CHAPIER=II
 CLEAVAGES AND OPCLEAVAGES IN THE CATEGORY OF R-DERIVATION MODULES

Let R be a commutative ring with unity. Unless stated otherwise, by an algebira we mean a commutative unitary R-algebra. In the following, A, B, C will denote commutative unitary $\underset{\sim}{R}$-algebras $\underset{\sim}{n} \mathrm{n}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ will denote R-algebra homomorphisms.

Definition (2, I) : An R-derivation module is an ordered triple (A, M, d) where A is a commutative unitary R-algebra. M is a unitary A-modừle and $d: A \rightarrow M$ isjan R - derivation. Definition_(2,2):"A derivation module (A, N, δ) is said to be a derivation A '́́submodule of a derivation module (A, M, d) if N is an A -submodu'fe of M and d restrilcted to N is δ.

Remark (I) : Let (A, M, d) be an R-derivation module and Q : $M \longrightarrow N$ is an $A \xrightarrow{\prime \prime}$ module homomorphism of ' M into another A - module $N_{\text {. }}$ Then ${ }^{\prime \prime}$ G.d $: A \rightarrow N$ is an \dot{R} - derivation. This gives a derivation module ($A, N, G ; d$).

Definition (2,3) : A derivation module (A, M, d) is called simple if it does not contain a proper derivation A-submodule.

Remark (2): Let (A, M, d) be a derivation module. Let N be the A-submodule of M generated by $d A$. Then (A, N, d) is a derivation A-submodule of the derivation module (A, M, d). Remark (3) : A derivation module (A, M, d) is simple if and only if M is gene'rated by $d A$ as an A-módule.

Remark (4): Every derivation module (A, M, d) contains a simple derivation A-submodule (A, N, δ) and $|N| \leqslant|A| S\}_{0}$.

Definition (2.4): ${ }^{\prime} \operatorname{Let}(A, M, d)$ and ${ }^{1}(B, N, \delta)$ be two R-derivation modules. Then a derivation module homomorphism 9: $(A, M, d) \longrightarrow(B, N, \delta)$ is an ordered pair $\left(\varrho_{0}, \varrho_{1}\right)$ where $\varrho_{0}: A \rightarrow B$ is an R-algebra homomorphism and $\Theta_{1}: M \rightarrow N$ is an R-module ' homomorphism such that $\varphi_{1}(a m)^{\prime}=\varphi_{0}(a) \varphi_{1}(m)$ and the following diagram commutes :

When $\varphi_{0}=f, \rho$ will also be referred to as fi-derivation module homomorphism. If the derivation module homomorphism $\varphi:(A, M, d) \longrightarrow(A, N, \delta)$ is such that $\varphi_{0}{ }^{\prime}=I_{A}$ then we have $Q_{1} d=\delta$ and Q will be, referred to as an A-derivation module homomorphism.

Remark (5) : The class of all R-derivation modules and R-derivation module homomorphisms forms a category and we shall denote it by \mathcal{D}. :

Remark (6) : The class of all A-derivation modules and A-derivation module homomorphisms forms a category and we shall denote it by $\mathscr{\mathscr { L }}(\mathrm{A})$.

Remarks (7) : Let $\left\{\left(A, M_{\alpha}, i d_{\alpha}\right)\right\}_{\alpha \in I}$ be a family of A-derivation modules. Then $\left(A, \prod_{\alpha} M_{\alpha},\left(d_{\alpha}\right)_{\alpha}\right)$ is a derivation module of A and is the 'product' of the family in $\mathcal{D}(A)$.

Remarks (8) : Let (B, N, δ) be a B-derivation module and $f: A \rightarrow B$ be an R-algebra homomorphism. Then N can be considered as an A-module via $f: A \rightarrow B$ by defining the scaler multiplication as $a_{0} n=f(a) n f o r a \in A$ and $n \in N_{0}$ Moreover, $\delta . f: A \rightarrow N$ is an R-derivation making ($A, N, \delta f$) an A-derivation module.

