
CIHftPTEIR- III

INEQUALITIES ON THE INTEGRAL OF A SYMMETRIC
UNIMODEL FUNCTION OVER A SYMMETRIC CONVEX SET

This chapter is based on one of the published works by 
T.W.Anderson [11]. Even though the concept of majorization 
does not appear any where in this paper, still we include this 
topic as the concepts found in his work forms the basis for 
latter studies in inequalities via majoriaation.
3.A CONCEPTIONAL BACKGROUND

Let f{x) be a function on the real line. Also f<x) is 
symmetric about origin and f<k x) l f(x) ; 0 < k < 1, (known 
as unimodel). Consider the integral of f(x) over a fixed 
length. It is obvious that if the region of integration is 
centered at the origin, then the integral would have a maximum 
value, as is illustrated bellow.
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Fig. 1. a. : f{x) is symmetric but not unimodel. Hence the

optimal area-region is not centered at the origin. 

Fig.l.b. f<x) is symmetric and unimodel. Hence the

optimal area-region is centered at the origin. 

Fig.l.c. : f(x) is unimodel but not symmetric. Thus the

optimal area-region is not centered at the origin. 

This result could be generalised into n-space by 

considering a symmetric convex set in place of the interval. 

Also the condition of unimodelity could be modified as the set 

of points for which the function is at least equal to a given 

value is convex.

3. B ANDERSON’S THROREM AND RELATED RESULTS

3.B.1 Theorem : Let E be a convex st in n-space, symmetric

about origin. Let f{x) i 0 be a function such that 

i) f(x) = f(—x)

ii) ku = -|x i f{x) l m\ is convex for every u,

{ 0 < u < «>)

iii)
E'

f<x) dx < «< (in the Lebesgue sense)

Then

f(x + ky) dx *
E‘- E‘-

f{x + y) dx (1)

for 0 i k i 1
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Outline of the proof :

Let E + ky and E + y be two sets translated from E 

by the vector ky and y. Thus j’ f{x + ky) dx is
ill '

equivalent to ,f f(x) dx. 
E+ky

Also
E'-

Thus the

f <x+y) dx

inequality

f {x) dx
E+y

E’-
f(x+ky) dx *

E‘-
f{x+y) dx

could be written as

f(x) dx * j f<x) dx 
E+ky E+y

The theorem is proved by showing that 
i) For every u

* V {{E + ky) n ku} l V {(E + y) n ku}

where V { } indicates the volume of the set.

ii) Taking the integrals of the function over
(E + ky) H ku and (E + y) ft ku for all possible 
values of u would result in the inequality

E-
f(x+ky) dx l

E-
f(x+y) dx
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This could be explained with the help of fig.2 given 
for single variable case.

As the example is of one dimensional case the volume 
reduces to the length the strip shown in the diagram.

It can be seen that the length of the strip (E+ky) n ku 
is greater than or equal to the length of the strip (E+y) n ku 
for all possible u’s. Then take the sums of areas over both 
sets for different du's {where du is a small strip of u). 
Which is nothing but the integral of the function over the 
two sets (shown by the shaded region).
As V -[(E + ky> n ku]' i V -[{E 4 y) ft- ku] for every du
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f(x) du ^ f{x) dx
E+ky

as was to be shown.

Brunn - Minkowski Theorem :

Let E0 and Et be two non-empty sets. Then

V1 {<1 - ©) Ec, + a Ej > <1 - B) V1^ <E0) + 0 Vl/n (Et)
whenever 0 i 0 * 1,

Proof of Anderson's Theorem :

The inequality

is equivalent to

f<x) dx l f{x) dx
E+ky E+y

where E+y is the set E transformed by y.

(Let x ■= E. Use the trans format ion

z = x + ky

Hence dz = dx (As y is fixed)

If x ■= E then z - E + ky

Thus
E+ky

f{z) dz

f(x] dx
E+ky
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The same argument holds good for the integral over E + y). 
Initially we would show that

V {<E + ky) n ku} > V {(E + y) n ku} 
for every u.

Let vx [{E + y) n ku| + {1 - «) [{E - y) n ku]

denotes the set obtained by taking all linear combinations

« s + (1 — «) w.
Where zs{E+y)nku and W«(£-y)Oku
and 0 i « i 1,
Let «={l+k)/2 so that

«y+(l-«e)(-y)=ky (1)
Then (E + ky) H ku > «[{E + y) n ku] + {1 - «)[{E - y) n kuj 

Because ku is convex and
(E + ky) => oc {E + y) + < 1 - «) {E - y) (2)

We have
v{(E+ky) n ku} * v{«[(E+y) n ku] + (1- «)[<E-y) n ku]} (3)

[statement (2) could be proved as follows. Consider a point 

from the set
D=« <E+y) + <1 -«) <E - y). We ought to show that 

is also belongs to E + ky.
If s‘=D = {«u + (l-vx)v: u ■= E + y, v ® E - y}

= {« (et + y) + {1 - «e) (ez - ;y); ^ E\
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= {<* et +{l-«)es. + (2«-l)y; e4, e£ *= E}

= {e + ky; e s E } >= E + ky 

< since 2« - 1 = k f rom (1)
Hence E + ky 3 « {E + y) + (1 - «). (E + y).]

(E + y) n ku is a mirror immage through the origin of 
(E - y) H ku and therefore these two sets have the same 
volume.

