CHAPTER « I

S8tudy of some Boundary Layer

Problems
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1) Introductiony

In fluids flowing past heated or cooled bodies the
transfer of heat takes place by conduction and convection.
Heat radiation is negligible unless the temperature is very
high. When the conductivity of the fluid is small, which is
true in ordinary fluids, the heat transfer due to conduction
is comparable to that due to convection only across a thin
layer near the surface of the body. This means that the
temperature field which spreads from the body extends,
essentially, over a narrov sone in the immediate vicinity
of its surface, whereas the fluid at a larger distance from
the surface is not materially effected by the heated body,
This narrow region near the surface of the body is khown as
thermal boundary layer. This is classified into forced and

free convection,

Girishchandra Pande [ 6 ] investigated'effect of suction
on ungteady free convection flow past a verticle flat plate!
He studied the unsteady laminar free convection flow past a
verticle infinite flat plate subjected to time dependent
suction is considered when the plate temperature varies on
some power of time. Series solution for velocitv and
temperature obtained in terms of known function when the
prandtl nurber of the fluid is unity,

B.P.Acharya and 5., Pandhy [17] studied free convective
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viscous flow past not verticle porous plate with periodic
temperature. In this problem he obtained an analysis of a
free convective flow of viscous liquid past a hot verticle
porous wall is presented under the assumption that the
suction velocity is constant and normal to the wall, and the
wall temperature is spamwise cosinusoidal approximate
solution of the equation of motion and energy equation have
been obtained by the method regular perturbation,

J.L.Bansal ['3 ] investigated the ‘Asymptotic suction
temperature profiles in laminar boundary layer over a porous
flat plate', In this note it has been shiown that in the case
of laminar roundary layer over a flat plate with homogeneous
suction as we have the ‘asymptotic suction velocity profiles’
there exists also ‘asymptotic suction temperature profibe',
for various values of the prandtl number (Pr). The recovery
factor 4is such a case is to be independent of Pr and has a

constant value one.

S. Prasad [13 ] obtained ‘Boundary layer with suction
along the porous wall 4in Taeni's flow'. In this paper an
investigation has been made into Laminar incompressible
boundary layer with continuous suction along a porous wall
in Tani's flow for which the potential flow velocity is given

%2

by U(x) = Uy (1 = - )« Following M.R. Head [8] the momentum
a

and the kinetic energy integral equation' have been used by



8. Prasad with the aid of an eighth degree polynomial wvelocity
profile to obtain a step-by-step numericel solution.

Krishna Lal [111 investigated ‘free convection lamirar
boundary layer in unsteady flow'. In this paper he studied
the effect of unsteady flow in the magnitude of surface
temperature on the free convective laminar velocity’ and
themeal boundary on a flat plate is studied. In Section one,
the general squation of motion and temperature distribution
are given. In Section two, the sclution are obtained when
the fluctuations in the velocity components ;':md temperature
distribution are in the form (u, v, G) = (v,, V;, G,) +
€ (4, w5, G) exp (w,) 2and lastly solution is given when
the fluctuations is an exponentially decreasing function of
time.

Ram Deo Matho [15] studied the ‘Boundary layer with
suction over a porous elliptic cylinder®. In this paper the
method suggested by Head has been used, the momentum and the
‘kinetic energy integral equation for two-dimensional boundary
layer have been rederived and have been used with the aid
of the schlicting's velocity profile to obtain a atcpj-by-
step, solution for the boundary layer with suction in the
region of adverse pressure gZadient over a pormus elliptic
cylinder with the ratio of the major to minor axis is four.

F.T.Smith and P.W,Duck [17] ebtained 'The separation

of Jets or thermal boundary layer from a wall', In this paper



consideration is given to the separation and subsequent
reverse flow occurring when a Jet-like boundary layer on wall

encounters a concave corner of finite angle ae

R, Sharma [18] explained 'A two parameter method for
calculating the two-dimensional boundary layer with suction
or injection. In this paper he applied the method developed
by eurle for flows without suction to the flows with suction
or injection, Detailed calculation of the boundary layer
parameters made by this method indicate that the error are
within 5% of the exact values.

M.G.Palekar and D.P.Sharma [ 14 studied ‘Approximate
solution of the boundary layer equation with suction blowing’
according to him the problem under consideration is that of
boundary layer flow along a flat plate with suction or blowing
there are two types of surface suction namely V,, constant
and VvV, - x-I/Z. An approximate integral method are obtained
the principle merits of method is (1) solution are obtained
in the closed analytic form (2) the similarity condition can
be relaxed the velocity profile and skin friction are presented

and compared with the result of the past investigators.

