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Study of tarn Boundary Layer

Problems
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In fluid* flowing post ho*tod or cooled bodies tho 
transfer of hoot tokos ploco by conduction ond convection. 

Hoot rodiotion is nogligibio unloss tho temperature is very 

high, when tho conductivity of tho fluid is small# which is 

truo in ordinory fluids# tho hoot tronsfor duo to conduction 

is coopsrobio to thst duo to convoction only across o thin 

loyor noor tho surface of tho body. This swans that tho 
temperature field which spreads from the body extends# 

essentially, over o narrow sons in tho ismodiato vicinity 
of its surface# whereas tho fluid at a larger distance from 

tho surface is not materially effected by tho hooted body. 
This narrow region near the surface of the body is ktaown as 
thermal boundary layer. This is classified into forced and 
free convection.

Girishchandra Pond* 3 investigated*of foet of suction
on unsteady free convection flow past a verticle flat platef 
He studied the unsteady laminar free convection flow past a 

verticle infinite fiat plate subjected to time dependent 
suction is considered when the plate temperature varies on 
some power of time. Series solution for velocity and 

temparature obtained in terms of known function when the 

prandtl number of the fluid ie unity.

%

B.P.Acharya end 3. Pandhy [l*] studied free convective
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viscous flow psst not verticle porous plato with periodic 
temperature.’ In this problem he obtained an analysis of a 
free convective flow of viscous liquid past a hot verticle 
porous wall is presented under the assumption that the 
suction velocity is constant and normal to the wall# and the 
wall temperature is spenwlse cosinusoidal approximate 
solution of the equation of motion and energy equation have 
been obtained by the method regular perturbation.

J.L.Bansal £33 investigated the ‘Asymptotic eviction 
temperature profiles in laminar boundary layer over a porous 
flat plate*. Zn this note it has been shown that in the case 
of laminar boundary layer over a flat plate with homogeneous 
suction as we have the ‘asymptotic suction velocity profiles* 
there exists also ‘asymptotic suction temperature profile*# 
for various values of the prandtl number (Pr) • The recovery 
factor is such a case is to be independent of Pr and has a 
constant value one.

S. Prasad £13 3 obtained 'Boundary layer with suction 
along the porous wall In Teni*s flow'. Zn this paper an 
investigation has been made into Laminar incompressibla 
boundary layer with continuous suction along a porous wall 
in Tani's flow for which the potential flow velocity is given

x*
by U(x) • U0 (1 • ). Following M.R. Head £81 tha momentuma2
and the kinetic energy integral equation have been used by
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8* Prasad with tha aid of an eighth degree polynomial velocity 
profile to obtain a step-by-step numerical solution*

Krishna Lai [111 investigated ‘free convection laminar 
boundary layer in unsteady flow1* In this paper he studied 
the effect of unsteady flow in the magnitude of surface 
temperature on the free convective laminar velocity and 
thermal boundary on a flat plate is studied* Xn Section one# 
the general equation of motion and temperature distribution 
ara givsn* Xn Saction two# tha solution ere obtained when 
the fluctuations in the velocity components and temperature 
distribution ere in the form (u# v# G) » (vc# Vx# 0o) +
H (ux, v*. G ) exp (wt) and lastly solution is given when 
the fluctuations is an exponentially decreasing function of 
time*

8am Deo Matho [152 studied the 'Boundary layer with 
suction over a porous elliptic cylinder'. Xr> this paper the 
method suggested by Head has been used# the momentum and the 
kinetic energy integral equation for two-dimensional boundary 
layer have been rederived and have been used with the aid 
of the schllcting's velocity profile to obtain a step-by- 
step# solution for the boundary layer with suction in the 
region of adverse pressure gradient over a porous elliptic 
cylinder with the ratio of the major to minor axis is four.

I .T.Smith and P.W.Duck [17] obtained 'The separation 
of Jets or thermal boundary layer from a wall'* Xn this paper
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consideration is given to the separation and subsequent 
reverse flow occurring when a Jet-like boundary layer on wall 

encounters a concave comer of finite angle a*

R. ahexma £19 3 explained *A two parameter method for 

calculating the two-dimensional boundary layer with suction 

or injection* Zn this paper he applied the method developed 

by curie for flows without suction to the flows with suction 
or injection* Detailed calculation of the boundary layer 

parameters made by this method indicate that the error are 
within 596 of the exact values*

M.G.Palekar and D.P.Sharma [ 14"\ studied 'Approximate
solution of the boundary layer equation with suction blowing7
according to him the problem under consideration is that of
boundary layer flow along a flat plate with auction or blowing
there ere two types of surface suction namely VM constant 

-1/2and Vw ^ x • An approximate integral method are obtained 

the principle merits of method is (1) solution are obtained 

in the closed analytic form (2) the similarity condition can 

be relaxed the velocity profile and skin friction are presented 

and coopered with the result of the past investigators*

G.K.Sharma and D*P.Singh £191 investigated 'The effect 

of viscosity temperature lew in unsteady boundary layer on 
flat plate** They studied the effect of viscosity-temperature 
lew# when the wall is in arbitrary motion with steady stream
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velocity* Prendtl nwbtr being unity* The dependence of 

coefficient of viscosity p on temperature T is assumed to be
l*ei

p * constant ——
T ♦ C

where w and C are constants.

