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INEQUALITIRS ON THE INTEGRAL OF A SYMMETRIC
UNIMODEL FUNCTIOM OVER A SYMMETRIC CONVEX SET

This chapter is based on one of the published works by
T.¥H.Anderson [11]. Even though the concept of majorization
does not appear any where in this paper, still we include this
toric as the concepts found in his work forms the basis for
latter studies in inequalitiés via majorization.

3.A CONCEPTIONAL BACKGROUND

Let f(x) be a function on the real line. Also f(x) is
symumetric about origin and f(k x) 2 f(x) ; O ¢ k ¢ 1, (known
as ugimodel). Consider the intedral of f(x) over a fixed
length. It is obvious that if the region;of integration is
centered at the oridin, then the integraléwould have a maximum

value, as is illustrated bellow.
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Fig.1.a. @ f(x) is symmetric but not Qnimodel. Hence the
optimal area-redion is not centered at the oridin.
Fig.1.b. : f{(x) is symmetric and unimodel. Hence the
optimal area-region ié cgntered at the origdin.
Fig.l.c. : f(x) is unimodel but not symmetric. Thus the
optimal area-region is ﬁbt ceniered at the origin.
This result could be generalised into n-space by
considering a symmetric convex set in place of the interval.
Also the condition of unimodelity could be modified as the set
of points for which the function ie at least equal to a given

value is convex.

3.B  ANDERSON’S THROREM AND RELATED RESULTS

3.B.1 Theorem : Let E be a convex st in n-space, symmetric

about origin. Let f(x) 2 0 be a function such that

i) f(x)

= f{-x)
11} ku = {x bof{x) 2 u} is convex for every \u,
{ 0 < u < «w)
.iii) j f{x) dx < « (in the Lebesgue sense)
E
Then
E] f(x + ky) dx 2 | f(x + v) dx (1)
o) E'.
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Qutline of the proof :

let E+ ky and E + vy be two sets translated from E

by the vector ky and y. Thus EE f(x + ky) dx is

equivalent to [  f(x) dx.
B+ky
Also y £lx+y) dx = [ £(x) dx
10y E'-'fy

Thus the inequality

{ £{x+ky) dx 2 { £(x+y) dx
g £

could be written as

] £(x) dx 2 | £(x) dx
Etky Ety
The theorem is proved by showing that
i} For every u

VAE + ky) 0 kut 2 V {(E + y) N ku}

where V¥ { } indicates the volumwe of the set.

11} Taking the integrals of the functicon over
(E + ky) M ku and (E + ¥} 1 ku for all possible

values of u would result in the inequality

{ f{x+ky) dx 2 f(x+yv) dx
B E-
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This could be explained with the help of fig.2 given

for single variable case.

ﬁ@g)cix.
E+kd

F+3

— — —

L

i
. : jf:: E+kY JE+Y
Ku

Ry 2

As the example is of one dimensional case the volume
reduces to the length the strip)shown in the diagram.

It can be seen that the length of the strip (E+ky) 1 ku
is dreater than or equal to the length.of the strip (E+y) i ku
for all possible u’s. Then take the sums of areas over both
gsets for different du’s (where du is a small strip of u).
Wﬁich is nothing but the integral of the function over the
two sets (shown by the shaded region).

As V{E+ k) Nku} 2V {(E+y) 1k} for every du
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} £(x) du 2 | £(x) dx
E+ky E+y

as was to be shown.

Brunn —~ Minkowski Theorem :

Let E, and E, be two non-empty sets. - Then

ViR I(L - @) BEg + 8 B} 21 - 9) VD (R, + 8 VD (R
wvhenever O ¢£8 ¢ 1,

Proof of Anderson’s Theorem :
The inequality
{ £(x+ky) dx 2 f £(x+y) dx
E E
is equivalent to
{ £(x) dx 2 { £(x) dx
E:fky E':&»y

vhere E + v is the set E transformed by v.

{Let x = E. Use the transformation
z2 = X + ky
Hence dz = dx (As ¥y is fixed)
If = =§ then 2z = E + ky
Thus Cf(x + ky) dx = £(z) dz
20N E+ky ‘
= { £(x) dx

E#ky



The same argument holds good for the integral over

Initially we would show that
VIE+ k) nkup 2V {E+y) 0kl
for every u.

Let w [(E + v) n‘ku} + (1 - =} [{E - vy H ku}
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B+ v).

denotes the set obtained by taking all linear combinations

w 7+ (1-—«) wW.

m

HWhere Z (E + v) O ku and W = (% - y) 1 ku

and 4]

1

~ € 1.

Let ~ (1L + k) / 2 so that

«y + {1 - «) (- ¥y) = ky

i1

Then (E + ky) G ku > «[(E + v) M ku] + (1 - «)[(E - v) 7 kul

Because ku 1is convex and

(E + ky) 2« (E + y) + (1 -} (E - )

We have

(1)

(2)

V{(E+ky) 0 ku} 2 Vi«[(E+) 0 k] + (1- «) [(B-y) nxi]} (3)

{Statement {2} could be proved asifollows. Consider a point

from the set

D=z« {(E +¥) + (1 - «) (E - %), ¥We ought to
is alsc belongs to E + ky.

If z=D=fxu+(l-«x)v: usE+y, veEE

H

{« (e, + ¥) + (1 - x) (e, - ¥); e,, e,

show that

_—

]

=}



fe e, + (1 -«) ey + (2« - 1) y; e, e, =E

H

g o

i

{e + ky; e = E} = E + ky
{since 2« - 1 = k from (1}
Hence E + ky Do (E + ¥) + (1 - «) (E + v).]

(E + v) Mku 1is a mirror immade through the origin of
(E - ¥) 1 ku and therefore these two sets have the same

volume.

