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MAJQRIZATIQN AND RELATED TOPICS

Here we quote certain results which would form the 
foundation for the study of majorization. These include

A. Basic Notations
B. Weak Majorisation
C. Doubly stochastic matrices and permutation matrices
D. Characterisation of majorisation using douby 

stochastic matrices
E. Schur-concavity and Schur convexity
F. Operations preserving majorisation 

2.A NOTATIONS

R = <“ 05, co)
R+ = CO, 05]

Rn

R+
D

D+

x[i]

{<xt, . . . , x^ ; e R ifor all i} 

{(x1,...,xn) ; x^ l 0 for all i} 

{<x*. • ■ • >*n) > x, > -- i x,j}

{<**»•••.xn) ; xt x„ > 0}

i-th component of vector x •= Rn 

when arranged in decreasing order.

x(i) = i-th component of vector x « Rn

when arranged in increasing order
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2.B WEAK MAJ0RI2ATI0N

Let x and y be two vectors from Rn. x is said t-o 

be weakly submajorized by y (denoted as x <w y) if

,4? xti] < L y[i]i k = 1, . . . , n.
i=l i=l

Note that in this definition the second condition of 
majorization is replaced by S constraint.

x is said to be weakly supermajorized by y (denoted a

x <w y) if

L- x(i) .
i=l i=l‘ y(i>’ k = 1, . . . , n.

In either case x is said to be weekly majorized by y. 
2.B.1 Examples :

Let X ZZ (5, 3, 1) y = (7, 6, l)

xCi] - 8 < y[i3 r. 7

xco 4 XU3 - 8 < ytO + y[i] = 13

X[1]+ xi>3 + xi>3 =' 9 < y[*3 + yU3 + yl>3 = 14
Hence X "''W y.

Let X = (1, 3, 5) y = (0, 3, 4)

xO> = 1 > y<»> = 0

x(o 4* XU> = 4 > yd) + y{£) = 3
X(0+'X<D 4 X(3) f- 9 > yd) + y(t> + y(z) - 7
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Hence x <w y.
Weakly majorized from below and weakly majorized from above 
are two alternative terms for weakly submajorized and weakly 
super majorized respectively.
2.C DOUBLY STOCHASTIC MATRICES AHD PERMUTATION MATRICES

An important result in the study of majorization is a 
theorem due to Hardy, Littlewood and Polya (1929) [10] which
says that for x, y « Rn;
x < y if and only if x = y P where P is a doubly 
stochastic matrix. Hence a brief account on doubly stochastic 
matrix.
2.C.1 Definition : An n x n matrix

P = (Pij) is doubly stochastic if 
; Pij " ^ for &H i* -3 = l,...,n.
and

rP..-.V-* 13l 1 ; for all j = 1,

^ P- ■ = 13J
1 ; for all i =■ 1,

2.C.2 Examples

r l 0 0 1<i) P = 0 1/3 2/3
. 0 2/3 1/3.
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' 1/3 1/3 1/3-
{ii) P = 1/3 1/3 1/3

- 1/3 1/3 1/3.
2.C.3 Definition : A square matrix TT is said to be

permutation matrix if each row and each coloumn has a single 
unit and all other entries are aero.
2.C.4 Example :

n
• 1 o
0 0

. 0 1

0 • 

1
0 .

is a permutation matrix

2. C. 5 Remarks : There are nl such matrices of size n

each of which is obtained by interchanging rows or coloumns 
of identity matrix.

A permutation matrix is a stochastic matrix as each of. 
the row or coloumn sums are equal to one.

It is straight farward to varify that the set of n * n 
doubly stochastic matrices is convex and the permutation 
matrices are the extreme points of this set. Convex hull of 
permutation matrices coinsides with the set of doubly 
stochastic matrices.
2.C.7 Theorem (Birkhoff 1946) :

The permutation matrices constitute the extreme points of 
the set of doubly stochastic matrices. Moreover the 3et of 
doubly stochastic matrices is the convex hull of permutation
matrices.
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We omit the proof of this theom as it is beyond the 
scope of this study. However it could be found in [13.
2.C.8 Theorem :

An n x n matrix P= (P^j) is doubly stochastic if and

only if y P < y for all y « Rn.
Proof :

Assume that y P < y for all y s Rn.
Hence e P < e ; where e = {1,...,1). But for some vector 
z, z < e would mean z = e. {This is because all component
of e are equal and there is no vector which has got 
components less scattered than itself.)