This is the generalisation of the work of Same (1965) from 

a Linear law to the more realistic nonlinear law between 

viscosity and temperature,

K.C.Raghav Acharyulu [.161 studied combined free and 

force convection in verticle circular porous channel. He 

obtained it in saturated verticle porous tube of circular 

cross-section with uniform heat source. The governing equations 

are solved for velocity and temperature fields in the form 

of fourler Bessel series*

D. Surma Devi and G, Hath [201 investigated 

"Similarity solution of the unsteady boundary layer equation 

for a moving wall* Zn this problem he obtained the similarity 

solution of the unsteady laminar for two dimensional incompre

ssible and of axisymmetric boundary layer equation for the 

case of surface which moves with a velocity which varies 

Inversely as a linear function of time. The governing 

equation has been solved numerically. Xt is found that the 

effect of unsteadiness in the wall velocity and mss transfer 

on the skin friction and heat transfer parameters are
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applicable. The prandtl mater strongly effects the heet 
transfer tout the akin friction is unaffected toy it*

0Irish Chandra Panda [ 73 obtained •unsteady thermal 
boundary layer flow past a porous flat plate1* He considered 
infinite flat plate subjected to the suction or Injection 
and it is assumed that the normal velocity at the plate varies 
at t*^3. The expression in closed form for velocity tempera

ture. skin friction and rate of heat transfer are obtained 
for two cases (i) when the plate temperature is the same es 
that of fluid at infinity and (li) when the plate temperature 
varies as some power of time* The effect of suction and 
injection as these quantities is shown graphically*

R.P.Agarwal [2 3 studied *Non~l»inear two point boundary 
value problem** Zn this problem he obtained existence and 
uniqueness of the solution of third order non-linear 
differential equation with boundary conditions prescribed 
at two points*

fl* 3harms [213 obtained the *exact solution of the 
incompressible laminar boundary layer equations with sens 

pressure gradient and variable suction** Zn this paper a 
numerical solution of the boundary layer equations with 
xero pressure gradient end with general distribution of 
suction is obtained* A set of differential equation has 
been very accurately Integrated numerically and principle 
characterlsties of boundary layer flow have been determined*
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Kizlov,L.F. and Losinakaja„T.I. £123 investigated 

'Integration of an electronic computer of the boundary 

layer equation of Tanl*a flow in the presence of suction. In 

this Investigation they obtained results by using power series 

for the stream function. Numerical integration method and the 

system of differential equation of the boundary layer for 

flow of Ten! type in the presence of suction.

Holt M.and Modarress^D. studied the 'Application 

of the method of Integral relations to Laminar boundary 

layer In three-dimensions*. It has been traditional among 

fluid dynamics to employ some numerical means (such as the 

finite difference techniques) to solve the two-dimensional 

non-linear compressible boundary layer equation. But as an 

alternative to this numerical procedure* the boundary layer 

equation have been more successfully solved in an integral 

form* for example with the classical Karman-Pohlhausen 

momentum integral method. The stain principle of the method 

of integral equation is based on the idea of representing 

the streamwise velocity gradient (normal to the well) as a 

simple algebraic function of the streamwise velocity itself. 

These investigators extend the method of integral relations 

to the problem of three-dimensional compressible boundary 

layer flows with and without separation. By reducing the 

equation of motion to a quaai-incompressible form. They 

solved the resulting hyperbolic partial differential equation.
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In this Chapter in Saction 2 we have studied the 
approximate solution of the Pohlhausen • s problem of forced 
convection in a laminar boundary layer on a flat plate. In 
Section 3 wo have made an attempt to study the approximate 
solution of the Pohlhausen** problem of free convection from 
a heated verticle plate. In section 4 of this chapter we 
investigated the boundary layer for Kowarth•s flow past 
a wedge. Section 5 deals with the study of boundary layer in 
Howarth's flow along the wall of convergent channel. Lastly 
in Section 6 we investigate the boundary layer with suction 
along porous wall in Tani*s and Howarth*s flow.

Before discussing in Section 2 we enlist some basic 
equations and the characteristic boundary layer parameters 
required for our problems to be discussed.

