < X,

+ go(a; xn) g, (xn% b)Y - d,(a; xn%) g,(x; b)]



X, < X

z

-B9—

[g,(a; x) -.g,(a; x®)] [g.(x; b)Y - g, (x; bn®)] dx

as g, and g, are Al functions the intedral is positive.

Hence "g(a; b) is AL.)

Substitute Vi = X4 / bi

i.e., by ¥4 = x

i
i.e., bi dyi = d‘xi
Hence igl dx; = iﬁl b1 121 dyl
} ; b, - by
Also on intedration the result depends only on T T
. N
Thus g(a; b) is written as a product of T b; and
b, b, . Y
h(gr~,..., ~A) for some function h on (0 w)d,
[ ..
b b
gte; &) = M by w2, Ty (2)

The function h defined by’

~ b
h{a; b} = h(=—=—,..., bn is Al on
a, 8y,

To verify this write

h{a; b)

11

R oo eas b

Ram, br) = ( 181 - b))t glam; bm)

(O «}? « (0 «),
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¢ Boepea v (since g is aD)

Let bt e

g(&; c} =

Thus g(a; b}

b
since h{—-,.

a,

follows that

b
hie ! / e

(follows from

Hence h(eo‘,..

{follows from

i.e., | h(c,,..

Denote

X = |

( .ﬁ c;) "t dla; o)
bi)'* gl{a; ¢} ({(since _ﬁ ¢y o= ,ﬂ b
1=1 =

¢ B b7t e ) (since g is AD

is AI on (0, @) % (0, «)P

By is Al on (0, «) % (0, «)}' it

b
., et/ e&n) is Al on R©

i
3. e

5.B.1.3 (i)}

c . . _
., e ™)y 3is Schur—-concave in ¢ = RP

5.B.1.3 (iv))

.,Cn) is Schur-concave ih (log c,,...,log ¢ )

Lecd
y % x
3 .
{ (= , ..o 2By v (%, 0,x,) dx.
&« &4
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Put b, =b, = ... =b, =1 in (2) to obtain

x{a) = h(ay' ,..., ag")
Since h(a) is Schur-concave in (log &a,,...,1lcg a,) it
follows that x(a) 1is Schur-concave in (log a,,...,log a,)
also.

By choosing ¥(x) f(x)}) and

1

Y {x)

1

IA(X) we would arrive at the argumnent

aspaired in (1).

Hence the theorem.

5.B.3 Remark : Similar results due to Anderson; Marshall

and Olkin mainly depends on conditions like unimodality and
Schur-concavity. This is evident from the discussions in the
previous chapters. Now it is natural to seek similar set up
for Shaked and Tong’s theorem. Moreover it is more easy to
check unimodality and Schur-concavity rather than Al

property. For this very prupose theorem 5.B.5 1is presented.

5.B.4 Definition : A random vector X (or its distributiem)

is called monotone unimodel if for every convex set ¢ = RO

and every x ¥ 0, the quantity P{X = c + k x} is

non-decreasing in k 2 0.

5.B.5 Theorem : If (X,, X;)

with a Schur-concave density

f(x,, x,) 1is monotone unimodel, if f(x,, - x,) 1is Schur-
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concave and if A = R®* is measuragle symisetric (about O)
permutation invariant and convex, thgp P{X}/a‘, X,/8,) = A}
is Schur-~concave in (log a,, log a.}.

Qutline of the proof :

It is known that every monotone unimodel random vector is

symmetric about origin. Hence the monotone unimodel function

of the theorem is symmetric about {(xi, 0 B xz} and
f(x,, %) * x,+ x, = 0}. This would mean that £(x,/a,, x,/a,)

cannot be Al in a =(0 «}* and x = R*. But f could be

restricted to the redion {(x‘, Xp) X, +ox, 2 0} which is
equivalent to the conditional density of (X,, X,) given that

¥, + X, 2 O being AI. By unristricting we would arrive at
the result.

Proof :
Define

A=A0{(x, x,) 1 x, +x 20}

Initially we would show that

PL(-L- X, X)) = A/ X + X !0} is Schur-
’ r

concave in (log a,, log a,) ()



A

tig. ¢
As  f(x,, x,) is symmetric about
fr ; - al
.(.(x‘: Kr_‘} . X‘ + Xf_ - 0.(’ it

X.) = A} is Schur-

P{( ; X,

t &,

Define B = {(x,, X)X 4+ ox,

could be shown that

concave in

b

o}

To prove (1) it suffices to show that

g€(x,, x;) = 2 f(x,, x,) Ip{x,, %9

I~
A

~63__
(log a,, log a,)
satisfy
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g(x‘ , , Xz y is Al in a = (0, «)}* and x = R* and
1 &, :
T~ (X2 .., %2y is Al in a = (0, «* and x = K-,
A &, a,

To show that g is Al it is sufficient to show that f  ig

Al.
X X. X X.
13 b3
i1.€., f( s . P = ) ¢ f( 3 s = )
ay 8, 1 &z

vhenever O < a, < a, and x, + x, 2 O

put 1= c, and L - Cy
a, a,
i.e., fle, %, ¢, %) ¢ f(c, %, c, X;)

whenever ¢, > ¢, >0 and x, + x, 2 O

z

®

Cage - 1
Let X 2 x, >0
Denote
(vo, w23 = {eg x¢ + ¢y %) / (e, %, + ¢, X;) (e Xy, oy x3)

it is easy to varify that
(ey %y, ¢, %) > (v, Yi)
Hernce
fle, %3, ¢ x,) § f(y, ¥v,) (By Schur-concavity)

£ f(e, %, ¢, x,) (By monotone unimodality)

Hence the result.



X, 2 0> x, (and x, + x, ¥ 0)
Since (¥X,, %;) is monotone unimodal it follows that

(%,, - %) is also monotone unimodal. It’'s density h 1

]

given by
hix,, %) = £{x,, - %X}

z

By assumption the density of (X,, - X.) 1is Schur-concave.

Hence it follows from the preceeding argument that when

x, ¥ - %, >0
hic, %,, - ¢, %) ¢ hic, x,, - ¢, X;)
i.e., f{c, %X, € X)) & f{c, X,, ¢ Xg)

as was to be shown.

7]

Case - 3

X, 2 % >0 (and x, + x, 2 0) it can be proved on

&
similar lines as above,

Hence f 1is Al function.

Hence g( 1 s XZ) is Al in a = (0 (0)2 and X = Rz
a, a,
Similarlz,
. (2 2y 55 AT in a = (0 «)® and x = R:.
A &, a,

Hence the theorem.

5.B.6 Remark : It could be noted that the class of density

functions in theorem 5.B.6 is a subclass of Schur-convex
functions. The additional condition is syumetry (about 0)
and unimodality. If either of these conditions fail; we fail

to vield the result. This is illustrated'in an example below.
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S.E.7 Example

Let X = (X, X;) have a uniform density over the region.

_{(xll Xz) - ‘Xl - Xii £ 6: 2 4 ‘X‘ + x, 1 ¢ 86

s

Song st

which is a Schur-concave function of =x.
Then the probability content of A(a) 1is zero for & = (1, 1)

and is positive for all a satisfying
- -3
a, = a, ¥ 1.

From fig.2 one can observe that the assumption of

unimodality does not satisfy this density function.
’ ‘FZ’_

A

Hence it failed to yield the aspaired result.




