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INEQUALITIES FOR PROBABILITY CONTENTS OF
CONVEX SETS VIA GEOMETRIC AVERAGE

This chapter is based on a paper by Moshe Shaked and 
Y.L. Tong [13]. It establishes an inequality in

* probability contents among sets ordered by majoriaation at 
the same time comparable through their geometric averages.
In other words it is a technique of locating the exact 
parametric values of a set with fixed shape and volume that 
would maximise the probability content. In specific it deals 
with rectangles and ellipsoids of fixed volume.
5.A. Conceptual Background :

Consider n random variables. Call them X*, Xj., ..., XT).

Let f be the joint p.d.f. which is absolutely continuous, 
with respect to Lebsegue's measure. Define the set. of 
points

A<a) = { x : lXit < a-, i = 1, . . . ,n }.

From a result published by Tong [14] we know that if f is 

Schur-concave function of X then p{x s A{a)|- is also a
Schur-concave function of a.
Which means that if

a < b
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then
P{X s A{a)} i P{X « A(b)}

But. if we consider the volumes of the sets; volume of A(a) 
would be larger than that of A<b).
Hence the corresponding probability content could be larger.
To overcome this situation it is suggested the inequalities 
via majorization

(log a*, .... log an) > (log hl,..., log bn).

Such a majorization depends on the diversity of elements

of a; where ,ft a^ is kept fixed. Hence the volumes of all

sets under consideration of all inequalities would be equal. 
The same concept applies to the n-dimensional ellipsoid

B(a) = {x : Y2 [ — ] - 1 r-
ai

5.B THEORETICAL ASPECTS :

5.B.I. Arrangement Increasing Function :

5,'B.l.l Definition : Let a = (at, . . , , an) where 

at < a£ <...< an.

We say that the function f(a;x) is arrangement increasing if
(a) f(an; xn) = f(a; x) for all permutation matrices n and 

vectors x and a as given above and

(b) f(a; x) * f(a; y) whenever x y

where x >‘t y implies whenever x and y agree in all
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but two coordinates say i and j such that i < j
xi < xj and yt - xj • = xi-

5.B.1.2 Example :

f < a; x) = <ai )Z + (a£ x,)1

Let aj = 11 ” 2 j & = 3
x = (2, 4, 6) y = (2, 6, 4)

Observe that x >t y.

f(a;x) = (1 :* 2)z + (2 x 4)1 + {3 x 6)1
= 392

f{a;y) = (1 :x 2)* + (2 x 6)* + (3 x 4)1
- 292

Thus f(a;x) > f(&;y)
where x y.
Hence f{a;x) is arrangement increasing. 
5.B.1.3 Remarks :

i) Any natural domain ? ■- Rn * Rn for an AI function has 
the property that (x,y) ■= ? implies (x y n<£') e y
for all permutation matrices n<1’ and n‘£’. 

ii) If gi.-.-.g^ are AI functions on a; set y satisfying

<i) and if h : R^ ---R is increasing in each
argument, then the composition h(g4 , . . . , g^,) is an AI
function on 3L
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iii) If g is AI on Rn x Rn and if I : R -- + R, 4- : R -- R
are monotone in the same direction then g* defined by 

g*(x;y) = gflfXj5(xn) ;5-(Xj *<xn)) is AI on

?*= {{u,v) : u = (^{Xi ), v = (S(xt ), . . . ,4-{xn) ) |

for some (x,y) e y.

iv) If g has the form g{u,v) =; f<u+v) u . V s Rn then g

is AI on Rn x Rn; if and only if 5 is Schur-convex
on Rn.

Proof : It is sufficient to prove this for n = 2

x < y on Rz if and only if x t and y 1- have the form
^X(1}’ X{£ )> = (r£ + Sl- + sz)

(y(1 >- Y{t )) = + st, rt + st)

where < rt, Sj < s4 •

If g is AI on Rn x Rn it follows that
i) j ^ * St. si > = g(rt, rt ) Sj , s i '

- g( rt , r j.; S1 • st) = g(rt, rl ; s4, s t>
ii) + s4, + st ) - + Si , rl + si)

< <f{rt + . + s£ ) = ^'(rj. + st. r-t - s i )

Consequently is Schur-convex on R 1 conversily if
9 is Schur-convex on R*. then (ii) holds whenever
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rt< r*. < sj. ie. , (i) holds so g is AI on Rx. 

iii) If g has the form

g(u, v) = <P(u - v) for all u, v s Rn, then g is

AI on Rin, if f is Schur-concave on Rn.