(a) Free convection from a heated verticle flat plate i

A flat plate is heated to a temperature ly and placed 
vertically under gravity in a large body of fluid which 
otherwise at rest and has temperature and density ^ • 
Thus the equation governing the motion are

d u d V
—— ♦ —— » 0 ... (1)
b x d y
d u d v d 2u iu —~ ♦
d X v--- -9?

d y d y2 ♦ t o ^ * ... (2)
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d T d T
|| «MM» ♦ ^

d x d y

d2T
dy5 • • • (3)

where Ox * g 9 m~ g 9 » 9 g p ) ... (4)

resultant body foxes on the fluid since for any 
fluid

{i * t> «- wJ- (5.)

where p is the coefficient of thermal expansion from 
equation of state we have

^ *«o

Thus from equation (S) we find that for gases#
1

£
koo

Introduce e ■

Thus equation (2) and (3)

d u d u 
u —- ♦ V —
d x d y

d 0 dou V V —.
d x d y

^2 u1 r?
d2 er?

Tw - T^
♦ 9 ( —----“ )0

(4)

the boundary condition in the present case are
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y ■ 0 «u*OfV-O|0*l 

y - oo * u * 0 * 0*0

by making tht following substitution

n
y

?7* c 0

(x,y) - 4 r C x3/4 f(H) ... (8)

© (x#y) * 8 (*l)

thus tho aquation (6) bacomas#

«•• ♦ 3ff* - 2f*2 + 0 * 0 

and 8" ♦ 3Pr f0« • o

with tha boundary conditions

H*0 • f — f* — 0 # 8-1

• 00 (9)

... (10)
^ - os i f'-OjO-O

I. Pohlhausan solvad thasa aquation (9)

(b) Karroan momantum Integral aquation s

Tha prandtl boundary layar aquation for a staady 

two-dimensional lncomprasslble flow ara

*6 u d u do
—, + W - u —
d x d y dx

a a a (11)
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d u d V
■MM> + ■»«—» ■ O ••• (12)
d x &y

aubj acted to the boundary condition ara

y * 0 t u * t • 0 
y ■ oo ** u • u(x)

where 6 is the boundary layer thickness

a a a (13)

Due to aquation (12) and (13) aquation (11) can be 
reduced to the form

- d 42 du
U _ a (2^2 ♦ 4l) 0 — 

dx dx
... (14)

This aquation la known aa Karman momentum Integral aquation 
for two dimensional ateady incompreaaible boundary layer

and

(c)

where

£l ■ 65 uo

OK M 1

6 u 
o’ *

“T. « * d u
d y

u
U

) (shearing stress on the wall) o

where ^ is density of the fluid* 

Energy integral equation t

By using equation (11)# (12) and (13) we obtained
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the energy integral equation for two dimensional steady 
incompressible boundary layers in the form 

d - 2D— ( «36i) - — ... (15)
dx 3

where ,5 „ ua
63* $ 0 (1 • *2 ) dy , (energy thickness)

and
6 d u

D » |i 5 ( —- ) dy > (dissipation Integral)
o d y

(d) Thermal energy integral equation 1

The method of thermal energy Integral equation is 
calculated from thermal boundary layer equation.

The boundary layer equation
a u d ▼
Bx 6 y
d u d u

u —— ♦ ▼ —- 
d x d y

d2 u

d y

... (16)

.. (17)

d T d T
u — ♦ V — 
a x d y

a2 t |i 
& y2 9 cp

d u 
o y

(18)

with the boundary conditions

y
y

0 * u
6(x) S u 
K

~c7

▼ » 0
0(x)

(19)

where a « is the thermal diffusivity due to equation
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(16), (17) and (19) can be reduced the form

d

dx
5 U(T - T-Jdy - - a (

d T

d y
*y*0 *

is
6t d u ,
s ( ----  )* dy ...(20)
o d y

(2) Approximate solution of the Pohlhausen*s problem of

forced convection In a Laminar boundary layer on a

flat plate «

Taking the Pohlhausen1 s fourth degree velocity 

profile for a boundary layer over a flat plate.

f(t|)
'co

Z a-tj1 OSU It
1«0

u

'oo
as n > 1 ... (1)

where H * X and 6 is the thickness of the flat plate. 
6

Zn order to determine the coefficients eg to 

we prescribed the following boundary condition and compati

bility conditions.

