CHAPTER-I

CATEGORIES AND. COMPLEXES

PRELIMINARIES :

Thisichapter essentially, consists of all the basic definitions and results which will be needed in the ensuing chapters...

Definition. (1, 1) : A category \mathscr{A} consists of
(a) class of objects;
(b) for every ordered pair of objects $A, B \in \mathscr{A}$, a set $\mathcal{A}[A, B]$ of morphisms with domain A and codomain $\mathrm{B}_{\text {. }}$
If $f \in \mathscr{A}[A, B]$ we write $f: A \longrightarrow B$ or $A \xrightarrow{f} \rightarrow B$.
(c) for every ordered triple of objects $A,:, B, C \in \mathscr{A}$ a function $\mathscr{A}[B, C] \times \mathscr{A}[A, B]-\mathcal{S} 4[\dot{A}, C]$ called composition delined as (g, f) $\longmapsto \mathrm{g}$ f., satisfying the following two axions :
i) Associativity : h (g f) $=(\mathrm{h} g) \mathrm{f}$ whenever the compositions make sense.
ii) Existence of identities : For each $A \in \mathscr{A}$ there exists $I_{A} \in \mathscr{A}[A, A]$ such that $f I_{A}=f$ and $I_{A} g=g$ whenever the compositions make sense.

We shall denote a category and the class of objects by the same letter.

Definition (1,2) : If the morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$ are such that $g f=I_{A}$ then g is called a left inverse of f and f is called the right inverse of g.

- Definition (1,3): If the morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$ are such that $g f=I_{A}$ and $f g=I_{B}$ then g is called the ${ }^{-}$ inverse of f.

Definition (1, 4) : A morphism. $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is called an isomorphism if it has the inverse.

Definition (1,5): When such an isomorphism exists in $\mathscr{4}[\mathrm{A}, \mathrm{B}]$, we say that A is isomorphic to $B_{\text {. }}$

Definition (1,6). : A morphism $f: A \rightarrow B$ is called a monomorphism if $f g=f h$ implies $g=h$ for all $g, h \mathscr{A}[C, A]$. for all $C \in \mathscr{A}$.

Definition (1,7): If a monomorphism exists in $\mathscr{A}[A, B]$ then A is' called a subobject of B.

Definition (1,8) : A morphism $f: A \rightarrow B$ is called an epimorphism if $g f=, h f$ implies $g=h$ for all $g, h \in \mathscr{A}[B, D]$ for all $D \in \mathscr{A}$.

Definition (1,9) : An object $U \in \mathscr{A}$. is called an initial
 for each $A \in S 4$.

In any, category, the initial object (if it exists) is unique upto isomorphism.

Definition (1,10) : Let \mathscr{A} and \mathscr{S} be categories: A (covariant) functor $I: \mathscr{A} \rightarrow \mathcal{B}_{3}$ consists of
(a) an object function which assigns an object $\dot{T}(A) \in \mathscr{D}$ to each object $A \in \mathscr{A}$; and
(b) a morphism function which assigns a morphism $T(f)$: $T(A) \longrightarrow T(B)$ in B_{B} to each morphism $f: A \rightarrow B^{\prime}$ in \mathscr{A}. in such, a way that :
i) For each $A \in \mathscr{A}$, we have $T\left(I_{A}\right)=I_{T(A)}$.-
ii) If $g f$ is defined in of then $T(g f)=T(g) T(f)$.

Definition (1, 11): Given two functors $S, T: \mathscr{A} \rightarrow \mathscr{S}_{3}$, a natural transformation $\eta: S \longrightarrow T$ is a function which assigns to each óbject $X \in \mathscr{A}$, a morphism $\eta_{x}: S(X) \longrightarrow T(x)$ in \mathscr{S}_{0}, in such a way that every morphism $f: A \longrightarrow B$ in \mathscr{A} yie'lds a commutative diagram

η_{x}^{\prime} are called the components of the natural transformation η.