Hence e P = e.

i. e. , r P. . = i 
i

for all 3’ s (1)

Next take y = ei (i.e., y^ = 1, yj = 0 if j + i)
We get e^ P < '®i

i. e. , (Pi,, pu,.. ..,Pin) < ei •
From the definition of majorization

we get r* p. • = l
*-r* A.
3

for all i ’ s (2)

i. e. , P e-' = e'
This also means that Pii >- 0 ! (3)
Since a < b implies min ai i i min b, .l x



-17-

From (1), (2) and {3} it follows that P is doubly stochastic 
Suppose P i3 doubly stochastic, let x = y P, also 

suppose that x* * ..., 1 xn ; yi l ...., * yn.
{Otherwise rewrite x = y P as

x R = y Q Q_1 P R
where Q and R are permutation matrices chosen such that y 
Q and x R have decreasing components).
Then

- L* L-. y\. . Lj ~ S-i yi ^ij ,£-f yij=l j=l i=l l—,i=l
where

0 1 t4 = Pij 1 1 and fc ti = k.
j=l i=l

Thus

_ Xj - yj_ = L* yi ti - yt
3=1 3=1 i=l i=l

a.
k - >« ti)yi ti - fc yi + yk <

1=1 1=1

(y, - yk) (ti - 1) + Jz ti (y4- yk>
i=l i=k+l

Also

S 0
Pi „ P-L- Xt = y P eJ = y e' = L 7i 
i=l • i=l

(4)

(5)
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From <4) and (5) it follows that 
y P < y

Hence the proof.
2.D CHARACTERIZATION OF MAJORIZATION USING 

DOUBLY STOCHASTIC MATRICCES
For the purpose of proving the theorem due to Hardy, 

Littlewood and Polya (1929) which states that x < y if and 
only if x = y P for some doubly stochastic matrix P, a 
preliminary Lemma is proved which is perhaps of greater 
importance.
2.D.1 T-transform : It is a special kind of linear
transformation. The matrix of T-transform has the form 

T = x I + (l - x) Q
where . 0 1 x < 1 and Q is a permutation matrix that just 
interchanges two coordinates. Thus x T has the form 
x T = {Xj, . . . ,Xj_j, x xj + <1 - x) xj,, xj+1 ....

* * * xk—i* ^ xk (1— ^') xj* ^k^-j).
2. D.2 Lemma (Muirhead, Hardy Littlewood and Polya)

If x < y then x can be derived from y by successive 
applications of a finite number of T-transforms.
Proof : Since permutation matrices Q are T-transforms in
case x = 0 and since any permutation matrix is the product 
of such simple permutation matrices we assume that x is not 
obtainable ffom y by permuting arguments.
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Also we assume without loss of generality that
Y ) ) Y * V ) YAi - •••••• - > j i - * • • * * jn

Let j be the largest index such that Xj < yj and let k be 
the smallest index greater than j such that xk > yk. Such
a pair j, k must exist, since the largest index i for which 
xi ^ yi must satisfy Xj > y^, by choice of j and k

yj > xj > xk > yk (1)
Let d = min<yj - Xj, xk - yk>

1 - x = d / <yj - yk) and let.

y* = »yj-i» yj - d, yj+1 , . . . , yk_j , yk + d,

yk+i> •• * >)
It follows from <1) that 0 < x < 1 and it is easy to 
varify that

y* = X y + (1 - xy (yl , . . . ,yj_t , yk, yj + , , . . . ,yk_£,

yyk+i*•••»yn>

Thus y* = y T for T = x I + <1 - x) Q 
where Q interchanges the j-th and k-th coordinates.
Consequently y* < y.
Also x < y* since
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Hence x < y*
For any two vectors u, v let b(u, v) be the number of 
non-zero differences u^ - v^.

Since y* = xj

d = xk ~ y^> it follows that 
b(£,y*> < b(x, y) - 1

if

Hence y can be derived from x by a finite number of 
T-transformations.
2.D.3 Remark : It can be observed from the above proof that
if x < y then x can be derived from y by successive 
applications of at most (n - 1) T-transforms. This is 
because b(u, v) 1 n and b(u, v) ¥■ 1 
(otherwise E u^ 7* E v^)
2. D. 4 Theorem : (Hardy, Littlewood and Pol?/a (1929))

A necessary and sufficient condition that x < y is that 
there exist, a doubly stochastic matrix P such that x = y P. 
Proof :

First assume that there exists a doubly stochastic matrix



-21-

P such that
x =• y P

Then by 2.C.8 x < y
Now assume that x < y.
Since T-transforms are doubly stochastic, the product of 
T-transforms is doubly stochastic. Thus there exists a 
doubly stochastic matrix such that x = y P.
2.D.5 Example :

Let x = (3.5, 3, 3.5)' y = (6, 3, 1)
Obviously x < y

Hence x = y P for some doubly stochastic matrix P, 
On solving we get

r. 5 0 . 5‘
p = 0 1 01.5 0 .5.