y * o t u * 0 i

y - 6 * u - U^,

d* u

r? "°
d u d* u

& y d y
m 0 (2)
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~ - *<H) • ♦ «xt| ♦ s2n2 ♦ •31*3 ♦ V>4
°oo
Using the boundary conditions (2) we have calculate 

the coefficient Sq to *4 as follows -

•0 • 0# s^ » 2* tj ■ 0

••• (3)
a3 - -2, a4 - 1

Now vs calculats the following charactsristic boundary 

layer parameters

1) Displacement thickness «

6 u
4* • !> (1 - — )dy

o °oo

• $ U - an ♦ an3 - n4> a an
o

3

10

• 0#3 6 ••• (4)

li) ftesssntusi thickness

u
a, -

m 4

a 
0

1
5 can 
o

ci -
u

My
CD

an2 ♦ 4n4 - an5 an3 ♦ 4n4 an* ♦

♦ an7 ♦ n4 - an5 ♦ an7 • ne)an

• • •
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- 4
567 . S30 

—

• 0.1176 6 ... (S)

ill) Shearing stress on the flat plate i

*-©

d u

“ ‘ r; Vo
u d £

141 ‘r?’"-0
7 r* -

•*}

■ 2 ’V j ... (6)

!▼) Coef flclant of akin friction

U2 p 6

4 Y
U 6

... (6)

Now we have studied two caatf for this problem (1) solution 

for cooling problem end (ii) solution for adiabatic wall.
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a) Solution for ttm cooling problem ;

mo introduce the flow of viscous incompressible fluid 
«t fist plats st constsnt temperature fw which is placed 
along ths direction of uniform stream velocity snd 
temperature Too*

Introduce the dimensionless temperature 0^

e1
T-fg,

*w " Too
... (8)

the best flux equation in the present esse stay be written as

• a d Oi
»oo ^ y ^ ... (9)

for the temperature distribution we consider the following 
polynomial in

4©X - b <nt) - 1 - a^1 o ^ ^ 1
1*0

©x« o as n% i ... do)

Satisfying the following boundary and compatibility conditions

t o

n t i

©X * 1# ( e d ©,
-----1 ) m 0
■b V

©x V ex
0X - 0# ■ ——* * 0.

» Vd nt ... ui)

5677 
(\
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The compatibility condition are obtained fro* the 

thermal boundary layer equation after neglecting heat due to 

dissipation* Moreover the form of the tenperature distribution 

is so selected as to ensure identical velocity and temperature 

distribution in the case of Pr * 1 for the existence of 

Czoco9s first integral*

Substitute (10) and (11) in (9) we got

Xla^M 2Z a|i»4) 3 dy • 
ieO led

• a

Uoo

d ©i

T7 ,y"°

d

dx
^4t H(a) j" • ——

®CD*t
••• (12)

where a
4| (x)

4 (x)
••• (IS)

and HU)
1

• 5 tin) L(iu)aij
0

••• (14)

Zt nay be noted that

* »t * * ... (IS)

Performing the indicated Integration in (14) we get
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A Ul HU) - 5 fU^LCltt) «tt
0

$ - n%V ♦ *it*A4)u - m% ♦ t**4.4, \4>] <M<

• a [i-i + |.|i+A3r-|^|-7^f] +

A 4 r 1 11 1 -,♦ A Li-lTfl

h(a) 15
A - i A3 ♦ -i- A4

140 180
... (14)

1 A *!
a > i i hu) - x 5 «<»i) i. c - ) 4 n

* 0 A

t 5 f(n)L ( - )* * ♦ 2 
* 0 * *

A i|
S L ( • ) 4 i) 
1 A

Xoeping in view that f (t}) » 1 for n ^ 1

3*1 2*1*

A A
• - S (2n - 2«r ♦ v) ( 1 • A 0 "Ia’

) a i» ♦

i a an 2*i3 it4
♦ «M> S (1 • «M» ♦ ■■■ «* ) d 1)

A 1 A A3 A4

, „ 3 3121 3 1 11 
H (a) * *» •• «• ♦ —* •» ♦ ■—■ «■«H 10 A IS ? 140 A4 180 A®

d ».

to find 4 wo uao Kerman momentum integral aquation

a
dx ( )

L< *)

u
<17)

CO
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whwr* U m 2 {l - * (H ♦ 2 )}

But for flat plata > ■ 0

L (o) • 2Z

2 To *a

» uoo

But T0 • ap

46 2

T"
4 x 37

HIT
37

bacauaa !• ■ —-. 6 
315

tharafora.
6.

dx

4 X 37

315 U.

4 x 37

"iii"
r x
U

Put tha valua 62

1240 r x
6* • —- • —« 

* 37 ttoo
••• (18)

Squatlon (12) on intaqration givaa



45

5 * Ha(a) - -ilL * HU) dx ... (15)
V *

with the help of aquation U8) may ba written as#

aV U) --------- . i . i- S HU) dx ... (20)
315 * fir 0

Startig tha initial valua a » constant tha exact solution 

of aquation (20) is

a 3? 1
a hU) ■ ——— . •• ... (21)

315 £r

How it can easily checked that a • 1# Pr • 1 is tha 

solution of tha abova aquation tharafora whan Pr » 1# 

5% * 5 and ■ H thus fora of (9)