Using Brann Minkowski theorem we get

Vie[(E+y) nku] + (1 -«) [(E+¥) 0 kul}

(354

« VIE +v) Mkut + (1 - o) V{(E-v) 7 kul

« VIE+3) Mkub + (1 -«) VI(E+y) 0 kup

V {(E + ¥) O ku} | (4)
From (3) and (4) it follows that

H(u) =V {(E+ kv) Mku} 2 vV {(E +y) 0k} = 85w (5
as was to be shown.

The theorem would be proved if it could be shown that

R R :
I H(u) du 2 l H¥(u) du
0" o

Definition of Lebesge and Lebesgue—Stiel%jes, integrals show
-G : L

i £(x) dx - l f(x) dx = - ud H(u) + ud B¥(w)
E:Fky E':iy th 0
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{As H(u) 1is a decreasing function of wu, d H{u) would be
negative in sign).
‘.‘cc«
= | wd[ET - How]
"%

Consider the integral

"

b
| wafE¥e - Bw]

L b
w (B¥(u) - Hu) |
a a

b
- @MW - B au
&'.
= b[H*(b) - H()] - a [H*(a) - H(a)]

b
+ 1w - #*] au (8)
a‘.

Since f{(x) has finite integral over E (as is assumed in

the theorem)
b H(b)} —3+ 0O as b — «; SO A1S0

b B¥(b) — 0 as b — «
Therefore the first term on R.H. & of (6} can be made

arbitarilly small in absolute value.
If a2 0 the second term above is non-negative as well

as the third.

- {Ce

Thus oj w dfB¥(w) - Hw] 2 0
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Hence l £(x) dx - l £(x) dx t O.
E+ky E+y

e, | £ ax: [t ax
E;ky Ely

Hence the proof.

3.B.2 Remark : Consider the integral Ej f(x + ¥) d4x a5 a

function of .
Hrite Y(y) = { f{x + ¥v) dx
E L

It is to be observed that %(y) possess certain properiies

of f(x},

(a) #(y) = | £(x +v) dx = | £(x) dx = | £(x) dx = %(- y)
E* Eiy E:y

{This follows‘from the proof if Anderson’s theorem).
Thus %¥(y) 1is symnetric. |

(b)Y *¥(y) 1is unimodal in the sense that along any Ziven ray
through the origin the integral iz a non-decreasing
function of the distance from the oridin. However ¥(y)

does not necessarily satisfy the condition of unimedality

imposed on f{(x).

i.e., {y /vy 2 u} is not necessarily Convex.

3.C PROBABILITY INEQUALITIES

If a probability density function satisfies all the

,Ifmﬁ“:‘k
S OV
RAR - N\
! o 7 ~ b
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assumptions of Anderson’s theorem it would give rise to the
inequalities anticipated in the theorem. Hence the followirng
corcllary.

3.C. 1  Coro11ary :

Let; X be a random vector with density f£(x) suéh that

iy f(x) = f{(- x) and
ii) {u | f(x) ¢ u} is convex for every u (0 &£ u ¢ «),

If E 1is a convex set, symmetric about the origin,

]

P{X + ky = Ef ¢ P{X + Y = E}
for O & k ¢ 1.
If h(x) is a symmetric function such that {x!h(x) ] V}

is convex, then P{h(X + ky) & v} & P{h(X + Y} £ v/

3.C.2 Remark :

h{x) could be the cumulative distribution. Hence
the corollary implies that the cumulative distribution of
h{(X + Y} 1is bounded by that of h(X + ky) and by choosing
k = 0 one would get the upper limit as h(X).

3.C.3 Example :

A particular distribution which satisfies the conditions
- of Anderson’s theorem and hence the corollary is the Normal
distribution. This is illustrated below} |
Let f(x) be the joint probabilityédensity of n iid

normal random variables, with mean zero and variance one.
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/E

-n ;
Hence f(x) = (2 W) exp{— é ?“ x?}

i} It is obvious that f(x} = f(- %)
11} To varify unimodality consider the set

ku = {x | £(x) > u}

= {x | (2 my™n/z expl- —— i: xi > u}
: A 5|
= {x | exp{- 1- g: x> uy
i=1
where u’ = u. (mn/z
= dx 1 - L g: x$ > u"}
¢ 331
where u' = log u’
= {x | i: x$ < u’
i=1
where u”’ =— - 2 u”,

It is easy to see that the set ku 1is a sphere in a-space
which will always be a convex set.

Hence f(x) satisfies both the conditions stipulated by
Anderson’s theorem.

3.C.4 Theorem :

Let X be a random vector with density f(x) such that

i) f(x) = (- x)
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ii) {x Pof(x) 2 u} is convex for every u (0 £ u < «j.
Let Y be independently distributed. if E 1is a convex
set, symmetric about origin, then
P{(X + kY) = E} 2 P{X + Y = E}
for 0 ¢ k § 1. if h(x) is a symmetric function such that
{x I h(x}) $ v} is convex then
P{h(X + KY) § v} 2 P{h(X + ¥ 3 v}
for O & k £ 1.

Proof : Let the cumulative distribution of Y be G(y).

Then the density of X + kY is | f(z - ky) d G(v), where
Q R

R ~ denotes the entire n-space.

Thus

P{X + kY = E}

1

Ej Rf £(z - ky) d G(v) dz

3]

f { £(z - ky) dz d G{y).
R E ;

i

Rj f £(w) dw d G(¥).
E-ky

Then Anderson’s theorem vields the implied results.

~3.C.5 Remark : 3.C.4 shows that in certain sense the

distribution of X + Y is more spread out than that of

X + kY { O£ k $ 1),



