During the present investigations aix mejor chomeal parameters, namely dismolved oxygen, free earbondioxide. hardmess of water, ph, phosphete and nitrate, from the surface weters of Motitalav, were etudied.

The water samples for chenical analyais ware drawn at two fixed atations and mot of the analyals was carried out In the IIeld.

1) Dismolyed oxyen

Winkler's unmodified method ae given br welch (1948) was uned to estimate the dissolved 0_{2} from the mriace vaters. The eltration method was found much suitable for on the spot studies. According to carritt and Carpenter (1966) this method 1s leas complicated and mach musi securate than many other methodis (about $£ 0.02 \mathrm{mg} / 11 \mathrm{t}$).

During the present inventigationa the water samples ware dram from the murface layers. The monthly average valuea of the aissolved oxygen are exprassed in ppra and shown in the Fig no. 6 . The weekly readings are given in the table no. for refercnee. It can be seen from the table that at atation 2 and 2 the maximu valuas recorded axe 12 pprand 13 pin respectively on the same day $i . e, 20.12 .01$. but the lowest valuea recorded were 5.2 ppm at $\mathrm{mtn}_{\mathrm{n}} 1$ on 25 m 92 and 4.8 ppan ath, 2 on 27.9.81.

The graph of average values shows similar Eluctuations of the values at both the stations with minor alffereme., At

Table No, fi Weekly readings of aissolved oxygen in PPA for september 1981 - April 1982.

	Stetion Honl.	Station me. 2.
Data	Reedinge	Readinge

13.9 .81	7.2	7.2
20.9 .81	7.3	7.0
27.9 .81	7.6	4.8

4.10 .81	8.4	8.0
11.10 .81	5.4	4.8
18.10 .81	10.0	9.4
25.10 .81	11.2	4.8

15.11 .81	7.6	8.4
22.11 .81	7.2	7.2
29.11 .81	8.7	8.4

6.12 .81	7.9	9.4
13.12 .82	8.0	8.8
20.12 .81	12.0	13.0

3.1 .82	9.2	9.3
10.1 .82	8.8	10.5
17.1 .82	9.0	8.8
24.1 .82	8.0	9.1
31.1 .82	8.5	8.7

	Station No,	station He.2.
Date	Readings	Roading
14.2.82	7.8	7.7
21.2.82	7.0	5.8
28.2.82	8.0	8.0
7.3.82	6.3	C. 4
14.3.82	7.6	6.6
21.3.82	8.0	7.2
28.3.82	6.7	6.7
4.4 .82	6.3	6.2
11.4.82	6.0	6.0
18.4.82	5.2	5.6
25.4.82	6.2	5.6

otn.2. and stn 2. during the month of December, maximum average valuet are recorded. Where as the lowest valyen are recorded during April '32. In general, the unitorn pattern at both the stations was shown zuring the investigations.

ii) Eret Carpon Atoxide -

Free carbon dioxide was estimeted from the aurface wheare of Motitalav by uning phemolpthalime method an given by Welch (1948). The table no. 7 clearly show that on many occasions the value at one or the other atn,was zero. Specially during the months of January and February at atn, no 2 no free Carbon diozide wan recoried in the surface waters. The highest values for thia gas were estimated to be 18 ppa and 17 ppa at stns. 1 and 2 respectively on 18.4 .82.

Tise average monthiy values show the general tendency of almost parallel fiwetuations recording initial higher valuea in september then gradual drop till the lowest valuea for both the stas in rebryary and again highest vaives up to 12 ppin in the month of April'te.

1i1) Hardintes -

The hardness of water at both the stations ohew almost uniform corelation in liuctuations for its monthly average valwe as can be seen from the fig no, B_{o}, the lowest average values were obsorved for both the atns. in September' 81 and the higheat average values were recorded in the month of Decemberse.

The table no Be giving the weekly readingo of hardnese of water in ppm and shows the same uniform pattern. The

Table He, 7: Neekly readings of Yree Carbon dioxide in PpM for September 1981-Apri1, 1902.