©i • 1 - 21 ■ 1 • f(H). t &x • 1
i-0

which is known 5s Croco’s first integral•

Equation (21) is tha algebraic aquation in a for 

tha prescribed Pr it can easily ba solved. It will ba 

convenient to prescribe and determine tha corresponding 

5r. It is found that for following cases ~

i) For moderate values of tha prandtl number tha 

expression

a ... (22)
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Constitute a very good approximation to tha 
solution of aquation (21).

ii) Fox vary small Prandtl number (i.e. for large 
valuaa of a)#

HU) ■ i. (approximated)
10

tharafora from (21) as Pr o 

A2 • 0.3915343 9rml/2

A • 0*625 Pr*^2 as Pr 0 ... (23)

ill) for vary larga prandtl number (i.a. for small 
valuaa of a)#

HU) * (approximatad)
4>9

tharafora from aquation (21)

a - 0.9365 Pr*^3 as fr m ... (24)

Tha tamparatura gradlant at tha wall, from aquation (10) 
is glvan by

^ Oi
( _ )_ - - 2 ... (25)^ ^tmO

Tharafora tha local Kussalt numbar for tha haat
transfar at tha wall is calculated as
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d ^4, 4.
x
‘t

i ( JL >^. %/!*? .• 2. - (
A 1200

Hu (x)
0.342

Re, 1/2 ... (24)

vhtrt R«jj » —la th« local Reynold number

substituting the values of a from equation (22). (23) and 
(24) we find

1) for Moderate values of Pr
Htt00 - 0.342 Pr2''3 Re*2''2 ... (27)

11) For very small prandtl number
■B(x) • 0.5472 Pr^2 Re^2 ... (28)

for ^40

111) for tery large Prandtl number
Nu(x) • 0.3644 Pr2^3 Re^2^2 for Pr oo ...(29)



(b) Solution for adiabatic %f*ll t

T - T(
Introducing 0j - ««njV /2CP ... (30)

^ T
and keeping in view that for tha adiabatic wall ( —- )

^ y y-0

tha thermal energy integral equation may be written as

a u 2 ) ^ a— <0 --- )dy • — r mmm ( mtmrnm

dm 0 Uoo woo 0 * y »»
) 2 dy

••• (31)

Let e2 - Tt • ( H
4 ieO * (32)

where the coefficients CQ to C4 are to be determined with 
the help of following boundary and compatibility conditions

8 9x A2 1

I 0, d ©2 V «] • • • (33)

fr - f_
and | * (recovery factor)Oj/Kp

for an adiabatic wall the compatibility conditions 
are obtained from the thermal boundary layer equation in the 
usual manner. Also the form of ©2 is so selected as to ensure
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the Croco's second integral when Pr • 1.

with the help of condition (33) we have calculated 
the coefficients C0 to es follows

CQ • 0

Cx • 2a \/~¥t # C2 • •V^Tr - 3C|

Cj ■ • 8 VT♦ 3C<^ and * l/Y • cx ••• 

Substituting (1) and (32) in (31) we get# 

d 2 T a
••• (&# G) * %f ••• (35)
dx 1 y *.“ oo®t

jt uwhere G - j (e, — )<Sl* ••• (34)
0 * *

and J

Now we find

• • * 07)

zzi-1
4XI

J-l
ij

i +j«i
Ai*j~l m ai"j

• 4a - Sa3 ♦ 4a4 ♦ 2S a5 - Sa4 ♦ iS a4

and J 52SI ... (38)

Integrating equation (35) and taking the value of 4 from
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(18) h«n obtained

Oa 37
315 (39)

Now it can aaaily checked that when Pr • 1 and a * 1 than 

t • 1 ia a solution of tha abova aquation* Therefore# in 
such a eaaa • a^ and ^ * H thus from aquation (32)

0- • 1 - ( Z1 Vl4 ) * 1 - f* (n)
2 i/»0 1 *

which ia tha Croco'a aacond integral*

equation (39) indicataa that lr ia function of a and 
9r* But wa know a ia a function of ?r tharafora tha recovery 
factor r will be a function of #r only* Hence aquation (32) 

ia an algebraic aquation

It is found that

i) for Moderate values of tha prandtl number tha 
expression

B 1/2 r • nr

Constitute a vary good approximation to the solution 
of aquation (32)*

ii) For vary large prandtl number 
J ■ 4a (approximated )

r <r C

\\tfi •, ./aA$a
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(3) Approximate solution of the Pohlhmwn*! problam of
fig— convection fro» h»«Ud wgtjclt atltj t

The equations governing the notion of incompressible 
viscous fluid in the neighbourhood of s heated verticle 
plate is given by

b u b v
b x d y
b u b u b2 u

u — ♦ v • y —» ♦ g a 0b x by i r
2bo bo b o

u —— ♦ v -m— • a ■
b x by by2

... (1)

