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MAJORIZATION AND RELATID TOFPICS

Here we quote certain results which would form the
foundation for the study of majorization. These include

A. Basic Notations

B. Weak Majorization

C. Doubly stochastic matrices and permutation matrices

D Characterization of majorizetion using douby

stochastic matrices
E. Schur-concavity énd Schur convexity
F. Operations preserving majorization

2.4 NOTATIONS

R = (- ® «)

R, = (0, =]

R = {(x,,....%) i x; =R ifor all i}
R = {(x,,...,%,) 5 x5 2 0 for all i}
D= {(x,:.0%y) 5 %, 2 2 x|

Dy = {(x,..0uxy) 5 %X, 2 .... 2 x, * O}

X[ij = i-th component of vector x = RY

vwhen arranged in decreasing order.

i

X(1) i-th component of vector x = RD

when arranged in increasing order



_13..

2.B WEAK MAJORIZATION

let ¥ and vy be two vectors from RP., x is said o

be weakly submajorized by y (denoted as x <, v} if

k-

: X(i1 ¢ i. vpips k=1,...,n.
i=1 i=1

Note that in this definition the second condition of
majorization is replaced by“ £ constraint.
X is said to be weakly supermajorized by v (denoted ag
x <¥ vy if
& »
R X(i} 2 . y(i); k=1,...,n.
i=1 i=1
In either case x 1is said to be weékly majorized by v.

2.B.1 Exesmples :

Let x = (b, 3, 1) y = (7, 86, 1)
X[e3 =8 < ypy =7
X431 ¥ X[a] T8 <y s = 18
X[ 1% X[2] * X[2] O < VL) ¥ V[a] * V(o] = 14
Hence X <, V. -
Let x = (1, 3, 5) vy = (0 3 4

*ay =1 > vy =0

X(4y t X(gy = 4 > Y1y * ¥(g) = 3

+

X()Y X(e) ¥ X(z) 8 D> ¥y * ¥(ay b V(g =7
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Hence x <Yy
Heakly majorized from below and weakly majorized from above
are two alternative terms for weakly submajorized and weakly
super majorized respectively.

2.C DOUBLY STOCHASTIC MATRICES AND PERMUTATION MATRICES

An important result in the study of majorization is a
theorem due to Hardy, Littlewood and Polya (1828) {[10] which
~ says that for X%, y = RY;

X < ¥ if and only if X =y P wherer P is a dapbly

stochastic matrix. Hence a brief account on doubly stochastic

matrix.
2.C.1 Definition : An n X n matrix
P = (Pij) is doubly:stochastic if
Pij 2 0 for all 1,3 = 1,...,n.
and
1. Pi5=1; for all j =1,...,n
i
1Py =1 for all i =1,...,n
J

1 90 0
(1) P=19o 13 2/3
L0 2/3 1/3.
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1/3  1/3 1/3
(ii) P=11/3 1/3 1/3
L 1/3 1/3 1/3.

2.C.3 Definition : A square matrix T 1is said to be

‘permutation matrix if each row and each coloumn has a single
unit and all other entries are zevro.

2.C.4 Example :

1 0 0
n = 0 0 1 is a permutation matrix
0 1 0 |
2.C.5 Remarks : There are n! such matrices of size n

each of which is obtained by interchanging rows or coloumns
of identity matrix.

A permutation matrix is a stochastic matrix as each of .
the row or coloumn sﬁms are equal to one.

It is straight farward to varify that the set of n % n
doubly stochastic matrices is convex ard the permutation
matrices are the extreme points of this set. Convex ﬁull of
permutation matrices coinsides with the set of doubly

stochastic matrices.

2.C.7 Theorem (Birkhoff 19846)

The permutation matrices constitute the extreme points of
the set of doubly stochastic matrices. Moreover the set of

doubly stochastic matrices is the convex hull of permutation

matrices.
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We omit the proof of this theom as it is beyond the
scope of this study. However it could be found in (1].

2.C.8 Theorem :

Anv n ¥Xn matrix P= (Pij) is doubly stochastiq'if and

RA.

h

only if vy P <y for all b g

Proof :

Assume that y P < y for all y = RD.
Hence e P < e ; where e = (1,...,1). But for some vector
z, 2 < € would mean z = e. (This ié because all components
of e are equal and there is no vector which has got
components less scattered than itself.)

Hence e P = e.

ie., 1. Pj3=1. for all s (1)
i
Next take vy = ey (i.e., yy = 1, v = 0 if 3 # 1)
We get e; P < e
i.e., <Pix’ Pii"""Pin) < e5.