Station so.l.
Readingt Station 10,2

Date -
14.2.82
2.0

00
21.2 .82

00
00
28.2.82

00
00

7.3 .82	00	00
14.3 .82	4.0	3.0
21.3 .82	2.0	5.0
28.3 .82	5.0	6.0
4.4 .82	8.0	6.0
11.4 .82	10.0	7.0
18.4 .82	18.0	17.0
25.4 .82	11.0	15.0

station zonl.
Readings
station Kixaz
Date
14.2.82
21.2 .82
28.2.82
41.00
38.0

7.3 .82	50.00	53.00
14.3 .82	50.00	48.00
21.3 .82	48.00	45.00
28.3 .82	43.00	43.00

4.4 .82
30.00
45.00
11.4.82
30.00
36.00
28.4.82
38.00
36.00
25.4 .82
29.00
31.00

maximum and minimum hardmess vaiues were recorded at beth the stations on same days. Therofore it is seen that on 13-9-81 the lowet values of 12 ppm and 24 ppin were recorded at ath 1 ama sta 2 respectivily. The higher valuen were at Migh as 110 ppan and 113 ppm reapectively for the stations 1 and 2.. Alwost throughout the time auring the period of invaltigations the monthly average valuen at sth 2 were higher than thoee at: atn. 1.

1v) pi (Hydrogen iom concentration)
The ph of water was ntudied by ualing an universal Insicator kit in the fiehd. The Ifg Bahow the clear Reture of the pif fluctuations during the period of inventigatiome.

The average monthiy readings fiuctuated from 6.3 at Etn. 2 In the month of October to 8.2 at atn. 2 in Hovember 81.

The weokly readinge at ten. 1 and thn. 2 . show that the pir values had conelderable fluctuation throughout the period of investigation which can not be noticed by atudying the average values. At stn 1 the weokly valuas ranged from 4 om 11-10-81 to $\cdot 8.5$ on 25.11.81. where at at stn. 2 the loweat value of 5.0 was recorded on 4.10.01 where as the highest value of 9 wat recorded at this station sexveral times lite on 25.10.81, 6.12.81. 18 and 25.9.82. etc. But on an average the pH values were more than 7 for longer duration during the invettigeticns.

v) Ehosphate

Posphate is one of the important nutrients essential for the productivity of phyto-plankton and macrophytes is

Taho Ho, Weekly readings of phosphate in me/lit for Soptcmber 1981-April 1982.

station Honl.
Date

Reading:

Station Monae
Readinge

14.2 .82	0.1	0.1
21.2 .82	0.06	0.06
28.2 .82	0.4	0.4
7.3 .82	0.6	1.0
14.3 .82	0.4	0.4
21.3 .82	0.1	0.1
28.3 .82	0.2	0.2
4.4 .82	0.2	0.2
11.4 .82	0.2	0.2
18.4 .82	0.2	0.1
25.4 .82	0.1	

aquatic noosyutem．
The Ag．show monthiy average valwes of phosphate from the murface watere of Motitalav．at $3 t a t i o n s 1$ and 2. The readinge are expreased in mg／ilt．In the graph there is a general correlation in the average values at both the etations．The valuea range betweon si mg／ilt in April＂e2 and ．9 mef／Lit in December＇81．

The table 9 shows the weokly readings of phoaphate at both the atations during the period of study．The highest Value recorded during the period was 1.4 mig／ilt．on 11．10． 02 at both the atationa．The loweat phomphete value of $04 \mathrm{mg} / 1 \mathrm{Lt}$
 The difference in the both the values appears to be $1.36 \mathrm{mg} /$ 11も。
vi）新trate－

Weekly values of Nitrate have been expressed in the table no．10．Where much irregular pattera con be nown．

Though the maximum value during the trady period $1 .{ }^{0}$ ． $1.25 \mathrm{mg} / 11 t$ of aitrate van obmarved at both the stations on 10．1．82，The Eig．10，show that the monthly average values were more in the months of March and April．

On mom occassions tho nftrate values were zero as shown in the table．Therefore it was evident that the nitrate content in the tank water was not constant and signifioant．

Tablempan Weekly vealings of uttrate in mg/lit for Septomber 1981 -April 1982.