Remark (9) : Let ($A ; M, d$) be an R-derivation module. Defining $m_{*} m^{\prime}=0$ and $d_{1}(m)=0$ for all $m, m^{\prime} \in M$, an R-derivation module (A, M, d) offers an R-complex (X, δ) where $X_{0}=A, X_{1}=M, X_{n}=0$ for $n \geqslant 2$ and $\delta_{0}=d, \delta_{n}=0$ for $n \geqslant 1$. Then an f-derivation module homomorphism $\oint:(A, M, d) \rightarrow(B, N, \partial$.$) is the f$-complex homomorphism Q: $(X, \delta) \rightarrow(Y, \Delta)$ where $\varphi_{0}=f, \varphi_{1}=\varphi_{1}, \varphi_{n}=0$ for $n \geqslant 2$ and $Y_{0}=B, Y_{1}=N, \dot{Y_{n}}=0$ for $n \geqslant \dot{2}$ and $\Delta_{0}=\partial, \Delta_{n}=0$ for $n \geqslant 1$.

Definition (2,5) : Let (A, M, d) and (B, N, δ) be R-derivation modules. Let $\varphi:(A, M, d) \longrightarrow(B, N, \delta) \quad \because$. be the derivation module homomorphism. Then the derivation module ($\mathrm{B}, \mathrm{N}, \mathrm{'}^{\prime}$) is said to be φ - simple if and only if N is generated.by $\delta(B) \cup \varrho_{1}(M)$ as a B-modu'le. We shall usually denote φ_{0} andi φ_{1} by the same symbol φ.

Proposition (2.1) :: Let (A, M, d) be an R-derivation module. Then for any R-derivation module ($B, N,{ }^{\prime}, \delta$) and derivation module homomdrphism $\varphi:(A, M, d) \longrightarrow(B, N, \delta)$, there exists a ϱ^{*} - simple derivation module ($B, N^{\prime} N^{\prime}, \cdot \delta^{\prime *}$), and a B-derivation module monomórphism $j:\left(B, N^{*}, \delta^{*}\right) \longrightarrow(B, N, \delta)$ such that j $\quad \varphi^{*}=\varphi$.

Proof : Denite by N^{*} the $B-$ submodule; of N generated by * $\delta(B) U \varphi(M)^{\prime}$. ' Since $^{*}{ }^{*}$ is a $B-$ submodule of N^{\prime} and since $\delta(B) \subseteq N^{*}$ we have that (B, N^{*}, δ^{*}) is an! R-derivation module where $\delta^{*}:-B \rightarrow N^{*}$ is defined as $\delta_{!}^{*}=\delta_{!}^{!}$

Define $\varphi^{*}:(A, M, d) \longrightarrow\left(B, N^{*}, \dot{\gamma}^{*}\right)$ as $\varphi^{*}=\varphi^{*}$. Then clearly (B, N^{*}, δ^{*}) is φ^{*}-simple. Let $i j: N^{*} \longrightarrow N$ denote the natiral inclusion. Then $\mathbf{j}:$. . is a B-derivation module monomorphism satisfying $j \varphi^{*}=\varphi$; i.e. making the following diagram commutative.

Hence, the proof.

Now we are going to prove that any R-algebra. homomorphism $f: A \rightarrow B$ in \mathscr{A} gives rise to a natural covariant functor from the category of A - derivation, modules to the category of B - derivation modules.

Proposition (2,2): Let $f: A \rightarrow B$ be an R-algebra homomorphism. For any R-derivation module (A, M, d), there exists an R-derivation module ($B, M^{\prime}, d^{\prime}$) and an f-derivation module homomorphism $\left(\Psi_{f}\right)_{M}:(A, M, \dot{d}) \longrightarrow\left(B, M^{\prime}, d^{\prime}\right)$ in \mathscr{D} such that for any R-derivation module (B, N, δ) and an fderivation module homomorphism $\rho:(A, M, d) \longrightarrow(B, N, \delta)$, there exists a unique B - derivation module homomorphism $9^{\text {mi }}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow(B, \stackrel{\prime}{N}, \delta)$ satisfying $\varphi^{\prime \prime} \quad\left(\Psi_{f}\right)_{M}=\rho$. Moreover, $\left(B, M^{\prime}, d^{\prime}\right)$ and $\left(\Psi_{f}\right)_{M}$ are unique in the sense that if there exists another such B-derivation module (B, \bar{M}, \bar{d}) and an f-derivation module homomorphism
$h_{M}:(A, M, d) \longrightarrow(B, \bar{M}, \bar{d})$ then there exists a B-derivation module isomorphism $i:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow(B, \bar{M}, \bar{d})$ satisfying i. $\left(\Psi_{f}\right)_{M}=h_{M}$.

