CHAPTER-1

HISTORY OF BOUNDARY
LAYER THEOKY



Introduction:

In this chapter im Section 1 we give outline of the
boundary layer theory. Section 2 consists major developments
in axially symmetrical boundary layer theory. In Section 3
we gave the major developments of steady and unsteady two
dimensional boundary layer theory. Lastly in Section 4 we
define some basic concepts which are used for our problems to
be discussed in Chapter I1II,

1. utlin £ the bounda a s

In 1904 Ludwing Prandtl introduced the concept of a
boundary layer and analysed the flow in boundary layer subse-
quently the boundary layer equations have been well investi-
gated for many engineering problems, and the results play a
very important role in the fluid dynamics of viscous fluids
and also play an important role in the practical treatment of
a fluid,

The boundary layer theory is the foundation of all
modern developments in fluid mechanics, and aerodynamics which
have been classifisd by the study of boundary layer flow and
its effects on the general flow around the body such as in
the study of aircraft response to atmospheric gust, in further
phenomenon inwolving wing etc. Although more than half a
century old the subject of the boundary layer is still receiving

considergble interest and these are still a number of unsolved



problems baffling the investigators, the concept of thin
region of quick transition near the boundary surface has
solved many intricate practical problems and has enabled
deep probing into the non-linear differential equation.

The strating point of this great physical concept was
the well known D'Alembert'’s paradox in the late 19th century,
D'Alembert cbserved that wvhen a solid body moved through a
fluid the flow pattern based on the inviscial theory agreed
with the experimental results almost everywhere in the flow
field, but strangely enough the resistance sxperienced by the
body was found to be zero. Prandtl made an attempt to resolve
the dilemma and suggested that the resistance to the body
was caused by the viscosity of the f£luid and that the flow

fields near and away from the body were different in character.

Many other new results were obtained by ressarch workers
within the ten years after his researxch work with the help of
Prandtl's boundary layer concept. At that time viscous fluid
theory was studied in the two and three dimensional cases by
using steady and unsteady flow of an incompressible or
compressible medium, Also they considered one or more components
with or without energy addition under the influence of magnetic
forces. During the first 350 yvears of the boundary layer theory
the fundamental mathematical connection to the Navier-Stokes'
differential equations. And also there was no existance,
uniqueness and goodness of a soclution which was obtained. At

that time numerical approximation method was not developed



so that no one could show perfect error which was inwolved
in the solution.

Transformation of the boundary layer equation into
special forms so that the computation of the numerical results
will be simplified or will be easier for special devices.

The boundary layer equations may be transformed into the
generalised heat conduction equation by Von Mises transforma-
tion. L.L. Moore [ 31 ] transformed the boundary layer equations
into an integral forms that is particularly suitable for a
differential calculation.

The mathematical difficulties encounted in the study
of axially symmetrical boundary layer are considerably ssaller
and hardly excesd those in the two-dimensional case.

Prandtl (1904) published a paper entitled “"on the
motion of fluid with very small viscosity", considered the
problem of an incompressible fluid and Blasius [ 1 ] investiga-
ted the same problem in detail in 1908. Blasius [ 2 [studied
the boundary layer flow over a flat plate and obtained
explicit solution of the Prandtl boundary layser equation,

Due to the application of the theory of parabolic
differential inequalities to the Prandtl's boundary layer
equation, all the problem of existence, uniqueness etc.
had been solved by considerxring case of two dimensional
steady flow of an incompressible medium,



2. o nts in axiasll tx unda
layer theory

There are two different kinds of axially sysmetrical
boundary layer theory. One is for the flow in jet or in the
wake behind a body of rewolution where the axis of the
revolution is in the fluid and the other is the boundary
layer is the boundary layer over a body of rewolution of
a large radius in comparison with the thickness of boundary
layer.

