<u>CHAPTER II</u>

• •

MATERIAL AND METHODS

Material

For the present investigation, females of Indian wall lizard (<u>Hemidactylus flaviviridis</u> - Ruppel,) were selected.

Hemidactylous flaviviridis - Indian gecko <u>H.flaviviridis</u> is found usually on the walls of houses and buildings. This species was collected from the houses of Kolhapur city (Maharashtra) India. The skin colour is yellow-green and brownish spots are observed on dorsal side of the tips of digits. Dorsal side of skin is rough and ventral side is smooth and covered with small epidermal scales.

Anatomy of the system -

Female reproductive system - The system consists of a pair of ovaries oval in shape. Each ovary consists of number of follicles enclosed inside the ovarian capsule. The surface of ovary is smooth, with 3 lobes. Ovaries are white to yellowish in colour depending upon the vitellogenic oocytes. Each ovary is connected to abdomen by means of ligament. The fallopian tube emerges on the lateral side and opens in to the oviduct. The two oviducts finally open in cloaca. During hibernation the oviduct is slender, but in breeding period it is well developed. In breeding period one egg is found in each oviduct.

About 10 to 15 females were collected in each month and acclamatized to the laboratory conditions before they were sacrificed. The animals sacrificed and dissected for ovaries and oviducts. The ovaries were fixed in different fixatives viz. calcium acetate formalin 10% buffered, formalin and Baker's fixative for the histochemical studies and processed for wax sectioning and frozen sectioning. The oviducts were serially cut into 4 pieces and were processed as ovaries.

Methods

To get an insight of the mucopolysaccarides the battery of Histochemical techniques employed in the present investigation, a brief histochemical classification of mucosubstances and a review of the progress in these techniques is given in the subsequent pages, which is followed by details of the various techniques actually employed. A tabular presentation of the techniques, staining reactivities and their interpretations is appended at the end of the present chapter for ready reference.

The ovaries and oviducts were also studied for other histochemical technicues wherever needed e.g. ysosomal enzymes, proteins and calcium.

Histological techniques

The small pieces of the reproductive organs were calcium acetate fixed in the ice-cold calcium-acetate-formatin (CAF-2%__in 10% formalin) fixatives for 24 hrs. The fixation of the tissues was followed by washing in chilled distilled water, in running tap water, dehydration in alcohol, clearing in xylene and paraffine embedment. The sections were cut at 5 to 6-µ. Some sections were routinely stained by haematoxylene-eosin and Mallory's triple technique for histological observations.

1) <u>Histochemical procedures for identification of</u> <u>Mucosubstances</u>:

Before describing the histochemical techniques for the identification of mucosubstances, it will be worthwhile to note the detailed histochemical classification of mucosubstances. Spicer et al., (1965), suggested the histochemical classification of mucosubstances, in which the mucosubstances are named by (1) staining site in which they are found and (2) subtyping them as far as possible, as neutral mucosubstances, mucopolysaccharides, sulfomucins and sialomucins. It is suggested that further subdivisions of these subtyped mucosubstances can be achieved by means of the following histochemical reactions.

- a) Affinity for basic dyes such as azure A.
- b) Affinity for alcian blue,
- c) Lability with respect to testicular hyaluronidase, and
- d) Lability with respect to <u>Vibrio cholerae</u> neuraminidase.

Below is set-forth, a working histochemical classification of mucosubstances which is substantially that of Spicer et al., $\langle 1965 \rangle$.

Histochemical classification of mucosubstances

I. Neutral mucosubstances :

Neutral glycoproteins, immunologically reactive glycoproteins, fucomucins, mannose-rich mucosubstances in epithelia and connective tissues. All react towards PAS and some towards periodic acid para-diamine procedure.

II. Acid mucosubstances :

(A) Sulfated :

- Connective tissue mucopolysaccharides (Per-iodate unreactive).
 - (a) Resistant to testicular hyaluronidase.
 - i) Alcinophilic at or below 1.0 M mgc 1_2 Keratin sulfate, Heparin.
 - ii) Alcianophilia in presence of 0.7 (or less) M Mgćl₂ Dermatan sulfate.
 - (b) Susceptible to testicular hyaluronidase.
 - i) Alcohol resistant, affinity for 0.02% azure A at or below pH 2.0 - chondroitin sulfate in cartilage.
 - ii) Alcohol resistant, affinity for 0.02% azure A at or
 below p^H 4.0 chondrotin sulfates in vascular tissues.
- 2. Epithelial sulfomucins (Testicular hyaluronidase resistant).
 - (a) Periodate unreactive.
 - i) Sulfate esters on vic-glycols.