Proof : If φ : $(A, M, d) \rightarrow(B, S, \partial)$ is any f-derivation module homomorphism and if (B, S, ∂) is φ - simple then $|S| \leq|B| S S_{0}$ holds. So there exists a family $\left\{\left(B, S_{\alpha}, d_{\alpha}\right)\right\}_{\alpha \in I}$ of φ_{α} - simple derivation modules indexed by the set I such that for any Q - simple R-derivation module (B, S, \dot{d}), there exists a B-derivation module isotnorphism -
$i_{\alpha}:\left(B, S_{\alpha}, d_{\alpha}\right) \longrightarrow(B, S, \partial)$ for some $\alpha \in I$ such that $i_{\alpha} \cdot \varphi_{\alpha}=\varphi$.

I is nonempty, because the trivial B-derivation module (B, O, O) is φ - simple where $\partial=0$ and $\varphi:(A, M, d) \rightarrow(B, O, 0)$ is f - derivation module defined by $\Phi=(f, o)$.

Now consider'the derivation $d: B \rightarrow \pi S_{\alpha} \alpha$ defined as $\partial(b)=\left(\partial_{\alpha}(b)\right)_{\alpha}^{\prime}$ This gives the product $\left(B, \pi_{\alpha} S_{\alpha}, \partial\right)$ of the representative family $\left\{\left(B, S_{\alpha}, \partial_{\alpha}\right)\right\}_{, ~}, \underline{I}$ of φ_{α} - simple . B-derivation modules. Let $\bar{\Pi}:(A, M ; d) \rightarrow\left(B, \prod_{\alpha} S_{\alpha}, \partial\right)$ be . defined as $\Pi(a)=f(a)$ and $\Pi(m)=\left(\varphi_{\alpha}(m)\right)_{\alpha}$ for $a \in \dot{A}$ and $m \in M_{0}$ Let M^{\prime} denote the B-submodule of ΠS_{α} generated by $\delta(B)$ UII (M). Since $\delta(B) \subseteq M^{\prime},\left(B, M^{\prime}, d^{\prime}\right)$ isi a derivation module where $d^{\prime}: B \rightarrow M^{\prime}$ is defined as $d^{\prime}==^{\prime}$. Define $\left(\psi_{f}\right)_{M}:(A, M, d) \longrightarrow\left(B, M^{\prime}, d^{\prime}\right)$ as $\left(\psi_{f}\right)_{M}=\Pi^{\prime}$. Then $\left(\psi_{f}\right)_{M}$ is an f-derivation module homomorphism and ($B, M^{\prime}, d^{\prime}$) is $\left(\Psi_{f}\right)_{M}$ - simple.

Now, for any derivation module (B, N, δ), any f-derivation module homomorphism $\varphi:(A, M, d) \longrightarrow\left(B,{ }^{-} N, \delta\right)$, there exists -by prop (2.1). a φ^{*} - simple derivation module (B, N^{*}, δ^{*}) and B - derivation module monomorphism $j:\left(B, N^{*}, \delta^{*}\right) \rightarrow(B, N, \delta)$ such .that $j \varphi^{*}=\varphi$.