G.N.Sharma and D.P.Singh [19 ] investigated ‘'The effect
of viscosity temperature law in unsteady boundary layer on
flat plate', They studied the effect of viscosity-temperature
law, when the wall is in arbitrary motion with steady stream
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velocity. Prandtl mumber being unity. The dependence of
coefficient of viscosity j on temperature T is assumed to be
1

p = constant wee-
T+C

where w and C are constants.

This is the generalisation of the work of Sarma (1965) from
a Linear law to the more realistic nonlinear law between

Viocoaity and temperature,

N.C.Raghav Acharyulu [ 167 studied combined free and
force convection in verticle circular porous channela. He
obtained it in saturated wverticle porous tube of circular
cfouancuon with uniform heat source. The governing equations
are solved for velocity and temperature fields in the form

of fourier Bessel series.,

D, Surma Devi and G. Rath [207] investigated
'similarity solution of the unsteady boundary layer equation
for a moving wall, In this problem he obtained the similarity
solution of the unsteady laminar for two dimensional incompre-
ssible and of axisymmetric boundary layer equation for the
case of surface which moves with a velocity which varies
inversely as a linear function of time. The governing
squation has been solved numerically. It is found that the
effect of unsteadiness in the wall velocity and mass transfer

on the skin friction and heat transfer parameters are
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applicable. The prandtl number strongly affects the heat
transfer but the skin friction is unaffected by it,

Girish Chandra Pande [ 7] obtained ‘unsteady thermal
boundary layer f£low past a porous flat plate’, He considered
infinite flat plate subjected to the suction or injection
and it is assumed that the normal velocity at the plate varies

at t']'/z

« The expression in closed form for velocity tempera-
ture, skin friction and rate of heat transfer are obtained
for two cases (i) when the plate temperature is the same es
that of fluid at infinity and (4i) when the plate temperature
varies as some power of time. The effect of suction and

injection as these quantities is shown graphically.

R.P.Agarwval [ 2] studied 'Non-Linear two point boundary
value problem', In this problem he cbtained exigtence and
uniqueness of the solution of third order non-linearx
differantial equation with boundary conditions prescribed
at two points.

R. Sharms [217] obtained the ‘exact solution of the
incompressible laminar boundary layer equations with zem
pressure gradient and variable suction', In this paper a
numerical solution of the boundary layer equations with
zero pressure gradient and with general distribution of
suction is obtained, A set of differential equation has
been nty' accurately integrated numerically and principle
characteristics of boundary layer flow have been determined,
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Kizlov, L.F. and Losinskaja.T.X.[12] investigated
‘Integration of an electronic computer of the boundary
layer equation of Teni's flow in the presence of suction. In
this investigation they obtained results by using power series
for the stream function, Numerical intaqmthn method and the
system of differential equation of the boundary layer for
flow of Tani type in the presence of suction,

Holt M and Modarress D. [97] studied the ‘Application
of the method of integral relations to Laminar houndary
layer in three~dimensions®’, It has been traditional among
fluid dynamics to employ some numerical meansg (such as the
finite difference techniques) to solve the two-dimensional
non~-linear compressible boundary layer equation, But as an
alternative to this numerical procedure, the boundary layer
equation have been more successfully solved in an integral
form, for example with the classical Karman-Pohlhausen
momentum integral method., The main principle of the method
of integral equation is based on the idea of representing
the streamwise velocity gradient (normal to the wall) as a
simple algsbraic function of the streamwise velocity itself,
These investigators extend the method of integral relations
to the problem of three-dimensional compressible boundary
layer flows with and without separation., By reducing the
equation of motion to a quasi-incompressible form. They
solved the resulting hyperbolic partial differential equation,
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In this Chapter in Section 2 we have studied the
approximate solution of the Pohlhausen's problem of forced
convection in a laminar boundary layer on a flat plate. In
Section 3 wa have made an attempt to study the approximate
solution of the Pohlhausen's problem of free convection from
a heated verticle plate, In Section 4 of this chepter we
investigated the boundary layar for Howarth's flow past
a wedge. Section 5 deals with the study of boundary layer in
Howarth's flow along the wall of convergent channel, Lastly
in Section 6 we investigate the boundary layer with suction

along porous wall in Tani'sg ard Howarth's flow.

Before discussing in sSection 2 we enlist some basic
equations and the characteristic boundary layer parameters
required for our problems to be discussed.