From the definition of majorization

we get E: Pij = 1. for all 1i’s (2)
N

i.e., Pe =¢€

This also means that P;j;20 % _ (3)

Bince a < b implies min aj 2 min bi'
. i ' ;1
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From (1), (2) and (3} it follows that P is doubly stochastic
Suppose P is doubly stochastic, let x =y P, salso

suppose that x, 2 ..., 2 %, ; Ve 2 oo RN
{Otherwise rewrite x =y P as
xR=yQQ@*' PR
where Q@ and R are permutation matrices chosen such that v

Q@ and X R have decreasing components).

Then
i X3 = E i 73 Pij: t ¥y ti’
j=1 i=1 i=1 . =
where
0%t = ’§: Pij £ 1 and .Sz t;y =k
J=1 i=1
Thus
t X3 - §Shy = t y; ty - zﬁ v
S = W= S e S
B {&. .,
= dLyy by -l vy oty (k- )t
i=1 i=1 i=1
= (v ¥ir) (t 1) +§L1 £ { )
= - - by (yy- v
=i i k i it§+1 i i k
€ 0 (4)
Also

LIF
b
™
n
«©
b v/
Q‘c
i
<
0‘-
1
L
<
[
=
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From (4) and (5) it follows that
y P <y
Hence the proof.

2.D CBARACTERIZATION OF MAJORIZATION USING

DOUBLY STOCHASTIC MATRICCES

Fdr.the purpose of proving the theorem due to Bardy,
Littlewood and Polya (1929) which states that x < y if and
only if x = y P for some doubly stochastic matrix P, a
preliminary Lemma is proved which is perhaps of greater
importance.

2.D.1 T-transform : It is a special kKind of linear

~transformation. The matrix of T-transform has the form
T=2»1+(1-12)4Q

wvhere 0 ¢ 2 £ 1 and Q is a permutation matrix that just

interchanges two coordinates. Thus x T has the form

X T = (%, 00X 2 x5+ (1 - 2) Ry, X

xk"'!’ ')" xk + (1_ .)‘) Xj, Xk+‘,....,xn).

2.D0.2 Lemma (Muirhead, Ha}dz Littlewood and Polyva)
If x <y then % can be derived from vy by successive
applications of a finite number of T-transforus.

Proof : Since permutation matrices Q are T-transforms in

case 2 = O and since any permutation matrix is the product
of such simple permutation matrices we assume that x is not

obtainable from ¥y by permuting argumenté.
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Also we assume without loss of generality that

X, ¥ oo 2 X, s ¥y 2o Yn
Let Abe the largest index such that xj < v; and let Kk be
the smallest index greater than J such that x; > yx. Buch
a pair Jj, k must exist, since the largest index 1 for which
xy # v; must satisfy x; > vy, by choice of j and k

Y3 > x5 2 oxmp > vy 3 (1)

Let d

min{yj T Xy Xk T Yk}

ot
|
o
i

d / (y; - vg) and let

b
i

(Yx»---,ij,, Yj - d; yj+3""’yk‘3’ yk + d:

Yk+33-~';yH)

It follows from (1) that 0

~

%2 <1 and it is easy to
varify that

y o= 2*y + (1 - l) (y!""’yj-t’ yk: yj+$""’yk“i’

yj’ YR+$,.--,Yn)

Thus y* =2y T for T =21+ (1 -2} @

where @ interchanges the j-th and k-th coordinates.

Consequently y* < ¥.

BALALEAEY 0 G
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t¥?=
1

=¥
=

-

=[F

¥y = i:-x
1

Hence X < y*

For any two vectors u, v let b(u, v} be the number of

non-zero differences wu; - vji.

Since y§

i
"

3 if d = Y3~ Xj and vi = Xy

if d

i

Xk — Yk it follows that

bk, ¥ € bix, ¥ - 1
Hence y can be derived from x by a finite number of
T-transformations.
2.D.3 Remark : It can be observed from the above proof that
if x <y then x can be derived from y by successive
applications of at most (n - 1) T-transforms. This is

because b(u, v} £ n and b(u, v) # 1

(otherwise E u; # E vy)

2.D.4 Theorem : (Hardy, Littlewood and Polya (19283}

A necessary and sufficient condition that x < v 1is that

there exist, a doubly stochastic matrix P such that x = v P.

Proof :

First assume that there exists a doubly stochastic matrix
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P such that

x =y P
Then by " 2.C.8 X <y
Now assume that x < v,

Since T-transforms are doubly stochastic, the product of
T-transforms is doubly stochastic. Thus there exists a
doubly stochastic matrix such that x =y P.