Since the derivation module ($B, N^{*} ; \delta^{*}$) is φ^{*} - simple, there exists some $\varphi_{\beta}-$ simple derivation module $\left(B, S_{\beta}\right.$, d ${ }_{\beta}$) in the representative family $\left\{\left(B, S_{\alpha}, \partial_{\alpha}\right)\right\}$, $u \in I$ for some $\beta \in I$ and B-derivation module isomorphism.
$i_{\beta}:\left(B, S_{\beta}, \partial_{\beta}\right) \longrightarrow\left(B, N^{*}, \delta^{*}\right)$ with $i_{\beta}, \varphi_{\beta}=\varphi^{*}$.
Let $\Pi_{\beta}:\left(B, \Pi_{\alpha}, . d\right) \longrightarrow\left(B, S_{\beta}, \partial_{\beta}\right)$ be identity on B and $\beta^{\text {th }}$ projection on $\Pi_{\alpha} S_{\alpha}$. Then $\pi_{\beta} \Pi=Q_{\beta^{*}}$ Let $i:\left(B, M^{\prime}, d^{\prime}\right) \rightarrow\left(B, \pi S_{\alpha}, d\right)$ denote the inclusion mapping. Then $i\left(\psi_{f}\right)_{M}=\pi_{\text {. }}$.

Let us put $\varphi^{\infty}=j$ i $\Pi_{\beta} \Pi_{\beta}$. Then, since all the small triangles in the above diagram commute, the outermost triangle also commutes. Therefore, . . $\varphi^{n} .\left(\psi_{f}\right)_{M}=\varphi$ i.e. there exists a B-derivation module homomorphism

The uniqueness of $g^{\text {en }}$ follows from the fact that ($B, M^{\prime}, d^{\prime}$) is $\left(\Psi_{f}\right)_{M}$ - simple from the definition of ($B, M^{\prime}, d^{\prime}$).

Finally to prove the uniqueness of ($B, M^{\prime}, d^{\prime}$) and $\left(\psi_{f}\right)_{M}$, let' (B, \bar{M}, \bar{d}) and an f-derivation module homomorphism : $T_{M}:(A, M, d) \longrightarrow(B, \bar{M}, \bar{d})$ be another such, then there exists a unique derivation module homomorphism. $T_{M}^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow(B, \bar{M}, \bar{d})$ such that $T_{M}^{\prime}\left(\Psi_{f}\right)_{M}=T_{M}$ and there also exists a derivation module homomorphism $\left(\Psi_{f}\right){ }^{\prime}{ }_{M}:(B, \bar{M}, \bar{d}) \longrightarrow\left(B, M^{\prime}, d^{\prime}\right)$ such that $\left(\Psi_{f}\right)_{M}^{\prime} T_{M}=\left(\Psi_{f}\right)_{M}$ as in the following diagram :

Now $\left(\Psi_{f}\right)_{M}^{\prime} \cdot T_{M}^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow\left(B, M^{\prime}, d^{\prime}\right)$ is a B - derivation module homomorphism satisfying
$\left(\Psi_{f}\right)_{M}^{\prime} \tau_{M}^{\prime} \quad\left(\Psi_{f}\right)_{M}=\left(\Psi_{f}\right)_{M}$

But the identity mapping $i_{M^{\prime}}$ on (B, M^{\prime}, d^{i}) is also another such derivation module homomorphism. Hence, by uniqueness of such B-derivation module homomorphisms we have $\left(\psi_{f}\right)_{M}^{\prime}=i_{M^{\prime}}$

In the same way $\tau_{M}^{\prime}\left(\psi_{f}\right)_{M}^{\prime}=i \bar{M}$.
Hence $\tau_{M}^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow(B, \bar{M}, \bar{d})$ is a derivation module isomorphism such that $T_{M}^{\prime}\left(\Psi_{f}\right)_{M}=\tau_{M^{*}}$, This completes the proof.

Proposition (2.3) : Let (A, M, d) and (A, N, δ) be derivation modules and ($B, M^{\prime}, d^{\prime}$) and ($B, N^{\prime}, \delta^{\prime}$) he the corresponding derivation modules. Then for any A-derivation module homomorphism $\lambda:(A, M, d) \longrightarrow(A, N, \delta)$, there exists a unique B-derivation module homomorphism $\lambda^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow\left(B, N^{\prime}, \delta^{\prime}\right)$ such that $\lambda^{\prime}\left(\Psi_{f}\right)_{M}=\left(\Psi_{f}\right)_{N} \lambda$.