(a) Fx nvection from a heated verticle flat plate :

A flat plate is heated to a temperature ¥, and placed
vartically under gravity in a large body of fluid which
otherwise at rest and has temperature T, and density ®o *

Thus the equation governing the motion are

o u dv
—— P mew w0 s (1)
o x oy
du ov Bzu 1 (2)
g e ¢ Y e -" + - G see 2
3 x dy ? y? e *
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oT T rals )
U owwn ¢ VYV ose W § X
ox LY 4 3;’

where Gy = g Q o~ go=Qap (T~ Tgy) see {(4)

= regultant body force on the fluid since for any

fluid
2 el fnepirory} (5.)
w LR N} [ ]
T e

vhere § is the coefficient of thermal expansion from
squation of state we have

0 . T
Q Teo

Thus from equation (S) we £ind that for gases,

) {
B - Soaraw
%o
? -7
Introduce 6 = mo.;.;
T - " T&

Thus equation (2) and (3) become

2
o o u -3 T .7
> x 3y ® y? Too
o6 [ X) ’020 (6
W ewwe ¢ YV oue = g *ove
o x 2y B;!

the boundary condition in the present case are
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Yy=0 s umsQ0y v=s0p 0= ]

Y=o0 st u= 0y oe=0 eee (T

by making the following substitution

g (T, - Teg) , V4 Y Y
- - - c. [
A ¥z $ g /3
(x,y) =m4¢4)C :3/‘ £(n) ees (8)
o (x,y) = 06 (n)
thus the equation (6) becomess,

£ 4 3e2% - 2t 4 gm0
and 6" + ¥r fe’ = 0 ese (9)
with the boundary conditions
M=0 3 £=£f'm(Q0; O0=1]
eee (10)
MTsags £'=0;06=0
E. Pohlhausen solved these equation (9)

(b) Xarman ntum integral tion s

The prandtl boundary layer equation for s steady
two-dimensional incompressible flow are

Du ou au 32u

U wwnw $ ¥ oo -U---O-Y eee (11)
o x oy ax B?
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ou oV
—mw P woe B0 see (12)
4 x oy

subjected to the boundary condition are

Y= 0 3§+ umsv= g
*0 e (13)
Y=o : um=s U(x)

where § is the boundary layer thickness.

Due to equation (12) and (13) equation (11) can be
reduced to the form

a §2 du
v el s (26248 0 — = 2o ee (14)
dx ax Q

This equation is known as Karman momentum integral ecquation

for two dimensional steady incompressible boundary layer

where
6 u

§l = ¢ (1= : ) &y, (displacement thicikness)
o

[
§2 = S 3 r-2 )ay, (momentum thickness)
g U U

and M= B ( 5—-—- )o (shearing stress on the wall)
Y

where Q is density of the fluid,

(c) Energy integral equation 3

By using equation (11), (12) and (13) we obtained
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the energy integral equation for two dimensional steady
incompressible boundary layers in the form
a 2D

- ( 0363) 8 o ese (15)
ax Q
where
f a Qa a)ay ( thickness)
63 = - , (energy ckness
I g 0 vl
and .
] du
Doy ( ( e=e) ay » (dissipation integral)
o oy

(d) Thermal energy integral equation i

The method of thermal energy integral equation is
calculated from thermal boundary layer equation.

The boundary layer equation

du ov
.- e + -——— - 0 [ X X ) (16)
ax oy
2u du . 3% u (
B www 4 Y oo = .—-, .se 17)
O x oy dy
8T arT 2? ¢ B du ,

+ ( ) eee (18)
? x 'y 2y o

dy

cP
with the boundary conditions

y=0 3 us y= 0
ees (19)
y= §(x) s u= U(x)

K
where 8 ® we-we i3 the thermal Aiffusivity due to equation

¢<



y=0

+

(16), (17) and (19) can be reduced the form
4 8¢ T
- S T -« Tog)dy = = 8 ( wew )
ax o oy
8
+ ....lt.. St
Q Cp o

(2)

dy 000(20)

Approximate solution of the Pohlhausen's problem of

forced convection in a Laminar boundary layer on a

flat plate s

Taking the Pohlhaugen's fourth degree velocity

profile for a boundary layer over a flat plate.

u 4

—— o E(N) = 2 aml o<na,
Voo i=0

u

—— =) as n > 1

Voo

where

eee (1)

ne= f and § is the thickness of the flat plate.

In order to determine the coefficients 2y to a,

we prescribed the following boundary condition and compati-

bility conditions.