If, η_{x} is an isomorphism for each $X \in \mathscr{A}$, then η is called a natural equivalence.:
Definition _(1.12) : A category \mathscr{A}^{\prime} is said. to be a subcategory of the category \mathscr{A} if the following conditions are satisfied :
(a) $\mathscr{A}^{\prime \prime} \subseteq \mathscr{A}:$
(b) $\mathscr{A}[A ; B] \leq A[A, B]$ for all $(A, B) \in \mathscr{A ^ { \prime }} \times \mathscr{A ^ { \prime }}$.
(c) the composition' of any two morphisms in \mathscr{q}^{\prime} is the same as their composition in ${ }^{4}$.
(d) ' I_{x}^{\prime} is the same in \mathscr{A}^{\prime} as in $\mathscr{4}$ for all $x \in \mathscr{4}$

Definition (1.13) : A subcategory \mathscr{A}^{\prime} of \mathscr{A} is called full subcategory if $\mathcal{A l}^{\prime}[A ; B]=\mathscr{A}-\quad[A, B]$ for all $(A, B) \in \mathcal{A}^{1} \times \mathcal{A}^{1}$

Definition (i, 14) : Let $\left\{A_{i}\right\}_{i \in I}$ be a set of objects in an arbitrary category $\dot{4}$. A product for this family is a family of morphisms $\left\{P_{i}: A \longrightarrow A_{i}\right\}$ with the property that for any family $\left\{\pi_{i}: B \rightarrow A_{i}\right\}$, there is a unique orphism $\pi: B \rightarrow A$ such that the following diagram commutes for every $i \in I$.

The object A will be denoted by $\mathbb{T}_{i \in I} A_{i}$.

Definition (1.15) : CLEAVAGE

Let \mathscr{G} and S be categories and $P: \mathscr{E} \rightarrow B$ be a functor. For each $B \in S$, let $\mathcal{E}(B)=P^{-1}(B)$ denote the (possibly empty) fibre of P over B, where the fibre $\mathcal{G}(B)$ is a subcategory of $\mathscr{E}^{\boldsymbol{E}}$ consisting of those objects of \mathcal{E} which are mapped onto B by the functor P and those morphisms which are mapped onto I_{B} by $P_{\text {. }}$ Let $J_{B}: \mathcal{E}(B) \rightarrow \dot{\xi}_{0}$ be the inclusion functor. A cleavage consists of functors $f^{*}: \mathscr{G}_{(}(B) \longrightarrow \mathcal{E}_{(}\left(B^{\prime}\right)$ for each morphism $\mathrm{f}: \mathrm{B}^{\prime} \longrightarrow \mathrm{B}$ in $\mathbb{8}$, together with natural transformations $\theta_{f}::_{B^{\prime}} f^{*} \longrightarrow J_{B}$ satisfying two axioms.

Axiom (1) : $P\left(\Theta_{f}\right)=f$ and if $\varphi: E \longrightarrow E$ in \mathcal{E} satisfies $P(G) .=f$, there exists a unique $\mathscr{Q}^{\prime}: E^{\prime} \longrightarrow f^{*} E$ in $\mathcal{E}^{\prime}\left(B^{\prime}\right)$ such that $\left(\theta_{f}\right)_{E} \quad \rho^{\prime}=\varphi$.

$\mathrm{B}^{\prime} \longrightarrow \mathrm{C} \xrightarrow{\mathrm{f}} \mathrm{B}$
[We usually omit the subscript E from $\left(\theta_{f}\right)_{E}$ when it is clear which component of the natural transformation is relevant.] To state the second axiom, consider the composition
 is a uniquely determined morphism

$$
\left(d_{f g}\right)_{E}: f^{*} g^{*} E \longrightarrow(g f)^{*} E \text { in } \mathcal{G}\left(B^{\prime \prime}\right) \text { such that }
$$

$$
\left(\theta_{g f}\right)_{E} \quad\left(d_{f g}\right)_{E}=\left(\theta_{g}\right)_{E}\left(\theta_{f}\right)_{g t_{E}}
$$

making the following diagram commutative.

It is easily checked that $\left(d_{f}\right)_{E}$ are the components of a natural transformation $d_{f g}: f^{*} g^{*} \longrightarrow(g f)$.

Axion (2) : Each $d_{f g}$ is a natural equivalence.
Definition (1e16) : A cleavage is called normalized if $\left(I_{B}^{\prime}\right)^{*}=I_{E}(B)$ for all $B \in \mathscr{B}$.

Definition (1, 17) : A cleavage is called split if each d_{fg} is, the identity natural transformation.