Proof. : The composition $\left(\Psi_{f}\right)_{N} \lambda:(A, M, d) \longrightarrow\left(B, N^{\prime}, \delta^{\prime}\right)$ is an f-derivation module homomorphism. Therefore, tinere exists by Prop (2.2) a unique B-derivation module homomorphism $\lambda^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow\left(B, N^{\prime}, \delta^{\prime}\right)$ such that the following diagram commutes, :

Hence, the proof:

$$
\text { Define } f_{*}^{\prime}: \mathscr{D}(A) \longrightarrow \mathscr{D}^{\prime}(B) \text { as } f_{*}\left(\left(A_{0}, M, d\right)\right)=\left(B, M^{\prime}, d^{\prime}\right)
$$

 $\operatorname{prop}(2 . \dot{3})]$, for all ($A, M, d) \in \mathscr{D}(A)$ and for all $\lambda \in \mathscr{B}(A)$.

If I : $(A, M, d) \longrightarrow(A, M, d)$ is the identity in $O(A)$, then $f_{*}^{\prime}(I)=I^{\prime}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow\left(B, M^{\prime}, d^{\prime}\right)$ is also the identity in $D(B)$.

Let $(A, M, d),(A, N, \delta)$ and $(A ; L, \partial)$ be derivation modules in $\mathscr{D}\left(A^{\cdot}\right)$ and let $Q:(A, M, d) \longrightarrow(A, N, \delta)$ and $\psi:(A, N, \delta) \longrightarrow(A, L, d)$ be morphisms in $D(A)$. Then

We have $\left(\psi_{f}\right)_{L} \psi \varphi=\psi^{\prime}\left(\Psi_{f}\right)_{N} \varphi=\psi^{\prime} \varphi^{\prime}\left(\psi_{f}\right)_{M}$.

Similarly we have $\left(\Psi_{f}\right)_{L} \Psi Q=(\Psi \varphi){ }^{\prime}\left(\Psi_{f}\right)_{M^{\circ}}$ By the uniqueness of such morphisms we have $(\psi \varphi)^{\prime}=\psi^{\prime} \varphi^{\prime}:$.

$$
\text { i.e. } f_{*}(\psi, \varphi)=f_{*}(\psi) \quad f_{*}(\varphi) .
$$

Thus we have proved ':
Theorem:(2.1): If $f: A \rightarrow B$ is an algebra homomorphism, then there exists a covariant functor $f_{*}: D(A) \longrightarrow D(B)$, defined by $f_{*}((A, M, d))=\left(B, M^{\prime}, d^{\prime}\right)$ and $f_{*}\left(\lambda^{\prime}\right)=\lambda^{\prime}$ (for all ($\left.A, M, d\right) \quad \in(A)$. and $\lambda \in D(A)$.

Proposition_(2.4) : If A, B, C are unitary commutative R-algebras, $f: A \longrightarrow B$ and $g: B \longrightarrow C$ are unitary algebra homofnorphisms, then there exists a natural equivalence

Proof : Let ($A ; M, d$) and (C, L, ∂) be R-derivation modules. Let $\varphi \mathfrak{i}^{\prime}(A, M, d) \longrightarrow(C, L, \partial)$ be a $g f$ - derivation module 'homomorphism. The C C-module L can be considered as B-module via $g: B \longrightarrow C$ and $d g^{\prime}: B \longrightarrow L$ is R-derivation and ($B, L, \partial \mathrm{~g}$) is a B-derivatiońn module.