The mathematical difficulties encounted in the study
of axially symmetrical boundary layer are considerably smaller
and hardly exceed those in the two dimensional case, Axially
symsetrical boundary layer occurs e.g. in flows past axially
symnetrical bodies the axially symmetrical jet,

The process of boundary layer formation about an
axially symmetrical body accelerated impulsively was investi-
gated by E, Bolts [ 4] in Goettingen thesis.

U.T. Bosdewadt [ 3 ] studied the problem in which the
fluid at large distance from the staticonary wall rotates
likes a rigid body with constant angular velocity.

H, 8chlichting [ 4 Jobtained solution for the
Laminar circular jet which analogous to the one for a two
dimensional jet. The process of the formation of a boundary
layer on a rotating disk wes studied by K.H.Thiriot [ 49 ] in



his thesis presented to the University of Goettingen, He
considered the case of the disk accelerated impulsively in

a fluid at rest to a uniform angular velocity as well as the
case of a disk rotating with the fluid and suddenly arrested
in its motion. S5.D.Kigam [ 357] computed the growth of a
boundary layer on a disk strated impulsively. Belonasov 8.M,
[ 5] obtained the axially symmetrical flow of a viscous
incompressible flow. Burns J.C. [ 6 ] generalised axially
symmetricel flow past a circular boundary layer,

3, 8 unstea dimen n lamina unda

laver s

The two dimensional boundary layer flow over a flat
plate of compressible fluid studied by E. Pohlhausen [ 36 ]
in 1921 for a thermally insulated plate for a small flow
velocity and small temperature difference, with constant
density and viscosity.

Blasius [ 2 ] studied the boundary layer growth set
impulsively from rest into translation motion by using
successive approximation, Goldstein and Rosenhead [ 21 Jextended
Blasius solution and gave a better estimate of the time
required for separation at the rear stagnation point for
circular cylinder. Schlichting [ 45 ] obtained small amplitude
of oscillation of the body in a fluid at rest.

Busemann [ 8 ] first studied boundary layer for an
incompressible fluid. Busemann (9 ] and wada [ 36 ] obtained



the solution for flow on a flat plate by keeping Prandtl
number (Pr) constant. Howarth [ 22 ] studied the compressible
and incompressible boundary layer at sero pressure gradient.
Illingworth [ 26 ] investigated the transformation of both
normal and streamwise co-ordinates and obtained the relation
between them at non-sero pressure gradient for incompressible
flow. Tani [ 50 ] extended the solution for the compressible
flow by taking prandtl number different from unity. Poots
[37] studied Tanis [ 50 ] problem by taking heat transfer

at the wall,

Krishnan [ 27 7] obtained the non-linear wave propagation
in steady tormonic flow. Britov [ 10] construct the absence
of two dimensional flow between concentric rotating cylinder.
Cebeci (14 ] studied the unsteady laminar and turbulent
boundary layer with fluctuations in external wvelocity.
Goldstein [ 19 ] constructed a singular solution containing
an arbitrary constant in the neighbourhood of separation.
Stewartson [ 46 1 obtained the general solution inwolving an
infinite number of arbitrary constants. Landau and Lifghits

[30] made a discussion on flow near separation by postula-
ting that the normal component of velocity tends to infinity
at the separation point,

Hartree [ 23] and Stewartson [46 Jobtained the series
solution for a linearly retarded free stream and Tani [50)

extended this series sclution to the more general case.



Prandtl [ 38] and Blasius [ 2 Jintroduced the form of similarity
solution, for flow on a flat plate. Palkner and 8kan [ 16
extended this form in the case of free-stream velocity propore
tional to the X", representing irrotational flow around a
ookner found by two plane boundaries meeting at an angle
2/(m¢+l). Goldstein [207] applied the boundary layer approxima-
tion for & flow in awake and Schlichting [ 477 used the
boundary layer approximation for a flow in a jet. Van Dyke