2

d u
Yy=0 3 us=o0; -0

6;3

d9u a’u

y=§ us U -

=0

(2)
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u 2 3 4
6.. e £(n) = a + Iiﬂ + an + ‘3“ + “u

ao
Using the boundary conditions (2) we have calculate

the coefficient g to ag as follows =

ao-o. -1-2. tzno

LA A J (3)

Now we calculate the following characteristic boundary

layer parameters
i) D acCenen cknegs

é u
0 Ueo

l
- Q-me+m?on® s o

ol *

s 0,386 ese (4)

8§ u u
0 Vg U

1
-3 23 (M-t e m® oS3 an® o nb+

T entom®e m? o By
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567 - 330
- 6 Pt

318
= 0.,1176 6 see (5)

114) 8 stress on the flat te

ou
‘!;, -p(s—;)y.o

o f

-zi?§- o--“)

iv) Coefficient of gkin friction

c T
b ey

L]
[
S
Q D
o c
o

eee (8)

L~
o

Row we have studied two cases for this problem (i) solution
for cooling problem and (11i) solution for adisbatic wall,
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s) Solution for the cooling problem :

We introduce the flow of viscous incompressible fluid
at flat plate at constant temperature ‘l'w which 4is placed
along the direction of uniform stream velocity U, and
temperature Tm'

Introduce the dimensionless temperature 0)

el -

[ B X 3 ‘8)
Ty * To

The heat flux equation in the present case may be written as

4 8¢ - a CN-2
ax ¢ U Vg oy T

for the temperature distribution we consider the following
polyromial in nfy

4

Oy = L M,)ela n'q" 0O <, 21
1 t 1m0 ; § t

61 = 0 as “t - 1 see (10’

Satisfying the following boundary and compatibility conditions

ut.l 3 61-00 ’—n-i - .mi -o. see ‘11)

9677
A
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The compatibility condition are obtained from the
thermal boundary layer equation after neglecting heat due to
dissipation, Moreover the form of the temperature distribution
is 80 selected as to ensure identical velocity and temperature
distribution in the case of Pr = 1 for the existence of

Croco's first integrel,

Substitute (10) and (11) in (9) we get

] 8¢ 4 4
— (1- Z aad)( = apmd -
3 i R AL 1 ey
-a X
Yoo oY
4a 2a
w— {5' H(A’}' L ] vee (12)
dx Voo 8¢
8¢ (x)
where 4 * ceccee eee (13)
8§ (x)
) |
and H‘A) - g f‘a) L‘ng)ﬂ sse (1‘)

It may be noted that
Se
= !.!-.—-OﬂtA eee (18)
& 5, &

Performing the indicated integration in (14) we get



'}
1
a $1s H@)= 2, £(Nea)Ling) Mg
1
= S [(mes - CRARE R IR N R T N LR
LK S | 1,4 4. 1
- A {jl - 5 + g - !jlf Aa [_— ’ + g - ’ + t.] +

1 1.1 1
rat [5-5+3-57

W
w

2 1
amew - oapm + www [ X X ] 1‘
H&) = 3% 10 *1s0 ° (16)

1 o n
A >1 H‘A)'z éf(‘l)b‘-)‘ﬂ
A

1 a 1
z ;L(z)dﬂ

2
L 1o

1 "
§ ML ( - )4 N ¢
() o

Xeeping in view that £(n) = } for n > 1

1§ (m n’ua‘?(l m*n’ "‘mn
- - - - e -
A& o 'y ;T' ;t
3 4
1 & m = n
+ o= $ l o o= - a
2 1( A*;r ;z) N

Slw
Dire
-
] g
”‘a—

H(a) = %3 -

o *

3 3 1
- —ww -— P www
140 a 180
to find 52 we use Xarman momentum integral equation
2

$ L{ )
( uzu. ) -
4

see (17)

1

Voo
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where L( A) =2 {XT - > (He2)}
But for flat plate * s 0
L (o) = 2x

3'1‘° 8,

»
b VYap

v
But T, = 2 -2

4
463
&

4 x 37

318

37
becsuse 62 . ae= §
nus

2
8, ¢x37 1

( ooe) = .
4

18 v

therefore,

4
ax

- .

318 UQ

2 4 x 37 Yy x
2

Put the value 62

2 1260 Y =

6‘ I vee (18)

37 Vo

Equation (12) on integration gives
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2 .2 4a x
8 H ‘A) 8  wwss J H‘A, ax oen (19)
¢ Up ©

with the help of equation (18) may be written as,

37 x
62“2 (8) ® cowe , ‘1' . '1"' § H(a) dx eee (20)

318 x fr 0

Startig the initial value a = constant the exzct solutioh

of equation (20) is

2 7 1
a H(A’ B wes 3 oo see (2’.)
318 Pr

Now it can easily checked that a = 1, Pr = 1 is the
solution of the above equation thersefore when Pr = 1,
g =8 andn, =17 thus form of (9)

4

0 =1 - Zn‘uinl-!(n).sptnl
i=0

which is known &s Croco's first integral,

Equation (21) 4s the algebraic equation in A for
the prescribed Pr it can susily be solved., It will be
convenient to prescribe and deternine the corresponding
fr. It is found that for following cases -