Define $\alpha:(A ; M, d) \longrightarrow(B, L, d g)$ as $\alpha=\left(f, \varphi_{1}\right)$. . Since α is f-derivation module homomorphism, then by Prop. (2.2) there exists a unique B-derivatión module homomorphism $\beta^{-}:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow(B, L, \partial . g)$ such that $\beta\left(\Psi_{f}\right)_{M}=\alpha$. Now define $j:(B, L, \partial g) \longrightarrow(C, L, \partial)$ as $j=(g, I)$. Then $j \beta:\left(B, M^{\prime}, d^{\prime}\right) \longrightarrow\left(C, L,,^{\prime}\right)$ is a g-derivation module homomorphism'. Therefore again by Próp (2.2) there exists a unique $C-$ derivation module homomórphism $\gamma:\left(C, M^{u}, d^{(n)}\right) \rightarrow(C, L, d)$ such that $\gamma\left(\Psi_{g}\right)_{M^{\prime}}=j, \beta$. Móreover $j^{\prime \alpha}=\varphi^{\prime}$ beçause j, x (am) $=j\left(f(a) \cdot \varphi_{1}(m)\right)=g^{\prime} f(a) \varphi_{1}(m)^{\prime}=\varphi(a m)^{\prime}$ for $a \in \in^{\prime} A$ and $m \in M$.

We claim that $\gamma\left(\psi_{g}\right)_{M^{\prime}}\left(\psi_{f}\right)_{M}:=\rho$.

The uniqueness of γ folllows from the'fact that. ($C, M \cdot{ }^{\prime \prime \prime}, d^{\prime \prime}$) is $\left(\Psi_{g}\right)_{M^{1}}\left(\Psi_{f}\right)_{M}$ - simple.

On the other hand, let $\left(\psi_{\mathrm{gf}}\right)_{\mathrm{M}}:(A ; M, \mathrm{~d}) \longrightarrow(C ; \bar{M}, \bar{d})$ be the g.f-derivation module homomorphism where $(C, \bar{M}, \bar{d})=\left(g f_{*}\right)_{*}(A, M, d)$ 。 For the g.f - derivation module homomorphism. $\varphi:(A ; M, d) \longrightarrow\left(C, L, d^{\prime}\right)$ there exists. by Prop (2:2) a únique derivation module . homomorphism $T:(\dot{C}, M, \bar{d}) \longrightarrow(\dot{C}, L, \bar{d})$ such that $\pi \cdot\left(\psi_{g f}\right)_{M}=\varphi$. i.e. making the following diagram;commutative.

By the uniqueness of such C-derivation modules and C-derivation module homomorphisms, there exists. a C-derivation module isomorphism;
$\left(C_{f, g}\right)_{M}:(C, \bar{M}, \bar{d}) \longrightarrow\left(C, M^{M}, d^{\text {b }}\right)$ such that $\left(c_{f g}\right)_{M}\left(\Psi_{G f}\right)_{M}=\left(\Psi_{g}\right)_{M!}\left(\Psi_{f}^{\prime}\right)_{M}$ ice. making the following diagram commutative :-

'This means that
$\left(C_{f g}\right)_{M}: j_{\text {(}}(\mathrm{gf})_{*}(A, M, d) \longrightarrow g_{*} f_{*}(A, M, d)$ is an isomorphism. Thus, the natural transformation $C_{f g}:(g f)_{*} \longrightarrow g_{x^{\prime}} f_{*}$ is the natural equivalence.

Let $\mathscr{I} \dot{\text { : }}$ denote the category: of all unitary commutative algebras over R . Let \mathcal{D} denote the category of all R-derivation modules. Consider the functor $p: \subset \rightarrow \infty$ defined as $P((A, M, d)=$ $=A$ and $P(\varphi)=\varphi_{0}$ where $\varphi:(A, M, d) \longrightarrow(B, N, \delta)$ is a derivation module homomorphism. Then the fibre $P^{-1}(A)$ is the category $\mathcal{D}(A)$ of A-derivation modules and A-derivation module homomorphisms. Let $J_{A}: \mathscr{Y}(A) \rightarrow \mathscr{D}$ denote the inclusion functor. Our claim is. :

Theorem (2,2) : The functor $p: D \rightarrow \mathscr{A}$ admits an opcleavage $\left\{f_{i}, \psi_{f}, c_{f}\right\}$