- ii) Sulfate esters not on vic-glycols.
- I) Alcohol resistant affinity for 0.02% azure A at or below pH 2.0.
- II) Alcohol resistant affinity for 0.02% azure A at or above pH 4.5.
 - (b) Periodate reactive (acid glycoproteins?)
 - i) Alcohol resistant, affinity for 0.02% azure A at or above pH 2.0.
 - ii) Weak or negligible, alcohol resistant affinity for
 0.02% azure A at or above pH 4.5.

B) Non-sulfated -

- Hexuronic acid rich mucopolysaccarides hyaluronic acid, chondroitin.
- 2. Sialic acid rich mucosubstances.
 - (a) Connective tissue mucopolysaccharides containing sialic acid (?).
 - (b) Epithelial sialomucins Acid glycoproteins.
 - i) Highly susceptible to <u>Vibrio</u> cholerae sialidase, periodate reactive and metachromatic.
 - ii) Slowly digestible with <u>Vibrio cholerae</u> sialidase.
 - a) Periodate reactive.
 - b) Periodate unreactive.
 - c) Resistant to <u>Vibrio</u> cholerae sialidase.

1) Rendered metachromatic and susceptible to enzyme by prior saponification.

II Sialidase resistant after saponification.

- a) Periodate reactive.
- b) Periodate unreactive.

For visualization of mucosubstances there are series of histochemical methods evolved by different workers in this field. The specificity of various methods can be enhanced by restoring the use of chemical reactions such as control of pH of basic dye, Sequential staining techniques, methylation, saponification, acid hydrolysis and enzyme digestion tests. Thus the non-specific histochemical methods can be supplimented with the histological and ancillary ones for the bettër understanding of the chemical composition of the cellular components. The various histochemical techniques with their merits and demerits for the mucosubstance localization, have been reviewed by Spicer (1963), Curran (1964). Barka and Anderson (1965), Lillie (1965), Thompson (1966), Spicer and Henson (1967), Spicer <u>et al.</u>, (1967) and Pearse (1968).

For the present study the following series of techniques for visualization of mucosubstances in the different reproductive organs of female <u>H.flaviviridis</u> were employed.

Fixation and Post-fixation procedures :

The different tissues of the reproductive organs were

Quickly cut into smaller pieces and immediately immersed in ice-cold solution $\langle 4^{\circ}c \rangle$ of 2% calcium acetate in 10% formalin (CAF). After prolonged fixation (24 hrs.), the tissues were well-washed in chilled distilled water, followed by washing in running tap water. After dehydration in alcohol, clearing in xylene and paraffin embedment; the sections were cut at 5 to 6- μ . The sections were subjected to various histochemical techniques hereafter described for the detection of mucosubstances.

1. Neutral mucosubstances -

(A) <u>Periodic acid-schiff-reaction</u> (PAS)

(McManus, 1946 : Hotchkiss, 1948)

- 1) After dewaxing and hydration, sections were brought to distilled water.
- 2) Oxidized with 0.5% periodic acid for 10 minutes.
- 3) Washed with distilled water.
- 4) Treated with Schiff's reagent for 10 minutes.
- 5) Rinsed three times (total 6 minutes) with 0.5% sodium meta-bi-sulphite.
- 6) Washed in distilled water, followed by alcoholic dehydration, cleared in xylene and mounted in D.P.X.

Result :- Periodate reactive, hexose containing mucosubstances stain pink magenta.

(B) <u>Phenylhydrazine - PAS</u>

(Spicer, 1965; Spicer et al., 1967)

- After dewaxing and hydration sections were brought to distilled water.
- 2) Oxidized with 0.5% periodic acid for 10 minutes.
- 3) Followed by treatment with 5% phenylhydrazine for 30 minutes.
- 4) Washed with distilled water.
- 5) Immersed in Schiff's reagent for 10 minutes.
- 6) Rinsed three times (total 6 minutes) with .5% sodium metabisulphite.
- 7) Washed, dehydrated, cleared routinely and mounted in DPX.