	Seation Ho.l.	geatina wingo
Date	Readinge	Readinct

13.9 .81	0.7	0.65
20.9 .81	0.25	0.25
27.9 .82	0.15	0.35
4.10 .82	0.5	0.5
11.10 .81	0.5	0.38
18.10 .81	0.25	0.25
25.10 .81	0.25	0.35

15.11 .81	0.3	0.25
22.11 .82	0.25	0.4
29.11 .81	00	00

6.12 .81	0.3	0.4
13.22 .81	00	00
20.12 .81	0.5	0.3

3.1 .82	0.5	0.5
10.1 .82	1.25	1.25
17.1 .82	0.5	0.35
24.1 .82	0.4	0.4
31.1 .82	0.08	0.1

Etation mol.
 station IN. 2 .

Readingp
Date
-
Readtmor

14.2.82	00	00
21.2.82	00	00
28.2.82	0.2	0.2
7.3.82	0.5	1.0
14.3.32	0.9	0.9
21.3.82	0.75	1.0
28.3.92	1.0	2.0
4.4 .82	1.0	1.0
11.4.82	1.0	1.0
18.4.82	1.0	1.0
25.4.82	1.0	1.0

VI

BIOLOGICAL STUOIES

In the studies of the biota of the tank ${ }^{\text {the }}$ floral and faunal samples were collected from mainly the marginal areas throughout the period of investigations. Though the plankton samples were initially drawn from different locations, due to its almost uniform distribution, later the plankton samples were collected from Stn. 1 and Stn. 2 only (Map.), The plankton samples could not be collected during the months of May-auly 1982. due to the drying of the tank by the local municipality for tank cleaning purpose as a neasure for weed control. i) Flora and Fauna -

The flora and fauna of the tank showed much less number of types of orgenisms though it has a considerable water spread area (12.5 ha.) The macro vegetation in the tank was represented by only three dominant species where as the phytoplankton consisted of following types: Baciliarlophyceae20. Chlorophyeeae-14. Cyarophyceaem10 and Desmidioaceae-7. In total the phytoplankton samples represented about 51 types of organisms.

In Zooplankton samples about 24 types of forms were comon and they were found throughout the period of investigations with minor seasonal fluctuations. In the samples 10 types of Rotifer, 9 types of Copepod and 5 types of Cladoceran organisms were identified. The macro fauna of the tank was made up of 11 species. The composition of the fauna was Crustaceansm2. Molluscs-2, Fishes-4. Amphibianm1 and Reptilesm2.

The list of organisms found in the Botitalav ${ }_{1}^{\text {is }}$ given below :-
Phytoplankton
Diatoms (Bacillariophyceae)

1. Diatom vulaare
2. Gymbelle gffinis
3. Tabeliaria SP.
4. Teracyclus 1acustria
5. Epithenia Zepra
6. Diatomella bal Eouriana
7. Erustulia SP.
8. Plnnularia Nobilis
9. Navicula SP,
10. Fragilaria Fapucina
11. Symedraulina 5
12. Achnanthes SP.
13. Brebissonie boeki1
14. Amphora ovelis
15. Mesosira sp.
16. Melosoria granulata
17. Fragilaria crotonensis
18. Synedra affinis
19. Gomphonema Paravulum
20. Stauronesis anceps
(.) Chlorophyceae (Green Algae)
21. Spirogyra
22. Nephrocytium quedriseta
23. Characiun Hookeri

Chlorophyceae (Green/Alage, (Conta.