Proof : For each $f: A \rightarrow B$ in \mathscr{A} and for any $(A, M, d) \in \mathscr{D}(A)$ there exists a unique $f_{*}(A, M, d)=\left(B, M^{\prime}, d^{\prime}\right) \in \mathscr{D}(B)$ and an $f-$ derivation module homomorphism $\left(\Psi_{f}\right)_{M}:(A, M, d) \longrightarrow f_{*}(A, M, d)$ in \mathcal{D} such that $P\left(\left(\Psi_{f}\right)_{M}\right)=f$ by Prop (2.2). For any morphism $\lambda:(A, M, d) \longrightarrow(A, N, \delta)$ in $\Theta(A)$ these exists a unique morphism $\lambda^{\prime}=f_{*}(\lambda): f_{*}(A, M, d) \longrightarrow f_{*}(A, N, \delta)$ in $D(B)$ by $\operatorname{Prop}(2,3)$. Thus each morphism $f: A \rightarrow B$ in \mathscr{A} gives rise to a functor $f_{*}: \mathscr{D}(A) \longrightarrow \mathcal{S}^{(B)}$. There exists a natural transformation $\psi_{f}: J_{A} \longrightarrow J_{B} f_{*}$ satisfying the condition that $\left.\dot{P}\left(\dot{(}_{f}\right)_{M}\right)=f$ for all $(A, M, d) \in \not D(A)$ by Prop (2.2).

For any f-derivation module homomorphism
$\varrho:(A, M, d) \longrightarrow(B, N, \delta)$ satisfying $P(\varrho)=f$, 'there exists a unique B-derivation module homomorphism $\varrho^{w i}: f_{*}(A, M, d) \longrightarrow(B, N, \delta)$ in $\mathcal{D}(B)$ such that $\varphi^{n} .\left(\Psi_{f}\right)_{M}=\varphi$ by Prop (2.2), i.e, making the following diagram commutative.

Now consider the composition $A \xrightarrow{f} B \xrightarrow{G} C$ in SH. Then for each (A, M, d) in $\mathscr{D}(\mathrm{A})$ there is a uniquely determined morphism

$$
\left(c_{f g}\right)_{M}:(g \cdot f)_{*}(A, M, d) \longrightarrow g_{*} f_{*}(A, M, d) \text { in } \mathcal{D}(C)
$$

such that

$$
\left(c_{f g}\right)_{M}\left(\psi_{g f}\right)_{M}=\left(\psi_{g}\right)_{f_{*} M}\left(\psi_{f}\right)_{M} \text { by Prop (2.4). }
$$

i.e. the following diagram commutes :

It can be, easily seen that ($\left.\mathrm{c}_{\mathrm{f}}\right)_{\mathrm{M}}$, are the components of a natural transformation $\boldsymbol{c}_{\mathrm{fg}}$: (gf$)_{*} \longrightarrow \mathrm{~g}_{*} \mathrm{f}_{*}{ }^{*}$ This natural transformation \mathbf{c}_{fg} is a natural equivalence by Prop (2.4). This proves that the functor $P: D^{\prime} \rightarrow \mathscr{A}$ admits an-opcleavage $\left\{f_{*}, \Psi_{f}, c_{f g}\right\}$.

In the following, we shall prove, that any unitary algebra homomorphism $f: A \rightarrow B$ in \mathscr{A} gives rise, to a covariant functor f^{*} from the category of B-derivation modules to the category of A - derivation modules. \quad.: .

Proposition (2,5) : Let. $f: A \longrightarrow B$ be a unitary algebra homomorphism. Then for arty derivation module. (B, N, δ) in $\mathcal{D}(B)$, there exists a derivation module $(A, \bar{N}, \bar{\delta})$ in $\mathscr{D}(A)$ and f-derivation module homomorphism $\left(\Theta_{f}\right)_{N}^{i}:(A, \bar{N}, \bar{\delta}) \rightarrow(B, N, \delta)$.