(2)

••• (3)

where e and « e e e (4)

subject to the boundary conditions

y * 0 i u * 0 f ▼ • Of © • 1 

y■6 t u * o # o«o ... (5)

For the second boundary condition, we have assumed 
here that the thickness of the thermal boundary layer is 
the same as that of the velocity boundary layer, although 
they are different in general. This assumption has its 
justification in that it simplifies the computational work 
and the result obtained very near to the experimental result.
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Integrating aquation (2) and (3) with respect to y between 
O to A# we get

d
dx

A
1
0

u'djf • ga
A d u
\ Ody - J ( —- )0 d y ° (A)

and
d
dx

A dO
) uO dy » - a ( — ) 
I by

(7)

Me use the following polynomials in H (* ~V6) for 
the distribution of u and o which satisfying the respective 
boundary conditions

u • Ujlx) n <1 • i|)%

© - Cl - n) ,
••• (8) 

... (9)
where the arbitrary function u^(x) has the dimension 

of velocity and is to be determined*

with these expression of u and 0 the equation (A) and
(7)

l
252
1
SA

t u
— (u. A)dx *

s
2a
"a

g «A • t
®1 (10)

(11)

Let us try the solution of the above equation in the forms

*1 * cl and 6 » Cj *n (12)
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Then by substituting these equation in (10) and (11) the two 
equations take the form

1 ^ _n C* «a~n• C,*r m mm f M ..(13)♦ * 2 c*

oust be identically satisfied# this gives

HK IB sa ^bss^^Mh %#«4 t* .4SVD»1— =1=2 «

•nd ~ C.C, x"*"-1 -

• •• (14)

... (IS)

From equation (12)# (14) and (15) ve have

i m s.Of Pr"1^2 (Pr 4 1.108f)1/4 (flr)*1^4 x
where

(Qrashofl number )

The temperature gradient at the wall is 
^ O

( «■«■— ) _ • «»2 ^ • o

2m+n-l»n*m-nr a t n • 1 ■ «n 
m ■ 1/2 and n « 1/4 
and therefore

112 »]/2 9 « 1/2
8.64 y ( Pr ♦ — )101 ( ) 

r

„ * o -1/2 #0 A H2 ,1/4 , « « wl/4Ca » 5. Of Pr (Pr ♦ — ) ( —- )a 101 v2
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Tha local nussalt numbar for tha haat transfer in tha 
presant caaa is givan by

d T- <
*«(*) *

^ o 

^ n
X
5

- 0.589 Pr^2 (Pr * 1.1089)**^ (fir)1/4 

for air Pr » 0.73) and this axpresaion glass#

Nu(x) • 0.589 X 0.858154 (0.8583877)
• 0.433 Car)1^4.

<*> Boundarylaw for Howarth»a flow past a wadga •

Fig. v. Boundary layar flow past a vadga of 
inoomprassibla fluid.
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Let origin bo taken at the stagnation point. Th« 

x-axis along the wall and y-axia perpendicular to tha wall. 

Thus we hava tha boundary layar equations

d u bu dU
u —. 4- V — rn \J —«. ♦

d x d y d x

*2»

d y5 (1)

d u d v
4 —— * 0 ... C 2)

d x d y

With tha boundary condition

y m Of u « 0 - v

y — ooi u • V (x) ... (3)

where y is tha kinematic viscosity and U(x) is tha 

Howarth * s flow potential velocity. Now we introduce tha 

stream function '~p (x.y) which satisfy tha continuity 

aquation (2}, Thus wa taka

d+ df
u • — # v • - — ... (4)

d x d y

by using equation (4) aquation (1) taka the form as

d 'f d2 'f d *f» d^f <50 d2+-

rr d xd y ~ d*x * r? sr * r? a a a C5)

Tha corresponding boundary condition are

y - 0 9

y • od f

O X

d y

0

u <x)

.. (6)
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In the neighbourhood of the stagnation point the Howarth 

potential flow velocity U may be written as#

U(x) - % U - £ )

Hence f) takes the form

, , uo ,Va x/2 H - - y ( 1 . — ) x*'*
* r

... (7)

end
7 u0 1/2

'V (x#y) - -1(1.------ > x. f(Tl) ... (0)
L

Using equation (7) and (0) in equation (4) we get the 

following

d't'

d y

U#
u(x) f»(n) xf*in)

V ■ -
d'f

d x
°0 1/2 T*<1. * —-- x 2 «(H) ... (95

L

and the boundary equation (1) reduces to an ordinary 

differential equation in f(T|) as#

f*“ + ££•*!. (l - f*2 ) o o ... (10)

with the boundary conditions

H - O « f - 0 , f • « 0

H * ® i f ■ 1 ... (11)

Equation(10)is similar to Hartree*s equation# there-
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for*# we are using Hartree's solution

Let f(*)<
w*2

•n
m

... (12)
which satisfies the first two b oundary conditions of (11) 
substituting (12) in equation (10) we find the coefficient 
expressed in teems of where a2 * « (unknown)

2a2 • a, aj » - 1# a4 ■ 0# a5 * a , a6 * -2a, a7-2.