Shaked and Tong's Theorem :

Let <Xj, , . . .X^) have a density f and let A be a

subset of Rn. If f and 1^, (Indicator function of A) are 

such that f(x/at..... ,^/a^) and I^CXj/aj.... ,xn/an) are

AI in a s(0 «<)n and x ■= Rn, then PIXj/aj , . . . X^/a^) is 

Schur-concave in (log at,...,log a^.

Outline of the proof :

Read

and

f<-^ , 
a. 1 as gt (at , . . . , a^. x^ . . . . . x^)

X X1^{ir ^L_) as *M*i’•• ■>*«; a1,...1ar!)an

Now write

g(a : b)
,«<

gj.<a; x) gj.{x; b) dx
-co -CO

Which is an AI function.
Through a transformation it is shown that g is of the form

g(a; b) = { .ft b, ) h<- 'n
a. a, ) (1)n



-56-

Now write

h(a; b) = h{-^-  -----  ^-)
ai ^

Which is an AI function.

From this it follows that

hte^1 / e&l,..., e^n / e&n) is an AI function on Rn. 

o o
Hence h<e 1 en) is Schur-concave in c ** Rn.

i.e. the function h(ci,...,cn) is Schur-concave in

{log ci....., log cn>.

Denote

f(—, . . . , —) IaCXj , . . • , xr } dx
at

Put bl- .... = bn = 1 in (1) to obtain 

v(a) = h(a7‘..... a^1).

Since h(a) is Schur-Concave in (log at, . . . , log ari), V.(a) 

is also Schur-Concave in (log at, . . . , log a^.

i.e. P{ (xi/a1,...) xn/an) s A }• is Schur-concave in 

{log at , . . . , log a^).

Proof ; It is given that f(x1/a1,..., xn/an) and

I&(Xi /ai ’ • • • > are AI in a s (c «-)n and x ^ Rn.

It is required to show that P-[ (Xj/a,., . . . , x^/a^ s A j- is 

Schur-concave in ( log aA, . . . , log a,^).

x(a)
xo

-<c<

,(0

-cc
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l. e. f< *n
1A ai ®n

) dx is Schur-concave in

(log j•• •j iog an).

l. e.
,co
-<« -«<

f(—, . . . , . —) dx
A A tl O £•an ai %

Schur-eoneave in (log at, . .. , log a^).
Let- '•? and t be two n-variate real functions such that 
gt (a4, . . . , a^; x1( . . . .x^) = ^{Xj /at, . . . , x^'a^) is AI on

{0, ®)n x Rn.
and
gt {Xi , . . . , xn; , . . . > a.^) = f<xt /at , . . . , xn/an) is AI on

Rn x (0, «,)fl.

Then

g(a : b) 3 | r.CO
g!<a; x) gj-Cx;

-«<

b) dx

is AI on {0, «<)n x (0, «<)n.

(First note that
-,co

g(an; bn) = J ... gt {an; x) g£ (x; bn) dx
-«< —<c*

Rearranging the integrals to get

— CO

.,co
gt (an;

—CO
xn) g^{xn; bn) dxn
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-«<

-.CO
gt(a; x) g1(x; b) dx

-«<

= g(a; b).
This satisfies condition (!) of an AI function.