1) For moderate values of the prandtl number the
expression

«-1/3
F -?rv eee (22)
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Constitute & very good approximation to the
solution of equation (21).

i1) For very small Prandtl number (i.e. for large

values of a),

H(a) = -}3 (epproximated)
therefore from (21) as fxr -7 0

22 = 0,3915343 Pr~V2

a = 0.625 Pr'VY? e br oo ves (23)

111) for very large prandtl number (i.e. for small

values of a),

H(a) = (approximated)

4 1

therefore from equation (21)

-1/3

A = 0,9388 Pr as Pr > o eee (24)

The temperature gradient at the wall, from equation (10)
is given by
[ XY

( ===

“ S o 2 oo e (25)
o R, 0

Therefore the locsl Nusselt number for the heat

transfer at the wall 1is calculated as
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37
= 2, '1' ‘ ’Vz . ’ﬁ. .
a 1260 v
0.342
re, M2 ces (26)

Upn X

where Re, = -?;- is the local Reynold number

substituting the values of a from equation (22), (23) and
(24) we find

i) for moderate values of Pr

N“(x) = 0,343 ﬁ:va R.xvz ese (27)

11) Por very small prandtl number
lla(x) = 00,5472 Prvz R‘nl/z eee (28)

for Fr - 0

i11) for ¥ery large rrandtl number

B,(x) = 0,3644 9:1/3 Roxvz for Pr > a0 ...(29)

(AR LKA
AR BAUSA“EER‘S;‘TAypEK%LWxﬂIn

AVAIL UNIY
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(b) lution for adiaba all s

Introducing 6, = eee (30)
2wl /g
?T
and keeping in view that for the adisbatic wall ( «=e ) =0,
2y YO

the thermal energy integral equation may be written as

a & u 2 8 ® w4
= o 2T e sylag! ™
Y
e o P e (31)
leat az‘ .r"( %:_ g“’.‘ )2 ooe (32)
i=0

wvhere the coefficients C, to C4 are to be determined with
the help of following boundary and compatibility conditions

e o ¢ o3 6 Pr a2
N 20 § wwee =, . . LA ?
t ? “onti

eee (33)

T - T
and ¢y = —g—— (recovery factor)
Yo /%p

For an adiabatic wall the compatibility conditions
are obtained from the thermal boundary layer equation in the

usual manner. Also the form of oy is 30 selected as to ensure
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the Cmco's second integral when Pr = 1,

With the help of condition (33) we have calculated

the coefficients Cy to Cq 28 follows
Cop™O
cl-u\/ﬁr R c.‘,-t\/”“-acg
Cy»=-8VTX+3; andCg=3VY-c

Substituting (1) and (32) in (31) we get,

a 2y a
ax uoo5t
f Q
where G = (92 e )@lt
0 Uab
) v
snd J = | { ( ) } 3%
0 (a0 Voo
Now we tind
4 4 i3
I e 2 2 e pMMRl g,
im) jml 4+3e1
o 4o - 823 ¢ 424 ¢ 38 5 _ 9.8 4 18 L8
S 7
and J = ;;

[ X X J

sed

(34)

(35)

(36)

(37

eee (38)

Integrating equation (35) and taking the value of § from



(18) we have obtained

Ga = '21 J eee (39)
315 .

Now it can easily checked that when Pr = 1 and a = 1 then

T=1 is a solution of the sbove equation, Therefore, in

such & casse 1“ - s and e ®= W thus from equation (32)

4
- 2
93-1-( %__;.o l“l‘) 1l £% (n)

which is the Croco's second integral,

Equation (39) indicates that T is function of a and
Pr. But we know a is a function of Fr therefore the recovery
factor T will be a function of Fr only. Hence equation (32)
is an algebraic equation

It is found that

i) for moderate values of the prandtl mumber the

sxpression
1/2

r=Pr
Constitute a very good approximation to the solution
of equation (32).

11) Por very large prandtl number
J = 4a (approximated )
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(3) n of hlhaugen ! obl
£ nvection £ he ve cle a )

The equations governing the motion of incompressible
viscous £1luid in the neighbourhood of a heated verticle
plate is given by

u oV
—me P wee =0 see ‘1)
o x oy
du ou 32\3 2
B ewe Y ¥V owe =y + g O oee
2 x >y oy
N :) X bzo
NV oon YV ose B 5 eceoeoe eee (3)
o x dy 2 y?

where 6 = -"“..?;- and a = ¥ -] ese (“)