4. Chlorosarcina minor
5. Pediastrum Simplex
6. Pediastrum duplex
7. Hyponodinium SP.
E. Spinoclosterium Curvatum
8. Treubaria regulare
9. Hydrodicyton reticulatum
10. SpondyIosium moniliforme
11. Desmidion snhaexicum
12. Sphaerocystio Schroeteri
13. Pithophora oediogonia

Cynophyceae (Blue - green Algae)

1. Microcystis aeruginosa
2. Pediastrum boryanum
3. Coelosphaersum dibium
4. Spirulina piatensis
5. Anabaenopsis circularis
6. Merismopedia punctata
7. Pleurocepsa SP.
8. Micrasterias SP.
9. Anabaena SP.
10. Nostoc 1inckia
Desmidus (Desmidiaceae)
11. Desmid staurastrun
12. Staurastrum leptocladium
13. Coelastrum microporum
14. Staurastrum chaetoceras
15. Cosmarium monomarum
16. Cosmarium granatum
17. Sphaero zesoma aubertianum
Macrophytes
18. Paspalidium SP.
19. Marsilea Lncinata
20. Hydrilla vertecllata
Zooplankton (Rotifers)
21. Eranchious falcatus
22. Branchionus rubens
23. Branchionus calyciflorus
24. Keratella taurocephala
25. Trichocera cylindrica
26. Paracolurella aemula
27. Asplanchna Rilinia
28. Asplanchna filinia
29. Notholcaocum minota
30. Filinia terminelis
31. Trichocerca longiseta
32. Cephalodella megalocephalo
33. Cochlearis
34. Branchionus candatus
Zoonjankton (Conto
35. Kellicottia SP
36. Branchionus forficula
37. Filinia Granchiata
18: Lophocharis Salpina
38. Euchlanis SP.
Copepods
39. Diaptomus napulius II (Developmental Stage)
40. Diaptomus napulius IV (Developmental Stage)
41. Neodiaptomus diaphorus
42. Cletocamptus albvguerguensis
43. Rhineaiaptomus indicus
44. Spicodiaptomus chelospinus
45. Cyclopota
46. Cyclons bicuspiaatus thomasi
47. Ergasilus chautaughaensis
Cladocera
48. Chidorus SP
49. Daphnia pulex
50. Diaphanosoma brachyurum
51. Ceriodaphnia Parthenogenetic
52. Simocephalus SP.
Macro-Orannisms
5 Crustacean
53. Macrobrachium SP. (Fresh Water prawn)
54. Paratelphusa SP. (crab)
55. Plla $5 P$
56. Melonia tuberculata
57. Fishes
58. Puntius ticto
59. Rasbora dtaniconius
60. Labso $\frac{\text { Eibriatus }^{m}}{\lambda}$
61. Cirrhina reba

Amphthians

1. Rane tigerina

Rentiles

1. Cerbenus bynchops
2. Geomyda SP (Turtle)

The following forms were found predominant in the phyto and zoglankton samples for the eatire period of research.

Bacellaxia - Melosive granulata Diatorazsp.
Algae - Neohrocytium guadriseta, Coelastrum nicroorum. sis spirocyta sp.. microcystis aeruginosa,

Rotiner - Eranchionus Earlicula
Copepod - Rhinediantomus indius and piaptomus napulis v larval stage.

ii) Plankton Studies:

In the quantitative plankton studies the samples were collected at Str. 1 and stn. 2. respectively in the Hotitalav. After collection, the samples were centrifuged and the volume of the sample was estimated in a graduated test tube. After calculating the volume of tank water filtered to get the plankton the results were expressed as plankton sample in cc/lit of tank water. The weekly readings of plankton volune for the period of Sept., 1981-April. 1982 are given in table No. 11 and the monthly average values of volume of plankton at both the stations is shown in fig.no.ll.