<u>Result</u> - Periodate reactive acid mucosubstances are selectively stained, periodate engendered dialdehydes are blocked.

- (C) <u>Diastase digestion PAS</u> technique for identification of glycogen (Lillie, 1954; Lison 1960).
- 1) After dewaxing and hydration sections were brought to distilled water.
- 2) Incubated for one hour at $37^{\circ}c$ in the following medium 0.1% Malt distase in 0.2 M phosphate buffer at pH 6.0.
- 3) Washed in distilled water.
- 4) Processed as in I-A for PAS, staining procedure.

<u>Result</u> - Loss of PAS reactivity or reduction in the staining intensity indicates presence of glycogen.

- II-Acid mucosubstances :-
- (A) Alcian blue (AB) at pH 2.5 (Mowry, 1956).

- After dewaxing and hydration, sections were brought to distilled water.
- 2) Rinsed in 3% acetic acid.
- 3) Stained with AB (1% AB in 3% acetic acid pH 2.5) for 30 minutes.
- 4) Rinsed in 3% acetic acid.
- 5) Washed in running water for 3 minutes.

6) Dehydrated, cleared and mounted as usual.

<u>Result</u> - Weakly acidic sulfated mucosubstances, hyaluronic acids and sialomucins stain dark blue. Strongly acidic sulfated mucins are stained weakly or not at all.

(B) -<u>Alcian Blue</u> (AB) at pH 1.0 (Lev and Spicer, 1964).

- After dewaxing and hydration sections were brought to distilled water.
- 2) Stained for 30 minutes in 1# AB in 0.1 N HCl (pH 1.0).
- 3) Blotted on a puffless filter paper.

4) Dehydrated quickly, cleared and mounted as usual.

<u>Result</u> - Only sulfomucins stain itense blue.

(C)- <u>Colloidal Iron</u> (CI) (Hale, 1946; Rinehart and Abul-Haj, 1951; Mowry, 1961; 1963).

<u>Stock solution</u> - To the boiling 250 ml of distilled water, 4.4 ml 29% ferric chloride solution was added constant stirring. When the solution turned dark red it was allowed to cool and then dialysed against distilled water, using dialysing membrane.

Working solution :

Glacial acitic acid - 5 ml Distilled water -15 ml Stock collodal iron -20 ml solution.

<u>Procedure</u> - 1) After dewaxing and hydration sections were brought to distilled water.

- 2) Rinsed in 12% acetic acid.
- 3) Treated with freshly prepared working colloidal iron solution for 60 minutes at room temperature.
- 4) The sections were treated with a freshly prepared mixture of equal volumes of 2% HCl and 2% potassium ferrocyanide for 20 minutes.
- 5) Washed with running water for 5 minutes.
- 6) Dehydrated, cleared, and mounted as usual.

<u>Result</u>: Sites of acidic mucosubstances are Prussian blue. The results obtained with this method are very much similar to those obtained with AB **{**pH 2.5**}** procedure.

III- Distinction between neutral and acidic mucosubstances.

A. <u>AB pH 2.5 - PAS sequential staining technique</u>.

(Mowry and Winkler, 1956; Mowry, 1963).

- After dewaxing and hydration, sections were brought to distilled water.
- 2) Rinsed briefly in 3% acetic acid.

- 3) Stained with 1% AB in 3% acetic acid (pH 2.5) for 30 minutes.
- 4) Rinsed in 3% acetic acid.
- 5) Washed in distilled water for 5 minutes.
- 6) Processed as in I A for PAS staining technique.

<u>Result</u> – Alcian blue reactive periodate unreactive acid mucosubstances stain blue, alcian blue and PAS reactive mucosubstances stain blue-purple, and PAS reactive but alcian blue unreactive-mucosubstances colour magenta.

B. - AB pH 1.0 - PAS sequential staining technique

(Spicer, 1965, Spicer <u>et al</u>, 1967).

 After dewaxing and hydration, sections were brought to distilled water.

2) Stained with 1% AB in 0.1 N HCl (pH 1.0) for 30 minutes.

3) Sections were blotted on a puffless filter paper.

4) Processed as in I-A for PAS, staining technique.

<u>Result</u> - Only sulfomucins are stained blue or blue-purple. Nonsulfated and only periodate reactive mucosubstances are stained pink-magenta.