[ 55] obtained the series solution for a flow past a

parabolic cylinder,

During ten years after the Prandtl's paper, there are
seven papers on boundary layer which were publighed at
Gottingen. All these papers were written on the basis of
Prandtl's original paper., Zhukovsheil | 59 | assumed that the
fluid velocity is zero at the wall and rapidly increases
‘until it becomes equal to the theoretical velocity of
irrotational motion. Then he found that the thickness of
layer is inversely proportional to the theoretical velocity.
Mises [ 327 introduced the stream function and shown that
the boundary layer equation was reduced to a form analogous
to the heat conduction, Burgers [ 11 7] reported an experimental
observation of the velocity distribution across the boundary
layer on a flat plate, Froude [17] pointed out‘ that the
frictional forces must have its counter part in the lLoss of
momentum of the f£fluid that has passed along the surface of
the plate. Rankine (43 in his paper on the prediction of



required engine power of proposed ships, considered the
frictional resistance is due to the direct and indirect effects
of adhersion between the skin of ship and the particles of
water which glide over it, Rankine showed that the formation
of boundary layer tskes place at the adjacent to the ship
surface. Tollmisen [ 517 investigated the growth of the
boundary layer on a circular cylinder impulsively set in

rotation from rest,

Prandtl [ 39 7] expressed his opinion about the interest
in boundary layer theory spread outside. Prandtl [407] obtained
the boundary layer solution for flow through a two dimensional
channel with the help of stream function, Prandtl [417]
explained the change in flow pattern around a sphere on
passing thxouwgh the critical Beynold number, Toffer [ 52
refined the numerical computation of Blasius Eiffel [15]
and observed the transition of the flow in the boundary layer
from Laminar to turbulent. Hiemens [ 247 carried cut the
boundary layer calculation of pressure distribution on circular
cylinder,

Blasius [2 ] and Bolts [13] submitted two papers on
boundary layer under Prandtl's guidance at Gottingen., Blasius
[ 27] studied the flow along a flat plate placed parallel to

the uniform stream. Prandtl (42 Japplied the boundary layer
concept to the heat transfer problem. Schubauver [ 48] observed
the flow past an elliptic cylinder Millikan [33 7] applied
Karman and Millikan [ 28 ) method tc the Schabauer's [48



elliptic cylinder and obtained a successful solution., walsz
[57], Mangler (347 , Timman [ 537] studied the Karman [ 29}
method by assuming a more adequate form of the velocity
profile, wWade [ 56 ] Hudimoto [ 257 Tani [ 54 7] studied approximate
methods of integrating the momentum integral equation,

4.

Under the action of the forces all matarial exhibit
deformation. If the deformation in the material increases
continuously without limit under the action of shearing
forces, however, small the material is called s fluid, This
continuous deformation under the action of forces is mani-

fested in the tendency of fluid to flow.

Fluids are usually classified as liquids or gases.
A liquid has intermolecular forces which hold it together
sc that it possesses volume but no definite shape, when it
is poured into a container will £ill tha container upto the
volune of the liquid regardless of the shape of the container.
Liquids have but slight compressibility. For most purpose it
is however sufficient to regard liquid as incompressible
fluid. A gas, on the other hand, consists of molecules in
motion which colloid with each other tending to disperse it

so that a gas has no set wlume or shape., This intermolecular
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forces are externally small in gases. A ¢gas will in any
container into which it is placed and is therefore known as
a compressible fluid.

(II) Thermal Conduc s

Difference of temperature in a fluid in the course of
time, are reduced by heat flowing from higher to lower
temperaturs, There are three basic models of heat transfer
viz, conduction, convection and radiastion. Heat radiation is
neglected at high temperature. The transfer of heat by
convection depends on the velocity field, hear we discussed
conduction. Two parallel layers of fluid at a distance 4
apart, are kept at different temperature T; and T, (one of
the layers may be solid surface). Fourier noticed that a
flow of heat is set up through the layers such that the
quantity of heat g transferred through unit arsa in unit time
is directly proportional to the difference of temperature
between the layers and inversely proportional to the distance
4 thus

’1 - Toq
4

q= K

where K is constant of proportionality and is known on the
coefficient of thermal conductivity.