The plankton volume ranged from $0.01 \mathrm{cc} / 11 t$ to 0.15 cc/1it. and $0.01 \mathrm{cc} / 1 \mathrm{~L}$. to $0.08 \mathrm{cc} / 1 \mathrm{t}$. at stations 1 and 2 respectively. The plankton volume at Stn.l was most of the time more than at $\operatorname{stn}^{2} 2$. The monthly average value of the planiton volume at $3 t n .1$ was 0.04 co/lit and at stn. 2 was 0.03 cc/lit. At $\operatorname{stn} .1$ the maximum monthly average values were recorded in the month of september ($0.09 \mathrm{cc} / 1 \mathrm{tt}$) and in the subsequent months the level droped down till March. In the month of April the plankton volume increased to reach the Second peak, (1.e. $0.06 \mathrm{cc} / 11 \mathrm{t}_{*}$) At $\operatorname{stn} 2$ not much fluctuation in the planktons was observea (Fig. 11). Where the maximum monthly average value was recorded to be $0.05 \mathrm{cc} / \mathrm{lit}$. in September 1981.

In the quantitative study, the weekly percentage composition of the phyto and zooplankton was estimated to see its interrelationship. Arter using the sample for its

Table No, 11: Weekly readings of plankton Sample in CC/11t for September 1981-April 1982.

Station No. 1 Station NO. 2
Date
Readincs
Readings

14.2 .82	0.04	0.04
21.2 .82	0.03	0.01
28.2 .82	0.01	0.02

7.3 .82	0.01	0.02
14.3 .82	0.02	0.02
21.3 .82	0.01	0.02
28.3 .82	0.04	0.04

4.4 .82	0.01	0.05
12.4 .82	0.11	0.03
18.4 .82	0.07	0.01
25.4 .82	0.04	0.04

Pable No. 12;* weekly readings of percentage conposition of phyto and zooplankton from Septenber 1981 - april 1962.

Eate	Enytoolankton	Zoplenkton
13.9.81	A6. 20	52. 42
20.9.81	85.00	15.00
27.9.81	-	-
4.10 .31	85.77	34.04
11.10.31.	-	\cdots
18.10.81	69.08	28.88
25.30.82	\cdots	\cdots
15.11.01	49.8	49.98
22.11.81	\cdots	--
29.11 .81	87.26	11.09
6.12 .81	45.35	50.73
33.12.81	91.47	8.12
20.12.81	80.10	19.22
3.1 .32	66.03	33.60
10.1.82	91.50	8.13
17.1.82	62.33	34.51
29.1.82	98.92	3.11
31.1.82	00.17	15. 36
14.2.82	87.68	12.06
21.2. 82	90.25	8.47

Station No. I:

Date	Phytoplankton	Zooplan
28.2 .32	75.15	24.65
7.3.82	94.72	5.17
14.3.82	69.18	30,42
22.3.82	58.98	38. 51
28.3.82	40.67	58.79
4.4 .82	62.35	37.43
11.4.82	49.59	44,98
18.4.82	92.98	6.20
25.4.82	55.44	44.68.

qualitative analysis, and volume estimation, The weekly samples were studied by using Hensen Stempel pipette and Sedgwick-Rafter counting cell to count the number of phyto and zooplankton organisms in 2 cc, of diluted sample. The number organisms counted was utilized to determined the percentage composition of both plankton groups in the sample.

The table No. 12 and No. 13 show the weekly fluctuations in the percentage composition of phyto and zooplankton at Stn. 1 and $\operatorname{stn} .2$ respectively.

From the weekly readings it can be seen that on four occassions at Stn. 1 and on sixeccestions at Stn. 2 . The Zooplankton dominated phytopkanton organisms. However, in a11"other readings phytoplankton was dominant as expected.

The weekly percentage of phytoplankton at $\operatorname{stn} .1$ and $\operatorname{stn} .2$ ranged from 40.67% to 98.92% and 16.84% to 100% respectively. In the weekly Zooplankton samples at both the stations the fluctuation was at Stn. $1.1 .11 \%$ to 58.79% and at Stn. 2 from 0% to 83%.