Let nc< be the permutation for which

bn° = (bj., bj , b3>..., bn) for all b. It is required to

show that g(a; b) i g<a; bn°) when both vector a and b 
are arranged in increasing order.
Consider

g(a; b) - g{a; bn°)

[ gt(a; x) g£(x; b) - gt(a; x) g^x; bn°)] dx

Break the region of integration into x4 < Xj. and xt > xL

and make a change in the variables of second region to 
obtain

g(a; b) - g<a, bn°)

=■ J [ gi(a; x) gz(x; b) - g^a; x) g^x; bn°)
xt < xz

+ gt(sL; xn°) gz(xn°;b) - gt(a; xn°) gj.{x7T°; bn°)] dx

- j [ gt(a; x) g^x; b) - gt{a; x) gz(x; bn°) 
x* < x£

+ gi(a; X7TC’) gt(xn°; b) - gt<a; xn°) gt{x; b)]
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= | [gt {a; x) - gjja; xn°)] [g^x; b) - gz(x;
X* < x£

as gt and gj. are AI functions the integral is

Hence ' g(a; b) is AI.)
Substitute ~ xi / ^i

i. e., b^ yi = x^

i. e. , b^ dy^ = dx^

Hence .ft dx, = ft b^ ft dy^ 
i=l 1 i=l 1 i=l 1

Also on integration the result depends only on

Thus g{a; b) is written as a product of n b^ 

h(——, .... —£—) for soifie function h on (0 co)n
®n

g<a; b) = .ft hi 
i=l 1

h<^l—, 'n
®n

The function h defined by
b
an

h{a; b) = h(—i—, . . . , ^D_) is ai on

To verify this write

h(a; b) = { .ft hj) 1 g{a; b> 
i=l 1

ft
i = lh(an, bn) = { . - b^) 1 g{an; bn)

bn °) ] dx 

positive.

and

(2)

(0 <&)n x (0 «)n.
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= ( R tu) 1 g(a; b) (since g is AI)i = l A

= h(a; b).
Let b >"t c

h(a; c) = ( R Ci)-1 £(ai c)i=l x

- ( R b^)-l g(a; c) (since R ct = R b^)i=l 1 i=l 1 i=l

< ( R b-i)-1 g(a; b) (since g is AI)i = l x

- h(a; b).

Thus h(a; b) is AI on (0, «)n x (0, co)n

since h(^l—, .... ^3_) is AI on (0, «>)n x (0, co)n it
ai ^

follows that
h(ebl / e&1, . . . . , e^1 / e^1) is AI on Rn 

(follows from 5.B.1.3 (i)) 
c cHence h(e 1 , . . . , e n) is Schur-concave in c ■= Rn 

(follows from 5.B.1.3 (iv))
i.e. , h(Cj, .. .,cn) is Schur-concave ih (log ct,. . .,log cn) 

Denote

V. (a)
-«<

-s-) t (xt , . . . ,xr ) dx.
%
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Put bt = bj. = . . . = bn = 1 in (2) to obtain 

v{a) = h(a^1 » • • • . a^1 )
Since h{a) is Schur-concave in (log at,...,log an) it 
follows that 'x(a.) is Schur-concave in {log at, . . . , log an) 

also.
By choosing 'f(x) = f<x) and

t{x) - IA(x) we would arrive at the argument

aspaired in (1).
Hence the theorem.
5.B.3 Remark : Similar results due to Anderson; Marshall
and Olkin mainly depends on conditions like unimodality and 
Schur-concavity. This is evident from the discussions in the 
previous chapters. Now it is natural to seek similar set up 
for Shaked and Tong’s theorem. Moreover it is more easy to 
check unimodality and Schur-concavity rather than AI 
property. For this very propose theorem 5.B.5 is presented. 
5.B.4 Definition : A random vector X (or its distribution)

is called monotone unimodel if for every convex set c c Rn 
and every x ¥■ 0, the quantity p{x s c + k x[ is 

non-decreasing in k ^ 0.
1L..b.. 5—Theorem : If (Xt, Kz) with a Schur-concave density 
fCxj/ x£) is monotone unimodel, if f(xt, - xt) is Schur-
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concave and if A *- R£ is measurable symmetric (about 0) 

permutation invariant and convex, then p{Xj/aj, X£/a£) s a} 

is Schur-concave in (log a*, log a£),

Outline of the proof :

It is known that every monotone unimodel random vector is 

symmetric about origin. Hence the monotone unimodel function

of the theorem is symmetric about {(Xj, Xj.) : j- and

■[{xl( Xj.) : Xj+ x£ - o}. This would mean that f(x1/al, Xj./aj.) 

cannot be AI in a «(0 <x>)rjL and x e R1. But f could be

restricted to the region {(Xj, Xj.) : Xj + Xj. * 0} which is

equivalent to the conditional density of (Xt, Xj.) given that

X4 + X4 i 0 being AI. By unristricting we would arrive at

the result.