‘!"-Tw Tﬂ

subject to the boundary conditions

y=0 3 us(Q0j vs (0 o=}

ees (%)
y=§ 31 us 0 ; o=

For the second boundary condition, we have assumed
here that the thickness of the thermal boundary layer is
the same as that of the velocity boundary layer, although
they are different in genersl. This assumption has its
Justification in that it simplifies the computational work
and the result obtained very near to the experimental result.
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Integrating equation (2) and (3) with respect to y between
O to §, we get

a $ é ou
— | uldy wga 1 0dy e 7 ( ww=) eee (6)
ax O 0 oy ©°

and
4a f o 0
—a \ledy--a(--)o ees (7}
a4 0 oy

We use the following polynomials in % (= 7/8) for
the distribution of u and 0 which satisfying the respective
boundary conditions

us “I(X) R ‘1 - “)3. o0 (8)
ew (l - “’30 vee (9)

wvhers the erbitrary function u;(x) has the dimension
of velocity and is to be determired,

With these expression of u and 0 the equation (6) and
(7) become,

1 4 2 1 u
e - §) = g ab - - eee (10)
282 éx " 3 ! s

S SO (11)
e avan - - see

36 Aax ! ]

Let us try the sclution of the above equation in the forms

ul - Cl Rn and § = Cz xn eee (12)



3

Then by substituting these equation in (10) and (11) the two
equations take the form

m+n 2900l <1

1 Ben
252 1 2 ¢ "« T e
»en 3a
56 cz
sust be identically satisfied, this gives
M+ nelasnespneang BeErnNn=1"an
me1/2 and ns= 3}/¢
and therefore
112 _1/2 g« 2
cl - 8,64 ¢ ( Pl‘ + wow ) v ( "r )v eos (14)
101 Y
cz = 5,09 9!’ v (Pr + iB ’V‘ ( e ) v s (15)

101 y?

From equation (12), (14) and (15) we have

%.am PrV2 (5r 4 1.1089) /4 (6r)-V4
where
at. G(rw - T@, 33 - w:’
" 73

(Grashoff number )

The temparature gradient at the wall is

(22, 2
21 9



The local Nusselt number for the heat transfer in the

present case is given by

o
(T, - T an 08

= 0,589 Prva (Pr + 1.1009)4/‘ (Gr)v‘
For air Pr = 0.733 and this expression gives,
Ny(x) = 0.589 X 0.856154 (0.8563877) Crl/*

- 0.433 (Gn) V4,

(e) und layer for H 's £1 a wedqge 3

Ny s
~ “‘mu

\"x

Fige.4:Boundary layer flow past a wedge of
incompressible fluid,
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Let origin he taken at the stagnation point. The
x~axis along the wall and y-axis perpendicular to the wall.
Thus we have the boundary layer equations

ou ou a v Bzu -
U oonw ¢ Vooe 880 cen + 4 esse
o x -3 4 4 x B?

o u oV

www ¢ wwe =m0 eve (2)
o x .38 4

with the boundary condition

Y= 0; us = v

Y == Q)2 u'U(X) oese (3)

where 7y 4s the kinematic viscosity and U(x) is the
Howarth's flow potential velocity. Now we introduce the
stream function Y (x,y) which satisfy the continuity
equation (2), Thus we take

o X%
s e » VS o «oow oo (‘)
o x oy

by using equation (4) equation (1) tazke the form as

3¢ @’y ay ¥4 a re
- 'Y = U - * r —avunae see (S)
Oy 9xovy d x o y! ax >y

The corresponding boundary condition are

o+

Yy=0 V¥ 8 awwe =

o x eee (6)
Y=o ) é:f. = U (x)

oy
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In the neighbourhood of the stagnation point the Howarth
potential flow velocity U may be written as,

U(x) = Uy (1 =g )

Hence 1| takes the form

v 2
n--Y(l.-g-)V xl/: ooo(v)
Ly
and

T U
Yix,y) = -1 (1, 0 ,V3

X. f‘n) see (3)
L

Using equation (7) and (8) in equation (4) we get the
following

o - Uy
US cee = U(x) £9(]) ® weee x£'(N)
oY L
ay % M-1
o x

L
and the boundary equation (1) reduces to an ordinary
differential equation in £(n) as,

1/2 X T f(ﬂ) ese (9)

£% 4 £6% 4+ 1, (1 - £"2 ) m 0

[N R ] (10)
with the boundary conditions

=0 s £=0 £'=0

ﬂ-mlf'-l see (11)

Equation!(10)is similar to Hartree's equation, there-
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fore, we are using Hartree's solution

o« 8n n
Let f(‘). Z wasen n ces ‘12)
n= n!