The difference in the fluctuations (the maximum and mininum values recoraed) in phytoplankton percentage at stn.l and Stn. 2 were 58.25 and 83.52 respectively. Hhere as in Zooplankton these values were at Stn.No.1. 57.68 and at stn.2. 83.

This clearly shows that at Stn. No. 2 the fluctuations in the plankton samples were much prominant and varied as compared to the fluctuations at Stn.No.1, which were much uniform.

Table Mo. 13 im Weekly reanings of percentege composition

- of phyto and zooplankton Erom Septenber 1981Apri1. 1982.

Betaion Bo. TI.

Date	ghytoplankton	2ooplaniton
13.981963	90.79	9.08
20.9.82	83.7	21.1
27.9.82	99.8	0.2
4.10 .83	97.25	2.70
11.10.81	100.00	0.0
18.30.21	98.97	0.93
25.10.01	\cdots	-
15.12.81	76.31	24.29
22.11.31	\sim	-
29.12.81	84.24	15.56
6.12 .81	22.62	77.29
13.12 .81	86.32	12.57
20.12.81	88.5	6.5
3.1 .82	16.84	83.00
10.1.82	88.69	11.06
27.1.82	60.62	38.76
24.1.32	90.74	9.22
31.3 .82	73.38	24.59
3.4.2.32	52.60	46.92
21.2 .82	38.67	59.88
28.2.82	48.53	51. 32

Station No. IIs.

Date	Phytoplankton	Zoonlankton
7.3.82	57.11	42.81
14.3.82	51.93	48.00
21.3.82	55.78	42.82
28.3.82	32. 40	64.62
4.4 .82	72. 29	25.44
11.4.82	52.22	46.91
18.4.32	94.53	5.35
25.4.82	41.82	57.76

The monthly average values in the percentage compositions of phyto and zoopiankton are shown in the fig 12 and fig 1.3 for Stn. 1 and $s t n .2$ respectively.

At station 1. throughout the period the phytoplankton proportion in the total sample was much more than Zooplankton. The monthly values show (fig. 10.12) that proportion of Dhytoplankton was between 65 m 84% where that of zooplankton was between 160034%.

Stn. No. 2 shows the monthly percentage of Phytoplankton ranging fron 47% to 99% and Zooplankton from 1% to 53% (Eig.No.13).

Though there are periodic fluctuations at both the stations in plankton composition monthiy average values show (fig.No. 12 and No.13) that phytoplankton is dominant at both che stations with only exception Stn. 2 in Eebruary 82 when Zooplankion exceeds phytoplankton.

1i) Fishery potentià :-

The information about the fishery activity in 'Motitalav' was made available from the Sawantwadi Municipality records and department of fisheries Govt. of maharashtra.

Unfortunately the records are not properly mentained and whetever information is there is inadequate and scanty, Since there is no Eishery activity in the tank for last some years no fishery statistics could be obeaned.

This productive tank is not utilized for fishing purpose apperently for the following reasons as communicated by the local sources:1) As Sawantwadi town is nearer to the western coast ($21 \mathrm{Km}_{\mathrm{H}}$) as in any other place in Konkan region the fish eaters prefer only seamfish and do not like to Consume fresh water fish. if) Due to the long aistance of the probable market glaces for fresh water fish i. ©. Rolhapur and Belgaum, the transport, packageing and ice charges make the shipment expensive, iij) The sisherman with the reguired dragnets and other materials from Kolhapur, Satara do not go to Sawantwadi for fishing iv) The municlpality yet does not think of aquaculture in Potitalav as a source of revenue and also less expensive food supily to the poor population af the town. Instead it dries the tank during the summer moth to get rid of algae, the rich source of food for most of the cultivabie fishes.

According to the eariler records in the year 1955 the smalier portion of the tank near Sth No. 2 (6 acres) was stocked with the spawn of Indian major carps Catla catla. Labeo rohita and Cirrhina miotala.