Proof :

Define

A - A n '( {Xj , x£) . Xj + x^ - O f 

Initially we would show that

P{(-i- Xj, -i_ Xj.) sA/X, + Xt > 0} is Schur-
ai

concave in (log at, log a*) (1)
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i

As f(xt , xz) is symmetric about

f* » . }' ’ Xi + x£ = Of it could be shown that

» ~~ c A} is Schur- concave in {log &i ,

Define B = {<xt, xfc) : xt + x£ > o}
To prove (1) it suffices to show that

g{Xj , Xj.) = 2 .f{x1, Xj,) Ig(x1 , xfc") and I~
A

log at5

satisfy
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g(xl .... , X* ) is AI in a s {0, «<)£ and x ■= R1 anda£

I~ <X1 ’• . . , ^—) is ,AI in a ■= {0, «<)* and x *= R11.A a* a*
To show that g is AI it is sufficient to show that f
AI.

„ x, X* X, X*i. e. , f { 1 , . . . , * ) s f{ 1 , . . ., £ )
ai ai ' a*

whenever 0 < a* < a£ and xt + Xj, l 0

put 1 - ca 1ai
and 1 = C

a£

i. e. , f(Cj Xj, Cj. Xt> < f<C£ Xj, Cj Xj)

whenever Cj > Cj. > 0 and xt + Xj. 1 0

Case - 1 ; -

Let Xj i Xj. > 0 
Denote
(Yu, y£> = (Cj Xj + c* x£) / (Cj. xt + Cj Xj.) (c£ xt, cl Xj.)

It is easy to varify that
<ci xi* ci xi> > (yj» y£)

Hence
f<ct xt , Cj. Xj.) i f(yi y£) (By Schur-concavity)

- ftCj. Xj, cl Xj.) {By monotone unimodality)
Hence the result.
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Ca3e - 2 :

Xj > 0 > Xj, (and xA + x£ i 0)

Since (Xlf Xj.) is monotone unimodal it follows that

(Xt, - Xj.) is also monotone unimodal. It's density h is

given by
hlx*, Xj.) = f (xt, - Xj.)

By assumption the density of (Xt, - Xt) is Schur-concave.

Hence it follows from the preceeding argument that when 

x, i - x£ > 0

h(ct xt , - c£ Xj.) i h(c2. xt , - ct Xj.)

i.e., f(c4 Xj, Cj. Xj.) * f(Cj. xt , ct xt)

as was to be shown.

Case - 3 :

Xj. i Xjl >0 (and x( + xt i 0) it can be proved on

similar lines as above.
Hence f is AI function.

Hence g( —— , ——) is AI in a e (0 «<)£ and x 15 R*.
fit ^ fit,

Similarly,

I~ (-i^- , -^) is AI in a e (0 cc-)5" and x « Rz .
A at aj.

Hence the theorem.
5.B.6 Remark : It could be noted that the class of density

functions in theorem 5.B.6 is a subclass of Schur— convex 

functions. The additional condition is symmetry (about 0) 

and urtimodality. If either of these conditions fail; vfe fail 
to yield the result. This is illustrated in an example below
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5.B.7 Example :

Let X = (X*, Xz) have a uniform density over the region.

{(Xj, Xj.) : txt - x£l i 6, 2 < lxt + Xj. 1 < 6}

which is a Schur-concave function of x.
Then the probability content of A(a) is zero for a = {1, 1) 
and is positive for all a satisfying

a» = a;1 ¥ 1.

From fig.2 one can observe that the assumption of 
unimodality does not satisfy this density function.

Hence it failed to yield the aspaired result