<u>C</u> <u>Colloidal</u> <u>Iron-PAS</u> <u>sequential</u> <u>staining</u> <u>technique</u>

(Ritter and Oleson, 1950; Mowry, 1963).

- 1) After dewaxing and hydration, sections were brought to distilled water.
- 2) Rinsed briefly in 12% acetic acid.

- 3) Treated with freshly prepared colloidal iron working solution for 60 minutes at room temperature.
- 4) Treated with 12% acetic acid.
- 5) Treated with freshly prepared mixture of equal volume:s of HCl and 2% potassium ferrocyanide for 20 minutes.
- 6) Washed with running water for 5 minutes.

7) Processed as in I-A for PAS staining technique.

<u>Result</u> - Acidic mucosubstances colour blue or blue-purple and neutral mucosubstances colour pink-magenta. Results are mostly similar to those of AB pH 2.5 - PAS.

IV - Distinction between sulfomucins and carboxymucins :

A- <u>Aldehyde fuchsin</u> (AF)

(Gomori, 1950; Halmi and Davies, 1953).

<u>Preparation of AF crystals</u> - The crystals of AF were prepared according to the method suggested by Cameron and Steal (1959). To 200 ml boiling distilled water, 1 gram of basic Fuchsin was added and the solution was allowed to boil for one minute, then cooled and filtered. To the filterate, 2 ml of conc. HCl and 2 ml of paraldehyde were added. The solution was left in stoppered bottle at room temperature. When the solution had lost its reddish colour, usually after 3-4 days, it was filtered and the filterate was discorded. The precipitate was dried on the filter paper at 60°c. <u>Staining solution</u> :- The staining solution was prepared by dissolving 0.5 gm of dry crystals in 70% alcohol.

Procedure :

- 1) After dewaxing and hydration, sections were brought to distilled water.
- 2) Rinsed in 70% alcohol.
- 3) Stained with AF staining solution for 80 minutes.
- 4) Rinsed with 70% alcohol.
- 5) Dehydrated in 90% and absolute alcohol, cleared and mounted as usual.

<u>Result</u> - Sulfated mucosubstances are stained dark-purple, sialomucins and hyaluronic acids stained dark-purple, sialomucins and hyaluronic acids stain light-purple. Some elastic fibres also stained intense purple.

B. - <u>Aldehyde fuchsin</u> - <u>AB</u> (AF - AB pH 2.5) sequential staining technique (Spicer and Meyer, 1960).

- 1) After dewaxing and hydration, sections were brought to distilled water.
- 2) Rinsed in 70% alcohol.
- 3) Stained in AF staining solution for 30 minutes.
- 4) Rinsed in 70% alcohol.

5) Washed in running water for 5 minutes.

6) Rinsed in 3% acetic acid.

7) Stained with AB (pH 2.5) for 30 minutes.

8) Rinsed in 3% acetic acid.

9) Washed in running water for 5 minutes.

10) Dehydrated, cleared and mounted as usual.

<u>Result</u> - Sulfated mucosubstances stain purple, nonsulfated mucosubstances like sialic acid and hyaluronic acid stain blue.

<u>C. Critical electrolyte concentration technique using</u> <u>AB at pH 5.6 with increased concentrations of MgCl2</u>.

(Scott et al., 1964; Scott and Dorling, 1965). <u>Staining solution</u>: 0.1% AB was added to 0.05 M sodium acetate/acetic acid buffer at pH 5.6. Then more MgCl₂ was added and a series of increasing concentration of Mg^{++} were prepared such as 0.0M, 0.1 M. 0.2M. 0.4M. 0.5M. 0.6M, 0.8M and 1.0M.

Procedure :

1) 8 dewaxed slides after hydration were brought to distilled water.

2) Each slide was stained for 30 minutes in staining solutions 0.0, 0.1, 0.2 etc. respectively.

3) Washed in running water for 5 minutes.

4) Dehydrated, cleared and mounted as usual.

<u>Result</u>: Generally carboxymucins like sialic acid and hyaluronic acid are not stained at or above 0.1 M Mg⁺⁺ concentrations. Sulfomucins are selectively stained at and above 0.2 M Mg⁺⁺ concentrations. Various sulfomucins lose their alcianophilia at different levels of Mg⁺⁺ concentration.

D.-Azure A. Metachromatic staining technique at controlled pH levels.