The trial fishing was carcied out on 14.5.1956 when three catia were caught, their weights ranged between 480 grams to 600 grams and the average length of the fishes was 30 cms. This growth was satisfectory in natural waters.

In the year 1957 the fishes were caught ky draining the tank. The record say that the 80 Eishes caught weighed from $3.6{ }_{\lambda}^{\text {to }} \mathrm{Kg}$. each. This is certainly remarkable rate of
growth. Most of the fishes were planktoniphayus 1.e. Catal catla. A record says that breeding of fishes was observed in Motitalva in 1955, though no authentic information could be gained wheather it was induced breeding or a natural one.

For the two years 1.e.1966-67 and 1967-68 Fishing was conducted in the potitalav. In 1966-67 the major carps caught weighed 1513 kg . The fishing operation in 1967-68 Iated for 10 days in which 1681 Kg. of fish was caught. The daily catch ranged from 73 kg .to 326 kg . The total catch averaging about $168 \mathrm{~kg} /$ Jay.
": It is known thet in any peremial water body the Eishes caught in shorttime woula at the most be around 40% of the total fish populrition in the watermboty.

David et al (1969) have reported that the standing Crop of fish in a waterbody is up to 3 to 5 times more than the yield at any given time. According to Iurner 1960 . even from the small ponds from Kentncky $U_{*} S_{0} A_{\text {. }}$ the yield of harvestable size Fish coula be only 15 to 45% of the standing crog. In the T.V.A.reservoir. out of only $120 \mathrm{~kg} / \mathrm{ha}$ of standing crop. only about 30% i.e. $38 \mathrm{~kg} / \mathrm{ha}$ is capable of removal. (Miller. 1951 ; Cariander (1955). Jenkins (1958). have given few more exmples of the relationship between the standing crop and the actual fish yield.

Therefore considering the fish catch of the yoars 1966-67 and 1967-68, the average annuel Eish catch of Motitalav can be estimmted to be 1597 Kgs.

Considering the fish catch to be moderate 40% of the standing crop of fish in the tank the water body should support about 3992 kg . of fish in the tank.

According to Bhimecher (3975); the perennial and seasonal tanks in the councry naturally produce fish to the extent of about $250 \mathrm{Kg} . / \mathrm{he}$ and $25 \mathrm{Kg} / \mathrm{ha}$ per year, respecively. He nentions that with management techniques the same production coula easizy reach about $500 \mathrm{Kg} / \mathrm{ha}$ and $100 \mathrm{Kg} . / \mathrm{ha}$. in the two types of water bodies.
'Motitalav' has peremial wacer supply and Erainage Sacility to dry the tank if required. Therefore, these suitable facilities along with the improved aquaculture tecimiques like application of polyculture and fertilization of the water by sewage nutrients, will greatiy increase the fish production potential of this shallow and predator free water body.

Therefore the anourl fish production in the tank could be increased to about $320 \mathrm{Kg} /$ /ha and not $128 \mathrm{Kg} / \mathrm{ha}$. as was caught during the fishery operations in 1966.68.

If the tank is provided with fertilizers or treated sewage by the Sawantwadi Hunicipality the Eish production from the same tank may reach as high as $400-500 \mathrm{~kg}$. $/ \mathrm{ha} . / \mathrm{y}$. This is not a very ambitions Etgures considering the experience in other places.

The composite fish culture of chinese and Indian major earps together. in the small ponds in india, has resulted In Elsh production, as high as $3000-5800 \mathrm{~kg} / \mathrm{ha}$. per 6 months and $7000-9000 \mathrm{~kg} / \mathrm{ha}$. per year in the water ponds (Jningren. 1976)

The commercial fish culture of common carp, silver carp and tLlapia, in kibutz Gan shmuel, Israel, has resulted in a highly productive catch of $10,000 \mathrm{~kg} . / \mathrm{ha}$ per year (Pruginin. 1976). with only the sewage sering as the source of organic manure.