which satisfies the first two b oundary conditions of (1l1l)
substituting (12) in equation (10) we £find the coefficient

expressed in tems of where a; = a (unknown)
g =a & =- 1, & - 0. ag = az. ag = -20, avnz.
3 a
‘ao' -a, .9-“1‘10-"1‘“0

It may be noted that a = £"(0) is still unknown we have

to £find the valus of a by substituting the vslues of £ and
£' from equation (12) we get a linear Adifferential equation
in £* (n)

Th&r‘f@“ f'(ﬂ) - .”“) ﬂ “‘) see (13)
n
where F(R) = é r{n)am
n
and g(n) = q, 1 65 (1—£'2) g M am

Equation (13) satisfies the boundary condition at 1 = 0,

Then unknown parsmeter a is found from the equation

eT M gin) = 1.

which is obtained by iutegrating (13) and applying the
boundary condition of (11) from the solution of (10) we

obtained the boundary layer parameters as follows i



(a) Displacement thickness s

6 u
‘1- g ‘l-a)dy

1. -E— /2 o« A(B),
v

0

- . (
o
vhere A(g) = é (l-£')
and A(3) = Lim (n - £(n))
n -

(b) Momentum thickness

L+ -]
8= 5 2 (-2 )ay
o U u
L
“«-(y. — Y2 ap

Yo

o
where B(g) = § £ (1-£)an
0

(c) gSheaxing stress i

9w

T'- P( ;‘;)y-o

«

ay 2 (1,9 ,2)V3 4
r 'L

L



59

5. un T arth's £l alon all
convetgent channel 3

A
rd
PRt
// o
K %g{’ Vtasy)
O T erTeTreYrm

X

Fig. 5: B-oundary layer flow along the wall
of a convergent channel,

The potential flow velocity is given by

Ulx) =Uy (17 cee (1)

wvhere x is measured along the wall of channel and Uo is
stream velocity, 1L is the reference length. Now we can

introduce

LH
I‘ = ...Y. -9- XX (2)
x Ly

and stream function

U
vty o yY2 ¢(m vee (3)
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am
u = Uf' (n)
u .
vy - ‘ ¥ —«-3 1/2 1 f‘(ﬂ) ose (“)
L x

and the function £(n) satisfies the differential equation
 dadld +1~£'2.0 ons (5)
the boundary condition are,

N =0y f-O.f‘ﬂo
...(6)
Aewag: £f'= 0

(6) Boundary layer with suction along porous wall in
Tani's and Howarth's flow 3

A solution has been obtained for the Laminar boundary
layer of an incompressible fluid along a porous wall in
Howarth's flow with uniform suction along the wall, The
momentum and kinetic energy integral equation and the wall
compatibility condition have been used to find an approximate
solution with the help of Pohlhausen's fourth degree velocity
profile.

(a) Introduction

Curle [4 1 has sucgested that for Howarth's flow along
a porous wall separation can be completely awided if the
v
suction velocity v, 4is given by ———— >1.85 ,

* Vv
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Tani [237] used the series expansion method for the
stream function and obtained that separation occurred at
%/a = 0.271 in the case of potential flow is given by

a
u(x) = Ug (1 - !; )« M.R, Head[ 87 calculated the momentum
a

integral equation for two-dimensional Laminar incompressible
boundary layer., Howarth [107] studied the boundary layer of

an incompressible and non-conducting fluid for the potential
flow is given by U(x) = Ug (1 = E ) and found that separation

occurred at ’-‘: = 0,120,

Bquationg

Head [ 8 ] calculated the momentum integral equation

and the kinetic energy integral equation as follows :

(1) Momentum Integral Equation s

With x as the co-ordinate along the wall and 7 the
coordinator perpendicular to it, the two dimensional boundary
layer equation for an incompressible fluid

du o u 1 9p 32 u
U wowe $ YV oo W o o oo S r - se e (1)
.Y %y Q Y o ;’
The equation of continuity is
B u -3 4
mwen  wmwe w0 ese ‘2)
dx -3 4

and for uniformly porous walls the boundary conditions are



62

= O us 0, v= v_
¥eoo . e (D)
Y= o s us U (x)

Because of the condition at y = a0 we have from equation (1)
-1 dp a v

m‘“m e

-;B 4 x

Hence equation (1) becomes,

ou du au 3% u
U ome $ Vooe 8 U cene + ¥ coon see (‘)
o x oy ax o y?