Using Brann Minkowski theorem we get 

V { vx[(E 4 y) n ku] 4 (1 - oc) [(E + y) n ku]}

> « V {(E + y) n ku} + (1 - «c) v {(E - y) n ku}

= vx V {(E + y) n ku} + {1 - oc) V {<E + y) n ku}

= V {(E + y> n ku} (4)

From (3) and {4) it follows that

H{u) = V {(E + ky) n ku} * V {<E + y) n ku} = H*<u) (5)

as was to be shown.
The theorem would be proved if it could be shown that

..co .,«<
H(u) du l H*<u) du 

O'- 0'j

Definition of Lebesge and Lebesgue-Stieltjes, integrals show

f(x) dx -
E+ky

.-.CO

E+y
f(x) dx = - u d H(u) + 0J O'-

,co
u d H*(u>
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(As H<u) is a decreasing function of u, d H<u) would be 

negative in sign).

= j u d[H*(u) - H (u) ] 
0-

Consider the integral
-,b

a'-
u d[H*<u> H(u>] = u <H*(u) H(u)) b

a

.-.b
a

(H*(u) H{u)) du

= b[H*(b) - H{b)] - a [H*(a) - H(a)]

+ [H(u> H*(u)] du (6)

Since f{x) has finite integral over E (as is assumed in 
the theorem)

b H{b) ——* 0 as b --- f so also

b H*(b) ——> 0 as b --- > «<.
Therefore the f irst term on R.H.S of (6) can be made
arbitarilly small in absolute value.

If a i 0 the second term above is non-negative as wel 
as the third.

O'*Thus u d[H*(u) - H(u)] i 0



-34-

Hence f{x) dx -
E+ky

J f(x) dx l 0. 
E+y

1. e. , f{x) dx l J f(x) dx 
E+ky E+y

Hence the proof.

3, B. 2 Remark : Consider the integral J’ f(x + y) dx as a
ill’

function of y.

Write 'f(y)
E'

f{x + y) dx

It is to be observed that '■f(y) possess certain properties 
of f(x>,

(a) V(y) =
E‘

f(x + y) dx = f(x) dx
E+y

f ( X) dx = t { - y )
E-y

(This follows from the proof if Anderson’s theorem).
Thus T(y) is symmetric.

(b) T{y) is unimodal in the sense that along any given ray 
through the origin the integral is a non-decreasing 
function of the distance from the origin, However '+(y) 
does not necessarily satisfy the condition of unimodality 
imposed on f(x).

i.e., {y / T(y) > u} is not necessarily Convex.

3.C PROBABILITY INEQUALITIES

If a probability density function satisfies all the
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assumptions of Anderson's theorem it would give rise to the 
inequalities anticipated in the theorem. Hence the following 
corollary.
3.C.1 Cor-ollar?/ :

Let X be a random vector with density f(x) such that 
i) f{x) = f{- x) and

ii) {u t f{x) l u} is convex for every u (0 S u i co). 

If E is a convex set, symmetric about the origin, 
P-[X + ky « E} * P*(X + Y * E} 

for 0 i k i 1.
If h{x) is a symmetric function such that {xlh(x) i v|

is convex, then P-(h{X + ky) i v| * P*[h{X + Y) i vj- 

3.C.2 Remark :
h<x) could be the cumulative distribution. Hence 

the corollary implies that the cumulative distribution of 
h{X + Y) is bounded by that of h{X + ky) and by choosing 
k = 0 one would get the upper limit as h(X).
3.C.3 Example :

A particular distribution which satisfies the conditions 
of Anderson’s theorem and hence the corollary is the Normal 
distribution. This is illustrated below.

Let f(-x) be the joint probability density of n iid 
normal random variables, with mean zero and variance one.
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-n/£ f 1 s' t'iHence f<x) = <2 T?) exp— -f- x* \2 i=l

i) It is obvious that f(x) = f(- x) 
ii) To varify unimodality consider the set

ku = {x l f{x) > u}

= {x t (2 Xl)~n/Z exp{- - fZ > u}
2 i = i

= {x I exp{---^Z xf > u' f
2 j-j

ix

•fvt.x

where u' = u.{n)n/:

__L_ f-1 x* > u")2 i=1
where u" = log u' 

xf < u"' \
i-1

where u"' = - 2 u".
It is easy to see that the set ku is a sphere in n-space 
which will always be a convex set.
Hence f(x) satisfies both the conditions stipulated by 
Anderson's theorem. i-

3.C.4 Theorem :

Let X be a random vector with density f{x) such that 
i) f(x) = f{- x)
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ii) {x I f<x) l uj- is convex for every u {0 i u < «•).

Let Y be independently distributed. If E is a convex 

set, symmetric about origin, then

p{(X + kY) s E} S p{x + Y « E}

for 0 i k i 1. if h(x) is a symmetric function such that 

■(x 1 h{x) i v j- i® convex then

P-|h<X + kY) i v} 1 P*[h(X + Y) i v} 

for 0 i k i 1.

Proof : Let the cumulative distribution of Y be G(y).

Then the density of X + kY is

R ~ denotes the entire n-space 

Thus

R'-
f(z - ky) d G(y), where

P-(X 4kYs E} =
«E'j

R'-

R'J
f(z - ky) d G(y) dz

E‘-
f(z - ky) da d G{y).

f{w) dw d G(y).
E-ky

Then Anderson’s theorem yields the implied results.

JL..C-,5—Remark : 3.C.4 shows that in certain sense the

distribution of X + Y is more spread out than that of

X + kY { 0 * k i 1).