2, E SCHOR CONCAVE AND SCHUR CONVEX FUNCTIONS

For a given ordering on a set the real valued
function of which satisfy f(x) S f(y) is referred to as 
order-preserving function. In 1923 I.Schur [2] studied the 
ordering on majorization, which made them known as Schur- 
concave or Schur-convex functions. Manyiof the inequalities 
that arise from majorization can be obtained by identifying an 
appropriate order-preserving function. Hence the importance 
of Schur-concave and Schur-convex functions.
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2.E.1 Definition : A real valued function f defined on a

set A C Rn is said to be Schur-convex on A if x < y on 
A implies f{x) * f(y).
2.E.2 Example :

Let f<x) = a/-^- e <*i ~

Let x c (1, 2, 3) y = (0, 2, 4)
Obviously x < y

x = 2 y = 2

' , v . ./a-2)*..tit.L.Z.-211f(x) = -'■•>/ 3

/~Z~

3 = A/' . 66

f<y) . / (0-2)^ + 0 + (4-2) 
3

/□E — ,v/'2.66
3

Hence f<x) i f(y)
2.E.3 Remarks :

i) The example discussed above is the S.D. of a set of 
numbers, which is a measure of diversity. As 
memorization also characterizes diversity Schur- 
convexity reflects this property of the function.
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ii) Marshall and Olkin [1] has suggested that Schur-

increasing as an appropriate title for Schur-convex
\functions. But Schur-convex is by now well entrenched 

in the literature.

iii) If f{x) < f{y) whenever x < y but x is not a 

permutation of y, then f i3 said to be strictly 

Schur-convex on A.

2.E.4 Definition : f is said to be Schur-concave on A if

x < y on A implies f{x) l f{y).

2.E.5 Example :

Let f {x) = -------i------
1 + E(Xi-x>*

It is easy to varify that f<x) is Schur concave as E(x^-x)1

is Schur-convex function.
%

2.E.6 Remarks :

i) f is said to be strictly Schur-concave on A if

strict inequality f(x) > f(y) holds when x is not 

a permutation of y.

ii) It is obvious that f is Schur-concave if and only if 

- f is Schur-convex.

iii) Also because of the ordering on Rn has the property 

that x < x IT < x for all permutation matrices tt, 

it follows that f is Schur-convex or Schur-concave 

on a symmetric set A <i.e., a set of A with the
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property that x s A implies x n 6 A for all 
permutations H), then f is symmetric on A.
{i.e., f(x) = f(xH) for all permutations n).

2.F OPERATIONS PRESERVING MAJORIZATION

From available literature one can list out a number of 
operations that can generate a pair of vectors with some sort 
of majorization from

i) another pair in which majorization is already present 
ii) a pair of vectors not necessarily having majorization 

as a property between them.
Here we list out some such operations. These theorem

s are
quoted from Marshall and Olkin [1] without proofs.
2.F.1 Theorem : For all convex functions g

x<y —* {g(Xj),....gCx^}) <v (g{y1)....,g(yn>) 

for all concave functions g

x < y (gtxj g(xn)) <w (g{yt g<yn))

2.F.2 Example :

Since g(x) = x£ is a convex function 

x < y —+ (xf, . . . ,xj) <w <yf, . . . ,y£) 

also as g{x) = a/"x is a concave function

X < y =*■ < .... Vx^> <w ( -/"y7> yn)



2.F.3 Theorem :

i) For all increasing convex functions g
x <w y =* (g<x1 ), . . . ,g<xn) <w ■,g(yn))

ii) For all increasing concave functions g
x y =*• (g(x1 ),...,g(xn) < <g(y4),. .•,g(yn))

iii) For all decreasing convex functions g
x <w y —{g(Xj, ),..., g^) <w (g(y1),. •■,g(yn))

iv) For all decreasing concave functions g
x y (gCXj ),..., g<xn) <w igiy,),. ..,g(yn))

2.F.4 Example :
Examples quoted in 2/-F.2 are increasing functions.

Hence these are good enough for (i) and (ii)
Let f{x> = - x1/31 which is a decreasing convex 

function. Hence it holds for <iii),
Let f(x> = - x51 which is a decreasing concave function. 

Hence it holds for (iv).