Definition (1.18) : An opposite cleavage or opcleavage consists of functor $f_{*}: \mathcal{E}_{0}\left(B^{i}\right) \longrightarrow \dot{\varepsilon}_{0}(B)$ for each orphism ${ }^{\prime}: B!\rightarrow B$ in B together with natural transformations $\Psi_{f}: J_{B^{\prime}}^{\prime}$ —— $\dot{J}_{B_{*}}{ }^{\prime} ; *$ satisfying two axioms :

Axiom (1) : $P\left(\Psi_{f}\right)=f$ and if $\varphi: E^{\prime} \longrightarrow E$ in \mathcal{E}^{\prime} satisfies $P(\varphi)=f$, there exists a unique $\varphi^{[i}: f_{*} E^{\prime} \longrightarrow E$ in $\mathcal{E}^{(}(B)$ such that $\varphi^{\omega}\left(\psi_{f}\right)_{E}=\varphi$.

To state the second axiom consider the composition $B^{\text {it }} \xrightarrow{f} B^{\prime} \xrightarrow{g} B$ in 8 . Then for each $E^{\text {E }} \in \mathcal{E}\left(B^{\text {bI }}\right)$ there . is a uniquely determined morphism

$$
\left(c_{f g}\right)_{E^{u}}:(g f)_{*} E^{\dot{E}} \longrightarrow g_{*} f_{*} E^{m}
$$

in $\mathcal{G}(B)$ such that

$$
\left(c_{f g}\right)_{E^{w}}\left(\Psi_{g f}\right)_{E^{c}}=\left(\Psi_{g}\right)_{f_{*^{*}} E^{*} \cdot\left(\Psi_{f}\right)_{E^{u}}}
$$

making the following diagram commutative.

It is easily checked that $\left(c_{f g}\right)_{E^{\prime}}$ are the components of a natural transformation

$$
c_{f g}:(\underline{g})_{*} \longrightarrow-g_{*} f_{*}
$$

Axiam (2) : Each c_{fg} is a natural equivalence.

Definition (1.19) : Consider a commutative diagram of functors

where P and \tilde{P} have cleavages $\left\{f^{*}, \theta_{f}, d_{f g}\right\}$ and $\left\{\widetilde{f}^{*}, \tilde{\theta}_{f}, \widetilde{d}_{f g}\right\}$ respectively. Then $T \mid \varepsilon(B)=T_{B}$ for all $B \in B$ and if $f: B^{\prime} \rightarrow B$ is a morphism in 8 , then there is a unique natural transformation

$$
\begin{equation*}
\eta_{f}: T_{B}, f^{*} \longrightarrow \widetilde{f}^{*} T_{B} \tag{I}
\end{equation*}
$$

such that $\widetilde{P}\left(\eta_{f}\right)=I_{B}$ and $T\left(\theta_{f}\right)=\tilde{\theta}_{f} \eta_{f}$.
These transformations satisfy a complicated relation

$$
\begin{equation*}
\tilde{d}_{f g} f^{*}\left[\eta_{g}\right]\left(\eta_{f}\right)_{g^{*}}^{*}=\eta_{g f} \quad T_{B^{\prime \prime}}\left[\left(\ell_{f g}^{*}\right)_{E}\right] \tag{II}
\end{equation*}
$$

for $\mathrm{B}^{\prime \prime} \xrightarrow{f} \mathrm{~B}^{\prime} \xrightarrow{g} B$ in B
If η is identity for all f, then the functor T is called cleavage-preserving. i.e. if $T_{B} f^{*}=\tilde{f}^{*} T_{B}$
then by (I) we have $T\left(\theta_{f}\right)=\tilde{\theta}_{f}$ and by (II) we have $T\left(d_{f g}\right)=\widetilde{d}_{f g}$.
Definition (1,20) : Consider a commutative diagram of functors

Where P and \tilde{P} have opcleavages $\left\{f_{*}, \Psi_{f}, c_{f g}\right\}$ and $\left\{\tilde{f}_{*}, \tilde{\Psi}_{f}, \tilde{c}_{f g}\right\}$ respectively. Then $T \mid E(B)=T_{B}$ for all $B \in B$ and if $f: B^{\prime} \longrightarrow B$ is a morphism in S, then there is a unique natural transformation

$$
\begin{equation*}
\eta_{f}^{\prime}: \tilde{f}_{*} \quad T_{B^{\prime}} \longrightarrow T_{B} f_{*} \tag{I}
\end{equation*}
$$

such that $\tilde{P}\left(\eta_{f}\right)=I_{B}$, and $T\left(\Psi_{f}\right)=\eta_{f} \Psi_{f}$
These transformations satisfy a complicated relatịon

$$
\begin{equation*}
\left(\eta_{g}\right)_{f_{*} E^{w}} \quad \tilde{g}_{*}\left[\eta_{f}\right] \quad \tilde{c}_{f g}=T_{B}\left[\left(c_{f g}\right)_{E^{w}}\right] \eta_{g f} \tag{II}
\end{equation*}
$$