- a ■ 4a2, alQ ■-!«#.

It may be noted that a * f"(0) is still unknown we have 
to find the value of a by substituting the values of f and 
f * from equation (12) we get a linear differential equation 
in f* (n)

Therefore f«(n) - e*P^l) 0 00 ... (13)

where F(H) - j F(n)di|
0

and jf(ij) - a. 1 J* (1-f*2) «P(T,> m
0

Equation (13) satisfies the boundary condition at i| • 0. 
Then unknown parameter a is found from the equation

*<n) *i-i.
which is obtained by integrating (13) and applying the 
boundary condition of (11) from the solution of (10) we 
obtained the boundary layer parameters as follows t
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(•) Dloplacooaont thlckng»» «

*1 * * - 5 ><*
* 0 u

- - < -f . ~ )V* . A(p). 

U0

00
whoro A(0) ■ ^ (1 - f') <#t

0

and A(0) - Lint (i) - «(»}))
n —>» oo

(b) Momentum thickness «

‘a
w M |1

S S U - - )dy
0 tl u

, L *V2 .. %- - ( r • — ) ®U)
uo

where B(p) J f* U-f*)dt| 
0

(c) Shearing strops t

d u
Tw " R ( r*y )y°

■ 0 L T
H2 ,2 f. (0)
iii



59

s* .Sakata, .iaxti ?„a.flftw. »*<?nq. **tt .*nU, a.*. .§
conwtQ»nt channel •

rig. s: B-oundary layer flow along the wall 
of a convergent channel.

The potential flow velocity la given by 

U(x) * U0 (1.5) ... (1)

where x la measured along the wall of channel and UQ la 

stream velocity, L is the reference length. Now we can 

Introduce

i y^2
* Ly

and stream function

• • • (2)

V - < r -2- )1/2 f(n)
i/

(3)
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and
u - U£* m)

l i ™ r • • • (4)

and the function £{t|) satisfies the differential equation 

«•* «• 1 - f*2 - 0 ... (5)

the boundary condition are#

H * Of f » 0# f * * 0 ... (6)
H » oo t f' » 0

(6) Boundary layer with suction along porous wall in
Tani*s and Howarth * s flow t

A solution has been obtained for the Laminar boundary 
layer of an incompressible fluid along a porous wall in 
Howarth * s flow with uniform suction along the wall. The 
momentum and kinetic energy integral equation and the wall 
compatibility condition have been used to find an approximate 
solution with the help of Fohlhausen's fourth degree velocity 
profile.

(a) Introduction s

Curie 1 has suggested that for Howarth*a flow along 
a porous wall separation can be completely avoided if the 
suction velocity v is given by —JL- >1.55 •
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Tani [231 used the series expansion method for the 

stream function and obtained that separation occurred at 

*/a • 0*271 in tha case of potential flow is given by 

w2
u(x) « U0 (1 - 5- ). M.R. Head C 81 calculated tha momentum

a2
integral aquation for two-dimensional Laminar incompressible 

boundary layer* Howarth [101 studied the boundary layer of 

an incompressible and non-conducting fluid for the potential 

flow is given by U(x) » Uq ( 1 - jj» ) and found that separation 

occurred at - 0*120*

Iguatlona i

Head [ 8J calculated the momentuai integral equation 

and the kinetic energy integral equation as follows t

(i) Momentum integral Equation s

With x as the co-ordinate along the wall and ~f the 

coordinator perpendicular to it* the two dimensional boundary 

layer equation for an incompressible fluid

d u b u .bp
u — ♦ v «*—• * - i — +

b x by ^ b y

The equation of continuity is 

'b u b v-- ♦ ----  - 0 ... (2)
b x by

and for uniformly porous walls the boundary conditions are

b2 u
(1)
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¥ ■ O t u ■ 0# ▼ * va t 
Y m m a « * U (x)

... (I)

Because of the condition at y * a we have from aquation (i) 
- 1 d p d U
^ d x d x

Hanca aquation (1) becomes.

d u d u dU d2 u— ♦ v —— - U — ♦ y —•d X d y dx d yJ ... (4)

Integrating aquation (4) with respect to y from y ■ 0 to 
y • op under the boundary condition (3) we gat

d e
d X

e d u a* T
o a * e r ... (5)

where
e- T 2 < l - 2- > dy.i U u

6* - S <1 - 2 ) ar o u

H«nca# tha momentum integral aquation in dimensionless form
is
dt* 2X [4- (2 «• H) A + dS 0 L .. (6)
where