> (Wislocki <u>et al.</u>, 1947; Spicer, 1960; Spicer <u>et al.</u>, 1967; Pearse, 1968).

Staining solutions :

pH 0.5 - 0.02% azure A in 0.5 N 8C1.

pH 1.0 - 0.02% azure A in 0.1 N HCl.

pH 1.5 - 0.02% azure A in 50 ml buffer

(30 ml. 0.1 N HCl + 30 ml 0.1 M KH₂ PO4).

pH 2.0 - 0.02% azure A in 50 ml buffer.

(20 ml 0.1 N HCl + 30 ml 0.1 M KH₂ PO4).

pH 2.5 - 0.02% azure A in 48 ml distilled water + 2 ml 0.1 M citric acid.

pH 3.0 - 0.02% azure A in 48 ml distilled water + 1.65 ml 0.1 M citric acid + 0.35 ml 0.2 M Na₂H PO₄.

pH 3.5 - 0.02% azure A in 48 ml distilled water + 1.4 ml

0.1 M citric acid + 0.6 ml 0.2 M Na₂ HP04.

pH 4.0 - 0.02% azure A in 48 ml distilled water + 1.25 ml

0.1 M citric acid + 0.75 ml 0.2 M Na_2HP04

pH 4.5 - 0.02% azure A in 48 ml distilled water + 1.1 ml 0.1 $\frac{1}{4}$ tric acid + 0.9 ml 0.2 M Na₂HPO₄.

pH 5.0 - 0.02% azure A in 48 ml distilled water + 1.0 ml

C.1 M ctric acid + 1.0 ml 0.2M Na2HPO4.

Procedure -

1) After dewaxing and hydration, sections were brought to distilled water.

2) Stained with azure A at desired pH for 30 minutes.

3) Quickly washed in distilled water.
4) Wet sections were observed under microscope, the observations were recorded.

5) Dehydrated in alcohol and observed under microscope.6) Cleared and mounted as usual.

<u>Result</u>: Strongly sulfated mucosubstances exhibit metachromasia below pH 1.45, Sialomucins generally stain metachromatically between pH 2.45 and 3.45; some protein masked sulfomucins and hyaluronic acid exhibit metachromasia at and above pH 4.45.

Generally metachromasia of sulfomucins resists alcoholic dehydration.

E - Mild methylation - AB pH 2.5

F - Active methylation - AB pH 2.5

(Fisher and Lillie, 1954; Spicery 1960).

Procedure -

1) After dewaxing and hydration, sections were brought to distilled water.

2) Rinsed in absolute methanol.

3) Sections were placed in coupl-in jars containing 0.1 N HCL in a bsolute methanol (Preheated) for 4 hours at $37^{\circ c}$ (mild methylation) and at $60^{\circ c}$ (active methylation). Correspondingly the control sections were kept at $37^{\circ c}$ and $60^{\circ c}$ in methanol only (without HCL).

4) Rinsed in absolute methanol.

5) Followed by 5 minutes washing in running water.

6) Stained with AB pH 2.5 as in 11-A.

7) After washing, dehydration and clearing, sections were mounted in $D_*P_*X_*$

<u>Result</u> : Generally mild methylation abolishes the bosophilia of carboxymucins by esterification while, active methylation hydrolyses most of sulfate esters.

G - Mild Methylation - saponification - AB pH 2.5

G - Active methylation - saponification - AB pH 2.5

(Spicer and Lillie, 1959,; Spicer, 1960). Sections were methylated separately at 37^{°C} and 60^{°C} as above. After brief washing with distilled water, they were treated with 1% KOH in 70% alcohol for 20 minutes. After washing briefly with distilled water, they were stained with AB pH 2.5 as in II-A . After washing, dehydration and clearing, the sections were mounted in DPX.

<u>Result</u> : Restoration of the bosophilia after soponification indicates the presence of carboxyl groups but failure of restoration of the bosophilia indicates the presence of the sulfate esters.

I-Acid hydrolysis :

(Quinterelli <u>et al</u>, 1961).

1) After deaxing and hydration, sections were brought to distilled water.

2) They were treated with 0.1 N HCL at $60^{\circ c'}$ for 4 hours.

3) Washed in running water for 5 minutes.

4) Stained either with AB pH 2.5 or azure A pH 3.0

5) Dehydrated, cleared and mounted as usual.