If η is identity for all f, then the functor T is called opcle avage-preserving.
i.e. if $\tilde{f}_{*} T_{B!}=T_{B} f_{*}$
then by (I) we have $T\left(\Psi_{f}\right)=\tilde{\Psi}_{f}$ and by (II) $T\left(c_{f g}\right)=\tilde{c}_{f g}$
Convention : By a ring R we shall always mean a commùtative unitary ring and by an R-algebra A we mean a commutative unitary algebra over R. \mathcal{A} will always denote the category of unitary commutative R-algebras and unitary algebria homomorphisms. Definition (1.21) : An algebra $X=\underset{n \geqslant 0}{\sum_{n}} X_{n}$ (dir), X_{n} being the R-submodules of X , is called an anti-commutatiye graded algebra if;
i) $X_{n} x_{m} \subseteq x_{n+m}$ for all $n, m \geqslant 0$;
ii) for all $n, m \geqslant 0 ; x \in X_{n}, x^{\prime} \in X_{m}$ implies $x_{0} x^{\prime}=(-1)^{n m} x^{\prime} . x_{i}$
iii) x in x_{n}, n being odd implies $x^{2}=0$.

If $x \in X_{n}$ then x is said to be homogeneous of degree n. If $x \in X$, then x is represented in a unique way in the form $x=\sum_{n \geqslant 0} x_{n}$ where x_{n} is homogeneous of degree n.
Definition (1.22) : A subalgebra Y of an anticommutative graded algebra X i's called homogeneous subalgebra if Y has a set of module generators composed of homogeneous elements.

Remark (1.1) : Any commutative R-algebra can be considered as an anticommutative graded algebra with degree O for every element.

Remark (1,2) : If Y is a homogeneous subalgebra of the anticommutative graded algebra X, then Y is an anticommutative graded algebra equipped with the gradation induced by that of x.

Definition (1.23): Let $X=\sum_{n \geqslant 0} X_{n}$ and $Y=\underset{n \geqslant 0 .}{ } Y_{n}$ be. anticommutative graded R-algebras. Then the R-algebra hemomorphism $\emptyset: X \longrightarrow Y$ is called a graded algebra homomorphism if for each $n \geqslant 0 \quad \varphi\left(X_{n}\right) \subseteq Y_{n}$.

Proposition (1.1) : Let $\left(X_{\alpha}\right)_{\alpha \in I}$ be a family of anticommutative graded R-algebras such that for each $\alpha \in I, X_{\alpha}=\sum_{n \geqslant 0} X_{\alpha, n}$ (dir) is the gradation of X_{α}. Then $\operatorname{TPX}_{\alpha}=\sum_{n \geqslant 0}\left(\pi_{\alpha} X_{\alpha, n}\right)$ is an anticommutative graded R-algebra.

Rroof : We know that $\operatorname{\pi }_{\alpha} X_{\alpha}$ is an R-algebra and that for each
 This sum is direct; and $\operatorname{Tr}_{\alpha} X_{\alpha}$ is a subalgebra of $\operatorname{mX}_{\alpha}$. We claim that $\mathbb{T}_{\alpha} X_{\alpha}$ is anticommutative. For this take arbitrary homogeneous elements $x=\left(x_{\alpha, n}\right)_{\alpha}$ and $y=\left(y_{\alpha, m}\right)_{\alpha}$ of respective degrees n and m in $\operatorname{TP}_{\alpha} X_{\alpha}$. Then $x y \in{\underset{\alpha}{\alpha}}^{x} X_{\alpha, n+m}$.
 Similarly $x^{2}=0$ if n is odd.
Hence $\mathbb{T P}_{\alpha} X_{\alpha}$ is an anticomnutative graded R-algebra:
Definition (${ }^{124}$) : For a family $\left(X_{\alpha}\right)_{\alpha \in I}$ of anticommutative. graded, R-algebras, the R-algebra $\prod_{\alpha} X_{\alpha}=\underset{n \geqslant 0}{\sum}\left(\pi_{\alpha} X_{\alpha, n}\right)$ is called the "product" of the family $\left(X_{\alpha}\right)_{\alpha \in I .}$

Convention : $\boldsymbol{\xi}_{\boldsymbol{y}}$ will always denote the category of all anticommutative graded algebras with morphisms the graded algebra homomorphisms.