2.D.5 Example :

[}

Let N (3.5, 3, 3.56) v = (8, 3, 1}
Obviously X £y
Hence x =y P for some déubly stochastic matrix P,

On solving we get
Pz{'

2.E SCHUR CONCAVE AND SCHUR CONVEX FUNCTIONS

MmO W
OO
;moO W

For a given ordering on a set =, the real valued
function of which satisfy f(x) ¢ f(y) is referred to as
. order—-preserving function. In 1823 I1.S8chur {2] studied the
ordering on majorization, which made them known as Schur-
concave or Schur-convex functions. Manyéof the ineqﬁalities
that arise from majorization can be obtained by identifying an
appropriate order-preserving function. Hence the importance

of Schur-concave and Schur-convex functions.
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2.E.1 Definition : A real valued function f defined on a

set A CRP is said to be Schur-convex on A if X <y on

A implies f{x) ¢ f(¥).

2.E.2 Example :

. .f" 1 had ~ C
Let f(x) = ~/—— E (xy - %7*
Let x'= (1, 2, 3) y = (0, 2, 4)
Obviously X <y
X =2 v =2 i
- “(1-2)% + 0 + (2-3)*%
£(x) =~ 3
- JKC%: = 66
A (0-2}% + 0 + (4-2)°
f(y) = ~ 3 .
= n"\,"/':'—g‘— = "‘f"ﬁlz .66
Hence f(x) ¢ £f(y)

2.E.3 Remarks

i) The example discussed asbove is the 5.D. of a set of
numbers, which is a measure of diversity. As
majorization alsc characterizes diversity Schur-

convexity reflects this broperty of the function.



ii) Marshall and Olkin {1] has suggested that Schur-
increasing as an appropriate title for Schur-convex
functions. But Schur-convex is by now well entrenched
in the literature.

iii) If f(x) < f(y} whenever x < v but x 1is not a
permutation of ¥y, then f is said to be strictly
Schur-convex on A,

2.8E.4 Definition : f 1is said to be Schur-concave on A if

X <y ‘ on A implies f(x) 2 f(y).

2. 5.5 Example

Let f{x) = 1 —
1 + E(xi-x)z ,

It is easy to varify that f(x} is Schur concave as Z(xi—ﬁ)i

is Schur-convex function.
-»

2.E.6 Remarks

i} f is said to be strictly Schur-concave on A if
strict inequality f(x} > f(yv} holds when x 1is not
a permutation of y.
ii) It is obviocus that f is Schur-céncave if and only if

- f is Schur-convex.

iii) Also because of the.ordering on RP® has the property
that % < x T < x for all permutation matrices T,

it follows that f is Schur-convex or Schur-concave

on a symmetric set A (i.e., a set of A with the



property that x = A implies x 71 = A for all
rermutations M), then f is symmetric on A,
{(i.e., f£(x) = f(xM} for all permutations M),

2.F OPERATIONS PRESERVING MAJORIZATiON

From available literature one can list out a number of
operations that can generate a pair of Yectors with some sort
of majorization from

i} another pair in which majorization is already present
ii) a pair of vectbrs not necessarily having majorization
as a property between them.

Here we list out some such operations. These theorem
s are

quoted from Marshall and Olkin {13 without proofs.

2.F.1 Theorem : For all convex functions g

X<y == (%, ),....8(x,)) <4 (8(yy),....&(yy))

for all concave functions ¢
X <y == (g{x,), ... . 8(x)) ¥ (&ly,),....&{vy,))

2.F. 2 Example

Since g(x) = x* is a convex function

, ¢ e . .
X Ky == (X{,....%5) <y (yis oo ouvy)

also as g{x) = ~“X 1is a concave function
XLy == ("X, Ry MY, Vo)
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2.F.3 Theorem .:

i) For all increasing convex functions ¢
x <, ¥ == {(g{x,),...,8{(xy) <, &y, ... 8lvy))
ii} For all increasing concave functibns g
x My == (g(x),...,8(x,) < {&¥,),....&8yy))
iii)} For all decreasing convex functions £
x My = (g{x,),....8(x,) <, By, ..., 8(vy))
iv)} For all decreasing concave functions g
X <y v == (g(x,},...,g(xr-,} <M (glyy ), .8y,
2.F.4 Example :

Examples quoted in 2:¥F.2 are increasing functions.

Hence these are good enough for (i) and (ii)

Let f(x) = - x*/* which is a decreasing convex

function. Hence it holds for (iii).

et f(x) = - x* which is a decreasing concave function.

Hence it holds for (iv).