(11X) Thermal diffusivity »

As we see, the effect of con@uctivity on the temperature
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field is Aetermined by the ratio of K to the product of
density Q and specific heat f:p rather than by K alone.This
ratio is known on the thermal diffusivity and is usually

denoted by a
K

e cp
Iv) Physical rtance of non sional parameters

a) Prand number

The ratio of kinematic viscosity to the thermal
diffusivity of the fluiad

Kinematic viscosity Y
i. [ 78 - aemer "=
a

Thermal Aiffusivity

B/ Q

K/ Q¢

= Pr

is designated as the Prandtl number,

b) Reynold number

The dimensionless quantity Redefined as

UL UL
P y

wvhere U, L, o and p are some characteristic values of the

velocity, length, density and viscosity respectively is
known on the Reynold numnber .
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¢) Qrashoff number 1

The dimensionless quantity Gr which characterizes the
free conduction is known as the Graghoff number and is defined
as

g (v - To)
Y T

Gr =

where ¢ is acceleration due to gravity and fw, To arxe two

respective temperatures,
4) n friction fficient 3

The dimensionless shearing stress on the surface of
a body due to fluid motion is known as Local skin friction
coefficient and is defined as

T
90/2

wvhere T, is the local shearing stress on the surfece of the
body.

e) NKusselt number 3

In the dynamics of viscous fluid one is not much
interested to know all the details of the velocity and
temperature fields but would certainly like to know quantity
of heat transfer can be calculated with the help of
coefficient of heat transfer af{x) which is defined by
Newton's Law of cooling.
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If g(x) is the quantity of heat exchanged between the
wall and the fluid, per unit area per time at a point x, then

qi{x) = g(x) (Tw - Too)

wvhere (Tw - Too) is the difference between the temperature
of the wall and that of the fluid since at the boundary the
heat exchanged between the £luid and the body is only due to
conduction according to Fourier's law we have,

T

where % is the direction of the normal to the surface of
the body. From these two laws we defined Nusselt number is

as follows
« (x) L L ( o7 y
Ry = - Jreve——.
e X (Tw - Too) an "0

where L is some characteristic length .

V) Forced and free convection

The pmblem of thermal boundary layer may be classified
into two categories viz. (i) forced convection, (ii) free
convection., By forced convection we mean the flow in which
the velocity arising from the variable density (i.e, due to
force of bouyancy) are negligible in comparison with the
velocity of the main or forced flow, whersas the free

convection, also known as the neutral convection the motion
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is essentially caused by the effect of gravity for the heated
£luid of variable density,

Vi) int of aration

It is defined as the limit between forward and reverse
flow in the layer in immediate neighbourhood of the boundary
wall, In otherwards the point of separation is the point of

ou
which (5-;') = 0or T, = 0.

VII) Separstion of boundary layer i

There are two methods of study the separation of
boundary layer

a) Physical aspproach
b) Analytical approach

a) Physical approach 3

8§ 4is the boundary layer thickness which is increase
in the down stream direction a point comes after that the
flow in the boundary layer become reversed. This cause the
decelerated fluid particles to the forced outwards which
means the boundary layer is separated from the wall we than
sepak of the "boundary layer separation®” and the point at
which the boundary layer separates is known as "point of
separation®., The phenomenon is called the separation of
boundary layer., This will occur on blunt bodies such as
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circular and elliptic cylinder or spheres.