Definition (1.25) : Let X and Y be anticommutative graded algebras. For any $m \geqslant 0$, a homogeneous algebra homomorphism of degree. m is an algebra homomorphism $\varrho: X \longrightarrow Y$ such that - $\varphi\left(X_{n}\right) \subseteq Y_{n+m}$ for all $n \geqslant 0$.

Definition (1.26) : Let $X=\sum_{n \geqslant 0} X_{n}$ be an anticommutative graded algebra, By an R-derivation of degree_ of X we mean an R-linear mapping $d: X \longrightarrow X$ homogeneous of degree 1 such that $d(x y)=d x \cdot y+(-1)^{m} x$. $d y$ where $x \in X_{m}$.

Definition.(1,27). : An R-complex is a pair (X, d) where X is an anticommutative graded R-algebra and $d: X \rightarrow X$ is an R-derivation of degree 1 of X such that $d d \doteq 0$.

Definition (1.28) : : An R-complex (Y, δ) is called an R-subcomplex of an R-complex (X, d) if
i) Y is homogeneous subalgebra of X such that $d Y \subseteq Y$
ii) the restriction of d to Y is δ.

Remark (1,3). If (X, d) is an R-complex with $\mathrm{X}_{\mathrm{n}}=0$ for $n \geqslant l$, then $d=0$.

Remark (1.4) : If d_{n} denotes the restriction of d to X_{n}, then we have a sequence

$$
x_{0} \xrightarrow{d_{0}} x_{1} \xrightarrow{d_{1}} x_{2} \xrightarrow{d_{2}} \cdots \cdot
$$

of modules and derivations such that $d_{n} d_{n-1}=0$ for all $n \geqslant 1$.
Remark (1.5) : The intersection of a collection of R-subcomplexes of an R-complex (X, d) is again an -R-subcomplex of (X,d).

Remarks_(1.6) : ' Let (X,d) be an R-complex and S a subset of X. Let $\left\{\left(X_{\alpha}, d_{\alpha}\right)\right\}_{\alpha \in I}$ be a collection of all R-subcomplexes of (X, d) such that $S \subseteq X_{\alpha}$ for each $\alpha \in I$. Then the intersection of $\left\{\left(X_{\alpha}, d_{\alpha}\right)\right\} \quad \alpha \in I$ is again an R-subcomplex (Y, δ) of (X, d) such that $S \subseteq Y$. Moreover, there does not exist a proper. R-subcomplex (Z, ∂) of (Y, δ) such that $S \subseteq Z$. Then (Y, δ) is called the R-complex generated by S.

Definition (1.29) : Let (X, d) and ($Y, 8$) be R-complexes. A complex homomorphism $f:(X, d) \longrightarrow(Y, \delta)^{\prime}$ is a graded algebra homomorphism $f: X \longrightarrow Y$ such that $f d=\delta f$.

Definition (1, 30): A complex homomorphism $f:(x, d) \longrightarrow\left(Y^{-}, \delta\right)$ is called an isomorphism if there exists a complex homomorphism $g:(Y, \delta) \longrightarrow(X, d)$ such that $g f$ is identity, on (X, d), and $f g$ is identity on $(Y ; \delta)$.

Proposition (1.2) :
A collection of all R-complexes together with complex homomorphisms forms a category \mathbb{B}

Proof : Let \mathscr{C} denote the collection of all R-complexes. Then \mathbb{L}_{6} is nonempty, because the complex (X, d) with $\mathrm{X}_{\mathrm{o}}=$ some R-algebra and $X_{n}=0$ for $n \geqslant 1$, is in \mathscr{G} : Also for every (X, d) in \mathscr{C}, the identity mapping $\mathrm{I}: \mathrm{X} \rightarrow \mathrm{X}$ is trivially a complex homomorphism $I:(X, d) \longrightarrow(X, d)$. Let $(X, d),(Y, \delta)$ and (Z, X) be R-complexes and let $f:(X, d) \rightarrow(Y, \delta)$ and $g:(Y, \delta) \rightarrow(Z, \partial)$ be any complex homomorphisms.