<u>Result</u> - Complete or partial loss of alcianophilia or metachromatia indicates probable presence of si**b**tomucins.

V - Enzyme digestion tests :

A . Pepsin digestion

(Pearse, 1969, Spicer, 1960, Quintarelli, 1963, Thompson 1966).

Procedure -

- After dewaxing and hydration, sections were brought to distilled water.
- 2) Digested in 0.1% pepsin in 0.1 N HCL at 37^{oc} for 4 hours.
- 3) Washed throughly in running water.
- 4) Stained with AB pH 2.5, Cl or azure A pH 1.5, 3.0 and 4.5.
- 5) Dehydrated, cleared and mounted as usual.

<u>Result</u> - Protein masked mucosubstances (PAS positive but AB, CI and azure A negative) stain with basophilic dyes after removal of protein masking.

A bird's eye view of the various histochemical techniques employed in the present investigation alongwith the chemica I reactions involved in the staining and the histochemical interpretations of the staining reactions with the literature is given in Table 1.

For the histochemical demonstration of lysosomal enzymes the standard methods were used. For β -glucuronidase activities post-coupling method by Seligaman et al., (1954), was employed and for acid phosphatase activities simultaneous coupling method by Barka (1960, 1962) was used. For calcium demonstration Alizarin red S method (McGee-Russell, 1958) and for demonstration of yobk globules Sudan black B, Chiffelle, and Putt, 1951) method were employed. For enzyme and yolk studies fresh force sections were utilized...

....

	Hi stoche	Histochemical Methods employed for visua	ls employed for visualizing Mucosubsta nces	
His	Histochemical Method	Chemical reaction involved	Histochemical result	References
1	Periodic acid	Oxidation of vicinal hydroxyls	All polysaccharides and	McManus(1946)
	schiff's reaction	to dialdehydes by periodate	mucosubstances colour	Ho tchki ss
	(PAS)	and formation of coloured	pink to magenta.	<1948 ».
		complexes with schiff's reagent.	.\$	
2)	Periodic acid	B henylhydrazine selectively	Periodate reactive	Spicer (1965)
	phenylhydrazine	blocks periodate engendered	acidic mucosubstances	Spicer et al.
	Schiff	dialdenhydes in mucosubstances,	stained red presumably	(1967).
		leaving unblocked dialdehydes	are those in which acid	·
		in periodate reactive muco-	groups are proximal to	
		substances available to subse-	vicinal glycols.	
		quent Schiff staining.		
3)	Di astasedi gesti on	Hydrolyses and removes	Loss of PAS reactivity	Lillie (1954)
	PAS.	glycogen.	in sites containing	Lison (1960)
			glycogen.	
4 >	Alcin blue pH 2.5.	Probably formation of alcian	Sialomucing and weakly	Mowry (1956).
		blue complexes with carboxyls	acidic sulfomucins stain;	
		and sulfate groups.	the most strongly acidic sulfomucins stain weakly not at all.	10

Table

... k

His	Histochemical Method	Chemical reaction involved	Histochemical result	References
5	Alcian blue,	Probably formation of alcian	Weakly and strongly	Lev and
	pH 1.00.	blue complexes with sulfate	acidic sulfomucins are	Spicer {1964 }.
		groups.	selectively stained.	
6)	Colloidal Iron.	Probably formation of	Non-sulfated acid muco-	Hale (1957)
		complexes between cationic	substances and some	Rinehart and
		colloidal ferric aggregates	sulfated mucosubstances	Aby1-Haj (1951)
		and carboxyls, sulfate and	colour blue.	Mowry (1961,63)
		phosphate esters.		
7 >	AB pH 2.5-PAS.	Addition of results by	Alcian blue reactive	Mowry and
		single methods	periodate unreactive acid	Winkler
			mucosubstances stain blue	1956.
			Alcian blue and PAS reacti-	
			ve mucosubstances colour	
			purple blue. Neutral muco-	

substances colour pink magenta.