- x - U „ 6* X ■ - , U » —. . H ■ i-
U# e
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< 0
U

d u 

d y
) y»0

A
oa do 

Y d x

A •
r 1 «\> 0 * injaction 

A< d *. suction

where x Is co-ordinate along the wall 
is reference length 
is free strewn velocity 
is normal velocity at the wall

(11) Kinetic energy integral equation i
5 u ^ v

Adding - ( — v — ) to the left hand side of 2 d x d y

equation (4), multiplying through by u and Integrating with 
respect to y from y ■ 0 to y • oounder the boundary conditions 
(3) we have

Lf-ilo L?~tv®
dx o u Udx u

... (7)

where r
CD5
o

( 2)2 (u
d u 2 dy

d V
i.e. — ( --dx ^

2H t ) [2D - 3Ht *] ... (8)
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€
where H, » —-fc 0

The direction variation of H with respect to x is 
given by

<S
dx

j d t (. do
• d x *"? d x • • • (9)

d£. doSubstituting for and «—> from equation (7) and
d x d x

(S) respectively into equation (9) we have the kinetic energy# 
integral equation in dimensionless form#

d H£
7T

£ 2D - Hg. ^ (H-l) A ♦ X} ♦ * 3 •••(10)

(Hi) Wall compatibility condition t 

At the wall# 

y*Oiu»0# v * v# j 

Hence equation (4) gives#

B2u

1 ‘ i~? Vo "
i.e. si » -

e2

d U- U -— ♦ V.d x *
b U
& y

A -f

>>«
■ ‘ i"? Vo

y-o ... (id

The two integral equation (6) and (10) and the wall compati-
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bllity condition (II) may ba used with the halp of presupposed 
family of valocity profiles for tha approximate calculation 
of tha boundary layar along porous wall*

(iv) Valocitv Profllas «

Tha local boundary layar thicknass would now depend on 
tha rata of suction with Pohlhausan's fourth degree polynomial 
valocity profile may ba used to investigate tha boundary 
layers with suction

Tha profllas are given by,

S - F(t|) ♦ k G(i») ... (12)
U

r
6(x, v,i

f (11) - + 2nf ♦ n4

Q(n> - | [n - 3n2 ♦ 3n3 - n4 ]
and k is the free parameter which is used to satisfy tha 
additional condition at the wall. For this system of valocity 
profiles the wall compatibility conditions (11) becomes

62
K ( -a )•-*«♦ A ... (13)6*

Tha compatibility condition (11) will be satisfied in course 
of solution with tha help of the profile parameter.



(b) Howarth *s flow i

Zt is proposad to invastlgata tha boundary layer with 
suction along a porous vail in Howarth's flow for which tha 
potantial flow valocity is givan by U(x) • UQ ( 1 - j| )

V - 1 - x

d U
A • t* Mow • a» t* 

dx

Va e 1/2and A m m vrV *

vhara Vs

Than aquation (6), (10) and (11) raduca to

dt*
* f(x, t*, He ) 

dx
whara

«. 2 • i/2
f(x , t*,H€ > * “ L * ♦ (* ♦ H)t* ♦ Vst* ] ... (14)

d He
---- ■ 9 { X, t*( H, )dx

whara
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9 (x* t*, Mc ) • ---— f 2D - Hr { < ♦ (H-l)t« ♦ V.t*1^2] ♦fc (1-5) t* L * J

♦ V, ... (15)

(c) Tanl’s Flow t

Boundary layer with auction along a porous wall in 
Tani's flow for which the potential flow velocity is given

x2
V (x) - w0 ( 1 - --j ) 

U(x) X*

«» «2 g - i - x*

A » fc* mm* ■ w t* 
d 5

d u
t* — ■ • 2x t* 

d X

Mow the momentum integral equation (6) and kinetic energy 
Integral equation and the wall compatibility condition

dt»
----- f (X, t*. Hr )dx“ *

where
f(x, t*. ) L

V.0 >•2xt* (H+2) + —— 1
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a Kg-—- m 9 ( x , t*, H, )dx 11

9 <x~, t*. Hfc> ------ - [2D
t*(l-xz) L

[ < ♦ (H-l) 2x t* ♦

♦ ... (16)

Table - Boundary layer characteristic for Pohlhausen *s
velocity profile against the profile parameter K

K H Jt D

0 2.554 1.571 0.235 0.1745
• 1 2.604 1.566 0.217 0.1718
. 2 2.647 1.561 0.199 0.1690

Point of separation along a well given by different authors 
and present method

Reference Point of sep.
Tani* 0.271
Pohlhausen* 0.318
wals3 0.248
Thawites4 0.262
Tani 0.265
Howarth 0.1248

oOo
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