Then gif : $(X, d) \rightarrow(z, \partial)$ is a complex homomorphism because g.f $d=$ g. $\delta . f=\delta$ g.f. Hence \mathscr{C} is a category. Proposition (1,3) : . Let $\left\{\left(X_{\alpha}, d_{\alpha}\right)\right\} \quad \alpha \in I$ be a family of R-complexes. Then ($\underset{\alpha}{\operatorname{TP} X_{\alpha}} ; \mathrm{d}$) is an R-complex where d is the restriction of $\left(d_{\alpha}^{\prime}\right)_{\alpha}:{\underset{\alpha}{\alpha}}_{\pi} \longrightarrow \underset{\alpha}{\pi X_{\alpha}}$ to $\mathbb{T P}_{\alpha} X_{\alpha}$.

Proof : We know that $\underset{\alpha}{\mathbb{P}} X_{\alpha}$ is an anticommutative graded
 degree 1 of $\mathbb{T P}_{\alpha} X_{\alpha}$ such that $d d=0$. Recall that

$=\left(d_{\alpha} x_{\alpha}\right)_{\alpha}$ is R-Linear. Let $\dot{x}=\left(x_{\alpha, n_{1}}\right)_{\alpha}+\left(x_{\alpha, n_{2}}\right)_{\alpha}^{\prime} \cdots+\left(x_{\alpha, n_{k}}^{\prime}\right)_{\alpha}$ be arbitrary element of $\mathbb{T} X_{\alpha} \quad:-(\rho)$

Then $d_{(x)}=\left(d_{\alpha}\right)_{\alpha}\left(\left(x_{\alpha, n_{1}}\right)_{\alpha}+\cdots+\left(x_{\alpha, n_{k}}\right)_{\alpha}\right)$

$$
=\left(d_{\alpha}^{x}{ }_{\alpha, \dot{n}_{1}}\right)_{\alpha}+\ldots+\left(d_{\alpha \alpha_{\alpha}}, n_{k}\right)_{\alpha} \in \mathbb{P}_{\alpha}^{P} x_{\alpha} .
$$

Since each d_{α} is of degree 1 , d is of degree l. Now let $x=\left(x_{\alpha}, m_{\alpha}\right)_{\alpha}$ and $y=\left(y_{\alpha} \prime_{n}^{\prime}\right)_{\alpha}$ be homogeneous elements of respective degrees m and n in $\operatorname{TP}_{\alpha} X_{\alpha}$. Then

$$
\begin{aligned}
d\left(x_{0} y\right) & =\left(d_{\alpha}\left(x_{\alpha, m^{*}} y_{\alpha, n}\right)\right)_{\alpha} \\
& =\left(d_{\alpha} x_{\alpha, m^{*}} \cdot y_{\alpha, n}+(-1)^{m} x_{\alpha, m^{*}} d y_{\alpha, n}\right)_{\alpha} \\
& =d x_{0} y+(-1)^{m} x_{0} d y .
\end{aligned}
$$

Moreover since $d_{\alpha} \cdot d_{\alpha}=0$ for each $\alpha \in I$ we have $d d=0$. Therefore ($\operatorname{Tp}_{\alpha} X_{\alpha}, d$) is an R-complex. Definition (1.31) : For a family $\left\{\left(X_{\alpha}, d_{\alpha}\right)\right\} \alpha \in I$ of R-complexes, the R-complex ($\mathbb{P}_{\alpha} X_{\alpha}, \mathrm{d}$) is called the "productu of the above family of R-complexes in the category

Definition (1, 32.) : Let A be a commutative unitary R-algebra. An H-complex (X,d) is called a complex over A or an A-complex if $X_{0}=A$.

Definition (1,33) : An R-subcomplex (Y, δ) of an A-complex (X, d) is called an A-subcomplex of (X, d) if $Y_{0}=A_{0}$.

Remark (1.7) : If (X, d) is, an A-complex then X is an antícommutatiye graded A-algebra.