Integrating equation (4) with respect to y fromy = 0 to
Y = oo under the boundary condition (3) we get

ae . e 44U 8% v,
- W -no-a - ener  amene (2 ¥ - ) +'§;.':"" oese (5)
4 x Q U U x -]

where

- Ou by
° és(l-a-)@v

®
g*= S (1-2) ay
0 U

Hence, the momentum integral equation in dimensionless form

is

ace 2

4 ) [ ]
where
; - 5 P t.’ L Hﬂ o Hm g:
L Up ©
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‘( . a“
- a(;—;)ro
o avu
A. e -eran
Yy ax
vV, ©
A= ..!;. ? A> 0 = injection

A<@ : muction

wvhere x is co-ordinate along the wall
L Ais reference length
Uy is free stream velocity

v, 4is noxmmal velocity at the wall

(1) Kinetic ene inteoral ation 1

u,K OoVu dv
Adding « ( wee 4+ «== ) to the left hand side of
2 3x oy

egquation (4), multiplying through by u and integrating with
respect to y from y = 0 to ¥ = counder the bourndary conditions
(3) we have

ac 2y 3¢ av v,
e B mmw D ow + es e (7)
ax U U 4ax v

L <]
where € = ) 25 {1-(5)2:‘@.

oy
a ¢2 Me
i.0, -d-; ( - - -;;- ) 20 - 3ﬂ'1 eee (8)



The direction variation of H with respect to x is

given by
d He 1 4 & € ae
-wmem 2 - - - .—3 wenar PN ) ‘9)
ax ® ax e ax .
Substituting for gg- and :d;_g from equation (7) and
x x

(5) respectively into equation (9) we have the kinetic energy,
integral equation in dimensionless form, ’

d H 1

€
——gs B ee= 2D - H €ew (Hel) A+ A b e A ees(10)
d x Ut' [ € { } ]

(111) wall atibility condition i
At the wall,
Yy=0Ostu=0, v= v, s

Hence equation (4) gives,

2% au du
Y ( s";’ ),-0 = - U ;"; + V’ ( 5""‘; )y.o eee (11)

The two integral equation (6) and (10) and the wall compati-



bility condition (1l1) may be used with the help of presupposed
family of velocity profiles for the approximate calculation
of the boundary layer along porous wall,

(iv) Velocity Profiles i

The local boundary layer thickness uould now depend on
the rate of suction with Pohlhausen‘'s fourth degree polynomial
velocity profile may be used to investigate the boundary
layers with suction

The profiles are given by,

3 - !‘(ﬂ) 4+ Xk G(") oee (12)

Y

= -
8(x, v,!

F (M) =2+ 234t
G(n) = %[n-n’+m3-n‘]

and X is the free paramster which is used to satisfy the
additional condition at the wall, For this system of velocity
profiles the wall compatibility conditions (l1l) becomes

92

X ( -6-’ ) . = ALy A see (13)

The compatibility condition (11) will be satisfied in course
of solution with the help of the profile parameter.



(b) arth;s £ ]

It is proposed to investigate the boundary layer with
suction along a porvous wall in Howarth's flow for which the
potential flow velocity is given by U(x) = Uo (1l - ; )

U({x)
Yo
Usl-X
au
dax
v, 6
and = 2l = ttv2 v‘»“;
Y
- v /UL
where V% - .:. .2..
Yy ¥

Then equation (6), (10) and (11) reduce to

ace

- b f(x. t, He)

ax

where
| -
£(x , t*H ) = - E-’» + (2 + H)er & v’vvzj... (14)

——— - 9 ( x, tv, He )

ax

where
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1

(1-%) ¢t [ZD - He %." + (H=l)t* + v.t.l./Z}*
- »

9 (x, t*, Hc) =

+ v. t"sz | T ees (15)

(c) Tani's P )

Boundary layer with suction along a porous wall in
Tani's flow for which the potential flow velocity is given

x2
U(x) x?
m-lum
Yo L
T =1.5x
au
A‘t‘m - . t"
ax
av -
| o --2xt*
ax

Now the momentum integral equation (6) and kinetic energy
integral equation and the wall compatibility condition

a ¢ -
e = £ (x, tv, Hc )
ax

where
- 2 - Vg0
f(xo t.' He) b ""‘:2 [ < + 2x t* (H*Z) + wsew ]
l «x Y



4 He -

——-Z = 9 (X, t4 H.)
ax

(x H) - [ j4+ (H1)2x o
9 (x s tW, H B wwe- 2D - H + (He X +
€ wasd €
v, © vV_©
+ ; j"’ -r—] ees (16)

Table - Boundary layer characteristic for Pohlhausen's

velocity profile against the profile parameter K

X H He < D

0 2.554 1.571 0.235 0.1745
-1 2.604 1.566 0.217 0.1718
-2 2,647 1.561 0.199 0.1690

Point of separation along a wall given by different authors

and present method

Reference Point of separation x
Tanil o.27
Pohlhausen? 0.318

walzl 0.248

Thawites® 0.262

Tani 0.268

Howarth 0.1248
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