The motion in the boundary layer is determined by the
following factors @

4) It is retarded by friction at the boundary wall,
1) It is pulled forward through the action of viscosity
141) It is restarded by the adverse preassure gradient

(ap/8x > 0)

X

e
~

SCpavakion point

Fig.l. Boundary layer separation

b) Analytic a ach i

Analytically the separation phenomenon may be
explained by applying the prandtl boundary layer equation
both outside the boundary layer and at the wall outside
the boundary layer is
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du 1 9
Uown = - - -
ax e ax

and at the wall, i,e, at y = 0O we have u = v = 0, the
equation is
bzu

ayt ©

gie

Case 1 t dp/dx = 0 (zero pressure gradient)
22 u
In this case ( v )o = 0 and hence, the velocity
° y?
gradient decreases continually from a positive value at the
wall to zero at the outer edge of the boundary layer. The
velocity profile *must therefore, have a steadily increasing.

3
The point of inflexion occurs on the wall since (§~;§ ) ol'O
ot u
but ( i—; ) 0 as can easily be verified by differentiating

the boundary layer equation with respect to y and evaluating
the value at y = 0. The fluid particles continue to move
forward and therefore, the question of boundary layer separa-

tion does not arise,

JT 3 5?

© U~; @ \“/'ar; o o] v"/a?»
Fig.2 s velocity distribution in the case of zero pressure

gradient (constant pressure)
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VIII) Boundary layer control s

It is logical now to ask whether separation of boundary
layer can be prevented or, more generally, can the growth
of the boundary layer be controlled. Indeed, according to the
physical aspproach of the boundary layer it should be possible
to delay or even prevent separation by removing the decelerated
fluid particle caused by the adverse pressure gradient in
the regicn vhere sepsration is likely to be developed in
figure. This possibility was first pointed out by L. Prandtl
by applying suction through a small slit on the upper rear
portion of circular cylinder, prandtl showed in his experiments
that the flow adheres to the cylinder over a considerably
larger portion of its surface instead of separating at 81°
from the stagnation point as it &es in the cese when no
suction is applied. The total drag is reduced considerably
and siimultansously a large lifting force in the direction
perpendicular to the free stream is induced., An alternative
means of controlling the boundary layer is the supplying of
the addéiticnal energy to the boundary layer by injecting
fluid parallel to the surface in figure b, thus enabling
the boundary layer to proceed further against an adverse
pressure gradient. The ideal method of prevention of separa-
tion would be a means to eliminate the boundary layer. This
can be accomplished in principle by having a solid wall
moving with the stream, The logical way to obtain such a

result is to place a rotating circular cylinder with its
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axis at the right angle to the flow. It is clear that on the
upper surface of the cylinder where the cylinder moves in the
sams direction as the flow, no separation is possible. However,
incomplete separation is developed on the Lower side of the
cylinder. The resultant flow field does not vary sppreciably
from the potential flow theory this example was first

applied by prandtl to illustrate the boundary layer theory.

(a) suction of fluid

(b) 1injection of fluia

Fig.3 3 Suction and injection of the fluid
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IX) ) 4 Throu media

Reynolds number flows are the flows through porous
media such flows are very much prevalent in nature and
therefore, these need through investigation. The study of
flow through porous media is comparatively easy because in
these flows the inertia forces are usually very small as

compared to viscous forces.

Flow through porxous media occur in filtration of fluids
and seepage of water in river beds. Movement of underground
water and olls are some other important example of flows
through porous media, An oil reserwvoir mostly consists of
porous sedimentary formation such as Limestone and sandstone
in which oil is entrapped. 0il can ba obtained from such
reservoirs by drilling wells in o4l bearing area dw dwn to
the oil reserwvoir and then either allowing or causing the
oil to flow through porous oil bearing rocks into the well,
Same is the principle of obtaining underground water from

wells.

To study the underground water resources also one
need to investigate the flows of fluids through porous media.
In fact the land along the side of the rivers is usually
porous and the water goes underground due to the seepage
in the rainy season the flow of water through rivers,
especlially seasonal rivers, is high while in other season it
is pretty flow. One can study undexground water can be pumped



out in the off season for irrxigation purposes. This will
lower dSown the level of underground water in the river bed
area and during the rainy season the river water will be gone
undsrground with a greater seepage velocity and thus one can
check floods also another important example of flow through

porous media is the seepage under a Aam,
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