Remark (1, B) : Since any R-algebra A can be considered as an anticommutative graded A-algebra'with $A_{0}=A$ and $A_{n}=0$ for $n \geqslant 1$, we have that A together with the derivation d such that $\mathrm{d}=0$ is a complex over A_{a}

Remark (1.9) : Let $f: A \rightarrow B$ be an R-algebra homomorphism. . Then every" B -complex (X, d) gives rise to an A-complex as follows : Define the scaler multiplication by the elements of A on X as follows : $a x=f(a) x$ for $a \in A$ and $x \in X$. Then X becomes an A-algebra. Since each X_{n} becomes an A-module with respect, ${ }^{\prime} \dot{\prime} \dot{0}$ this scaler multiplication, ${ }^{2} X$ becomes an anticommutatiye graded A-algebra. $\underset{\vdots}{\bar{X}}=A+\sum X_{n} X_{n}$ is an anticommutative graded'A-algebra. It is easy to check that $d f: A \rightarrow X_{1}$ is an R-derivation! pefine $\bar{d}: \bar{X} \rightarrow \bar{X}$ as $\bar{d}_{0}=d f$ and $i \bar{d}_{n}=d_{n}$ for $n \geqslant 1$. Then ($\bar{X} ; \dot{d}$) is an A-complex. Remark (1,10) : Every A-complex (X, d) conteins ar A-subcomplex (Y, δ) which is generated by A_{0}. In' this calse Y is the anticomhutative graded algebra generated by the set dA as an A-alg'ebra!

Definition ($l_{k} 34$) : An A-complex (x, d) is called simple if it does not contain any proper A-subcomplex.

Remark (1,11) : An A-complex (X,d) is simple if and only if X is generated by dA as an A -algebra.

Definition (1, 35) : Let (X, d) and (Y, δ) be A-complexes. Then an R-complex homomorphism $\varphi:(X, d) \longrightarrow(Y, \delta)$ is called a complex homomorphism over A or A-complex homomorphism if φ maps A identically.

Remark (1, 12) : An A-complex homomorphism is A-linear.
Proposition (1,4) : A collection $\mathscr{C}(A)$ of alll A-complexes and A-complex homomorphisms, forms a category.

Remark (1,13): $\mathscr{C}(A)$ is a subcategory of \mathscr{E} consisting of fewer objects and fewer morphisms. $\mathscr{\mathscr { C }}(\mathrm{A})$ is not full subcategory of $\mathscr{\mathscr { Z }}$.

Remark (1, 14) : Let $P_{\alpha}: T P_{\alpha} \longrightarrow X_{\alpha}^{\prime}$ be the restriction of the natural projection $\pi_{\alpha}: \pi_{\alpha} X_{\alpha} \rightarrow X_{\alpha}$ to $\mathbb{T P}_{\alpha} X_{\alpha}$. Then P_{α} is also. a complex homomorphism. From here onwards we shall denote $\mathrm{P}_{\boldsymbol{\alpha}}$ by $\pi_{\boldsymbol{\alpha}}$ itself.

Remark (1.15) : Suppose for each $\alpha \in I, \cdot\left(X_{\alpha}, d_{\alpha}\right)$ is a complex over A_{α}. Then $\left(\underset{\alpha}{T} x_{\alpha}, d\right)$ is a complex over ${\underset{\alpha}{\alpha}}_{\pi} A_{\alpha}$. If for each $\alpha \in I,\left(X_{\alpha}, d_{\alpha}\right)$ is a complex over A, then define

$$
\bar{A}=\left\{\left(a_{\alpha}\right)_{\alpha} \mid a_{\alpha} \in A_{\alpha}, a_{\alpha}=a \text { for all } \alpha \in I\right\}
$$

Clearly $\mathcal{A}_{\text {is }}$ isomorphic to A. Now take the sum $\begin{gathered}\bar{A}+\sum_{2} \\ n \geqslant 1 \alpha\end{gathered} X_{\alpha, n}$

The A-complex $\left(\bar{A}+\sum_{n \geqslant 1 \alpha} \pi x_{\alpha, n} d\right)$ is the "product" of the family $\left\{\left(X_{\alpha}, d_{\alpha}\right)\right\}_{\alpha \in I}$ of A-complexes in the, category $\mathscr{G}(A)$. Remark (1.a6) :- Consider the restriction of

$$
\pi_{\alpha}: \quad \operatorname{Tp}_{\alpha} X_{\alpha} \rightarrow x_{\alpha} \text { to } \bar{A}+\sum_{n \geqslant 1}{\underset{\alpha}{\alpha}}_{\pi x_{\alpha}, n^{\bullet}}
$$

Let this restriction be also denoted by π_{α}. Then

$$
\pi_{\alpha}:\left(\bar{A}+\sum_{n \geqslant 1} \pi_{\alpha} x_{\alpha, n}, d\right) \longrightarrow\left(X_{\dot{\alpha}}, d_{\alpha}\right) \text { is a complex }
$$

homomorphism over A_{a},