1 ~1

Histochemical Method	Chemical reaction involved	Histochemical result	References
8} AB pH 1.0 - PAS	Addition of results by	Sulfomucins stain blue or	Spicer (1965)
	single method.	blue-purple.Neutral and	Spicer et al.
		non-sulfated periodate	(1967).
		reactive muco-substances	
		stain pink magenta.	
9) Colloidal Iron	Addition of results by	Colloidal iron reactive	Ritter and
PAS	single methods.	periodate unreactive acid	01 eson { 1950 }
		mucosubstances stain blue.	Момгу (1963).
		Colloidal iron and PAS	
		reactive mucosubstances	
		colour purple-blue neutral	
		mucosubstances colour pink	
		magen ta.	
10) Al dehyde fuchin	Formation of salt complexes	Sulfated mucosubstances	Gomori (1950)
(AF)	between cationic staining	stain dark purple,sialo-	Halmi an d
	entity and sulfated and	mucins and hyaluronic acid	Davies (1953).
	carbéxyl groups.	colour light purple.	

Histochemical Method	Chemical reaction involved	Histochemical result	References
11) AF_AB pH 2.5	Formation of salt complexes	Sulfomucins stain purple	Spicer and
г я	between cationic staining	or blue-purple, sialomuc ins	Meyer (1960)
	entity and sulfate and	and other non-sulfated acidic	
	carboxyl groups.	mucosubstances stain blue.	
12) Alcian blue at	Alcian blue complexes with	Non-sulfated acidic muco-	Scott et al.
PH 5.6 With	sulfate groups. Different	substances are not stained	(1964)
graded concentra-	sulfomucins vary in the	at and above O.1 M Mg ⁺⁺	Scott and
tions of MgCl ₂	critical electrolyte concen-	concentration. Sulfomucins	Dorling(1965).
	tration at which alcianophilia	stain selectively at and	
	is lost.	above 0.2 M Mg ⁺⁺ concentration.	i on .
13) Azure A or	Formation of blue orthochrom-	Strongly sulfated muco-	Wi Slocki
toluidine blue	atic or purple or red	substances stain purple	et al. (1947).
at controlled	metachromatic salt complexes	red at pH 0.5 to 1.5	Spicer (1960).
pH levels.	with the extinction values	sialomucins stain purple-	Pearse(1968).
	indicating degree of	red at pH 2,5 to 3,5	
	acidity of the polymer.	hyaluronic acid and weakly	
		acidic mucosubstances stain	
		purple at pH 445 to 5404	

Histochemical method	Chemical reaction involved	Histochemical result	References
14 Mild methylation	Esterification of carboxyl	Generally mild methylation	Fisher and
AB pH 2.5	groups.	abolishes the alcianophi-	Lillie(1954).
		lia of carboxymucins.	Spicer (1960).
15 Mild methylation	Restoration of carboxyl	Restoration of the alciano-	Spicer and
sapon i fication	groups.	philia after saponific-	Lillie(1959)
AB pH 2.5		ation of methylated	Spicer (1960))
		sections, indicates the	
		presence of carboxyl	
		groups.	
16) Active methyla-	Carboxyl groups are esterified	Active methylation	Fisher and
tion AB pH 2.5.	sulfomucins are desulfated.	abolishes alcianophilia	Lillie(1954).
		of carboxymucins through	Spicer (1960).
		ester#f#cation and of	
		sulfomucins through hydro-	
		lytic removal of the	
		sulfate groups.	

Histochemical Method	Chemical reaction involved	Histochemical result	References
17) Active methylation	n Restoration of carboxyl	Restoration of the alciano- Spicer and	Spicer and
sapon i fication	groups. Sulfomucins are hydro-	philia after subsequent	Lillie(1959).
AB pH 2.5	lyti £a lly removed during	saponification indicates	Spicer (1960).
	active methylation are not	the presence of carboxyl	
	restored following subsequent	groups and loss of alciano-	
	saponification.	philia indicates the	
		presence of sulfate groups.	
18) Acid hydrolysis	Removes sialic acids from	Complete or partial loss	Quintarelli
AB pH 2.15 or	muc osubstances.	of alcianophilia or meta-	et al, (1961).
Azure A pH 3.10		chromasia indiĉates the	
		probable presence of sialo-	
		muc in s.	
19) Pepsin digestion	Hydrolysis of <mark>internal</mark> peptide	Protien masked mucosubstan-	Pearse(1960).
AB pH 1.0,2.15 or	bonds as well as those of the	ces stain with basophilic	Spicer (1960).
azure A pH 1.15,	the terminal amino acids of	dyes after removal of	Quintarel li
3₀:0 and 4₀:5₀.	proteins.	prot ėin masking.	(1963).
			Thompson (1966).

、3632