Proof : Let (B, N, δ) be a derivation module in $\mathscr{\rho}(B)$. Consider the derivation module ($A, \bar{N}, \bar{\delta}$) where $\bar{N}=N$ as an A-module and $\delta=s$ f. Then $(A, \bar{N}, \bar{\delta})$ is in $\mathcal{D}(A)$. Define the mapping $\left(\Theta_{f}\right)_{N}:(A, \bar{N}, \bar{\delta}) \longrightarrow(B, N, \delta)$ as $\left(\Theta_{f}\right)_{N}=(f, I)$. Clearly $\left(\Theta_{f}\right)_{N}$ is f-derivation module homomorphism because the following diagram commutes:

 a 'derivation' module' ($\mathrm{A}, \overline{\mathrm{N}}, \bar{\delta}$) in $\mathscr{D}(\mathrm{A})$ together with an f-derivation module homomorphism $\left(\Theta_{f}\right)_{N}:(A, \bar{N}, \bar{\delta}) \longrightarrow(B, N, \delta)$. Proposition (2,6) : Let $f: A \longrightarrow B$ be an 'algệ'bra homomorphism and (A, M, d) and (B, N, δ)' be derivation 'modules. Then for any f-derivation module homomorphism $Q:(A,: M, d) \longrightarrow(B, N, \delta)$ there exists a unique'A-derivation module hompomorphism $\varphi^{\prime}=(A, M, d) \longrightarrow(A, \bar{N}, \bar{\delta})$ such that $\left(\theta_{f}\right)_{N} \varphi^{\prime}=\varphi^{\circ}$.

Proof : Let $9:(A, M, d) \longrightarrow(B, N, \delta)$ be \mathbb{f}-derivation module homomorphism. Then there exists by Prop' $^{(2,5)}$ a derivation module ($\mathrm{A}, \mathrm{N}, \bar{\delta}$) , together with an f-derivation module homomorphism $\left(\theta_{f}\right)_{N}:(A, \bar{N}, \bar{\delta}) \longrightarrow(B, N, \delta)$.

Define $\varphi^{\prime}:(A, M, d) \longrightarrow(A, \bar{N}, \bar{\delta})$ as $\varphi^{\prime}=(I, \varphi)$. Since $Q d=\delta f$ holds we have that $\rho^{\prime}:(A, M, d) \longrightarrow(A, \bar{N}, \bar{\delta})$ is an $A=$ derivation module homomorphism.

Now we claim that $\left(\Theta_{f}\right)_{N} \varphi^{\prime}=\varphi$. Let $\dot{a} \cdot m \in M$ be any element. Then $\left(\Theta_{f}\right)_{N^{\prime}} \varphi^{\prime}\left(a_{0} m\right)=\left(\Theta_{f}^{\prime}\right)_{N}\left(a_{i} \varphi(m)^{\prime}\right)=f(a) . \rho(m)=$ $=\varphi\left(a_{0} m\right)$ for $a \in A$ and $m \in M_{0}$. Thus the following diagram commutes :

To prove the uniqueness of φ^{\prime} which makes the above diagram commutative, suppose there is another such A-derivation module homomorphism $\Phi^{i n}:(A, M, d) \longrightarrow(A, \bar{\delta})$ satisfying $\left(\dot{\theta}_{f}\right)_{N} \varphi^{\mu}=\varphi$.

$$
\varphi_{0}^{\prime \prime}=\varphi_{0}^{1}=\cdot I_{A^{\bullet}} \quad \text { For } m \in M \text { We have }\left(\theta_{f}\right)_{N} \cdot \varphi^{\prime \prime}(m)=\left(\theta_{f}\right)_{N} \varphi^{\prime}(m)
$$

But, since $\quad\left(\Theta_{f}\right)_{N} \mid \bar{N}=$ identity we have $\rho^{\prime \prime \prime}(m)=\rho(m)$. Thus $\varphi_{I}=\varphi_{1}^{\prime}$. Thus $\varphi^{\prime \prime}=\varphi!$. Hence, such Q^{\prime} is unique.

Proposition (2.7) : Let (B, M, d) and (B, N, δ) be derivation.
modules in $\mathscr{D}(B)$ and $\operatorname{let}(A, \bar{M}, \bar{d})$ and ($A, \bar{N}, \bar{\delta})$ be the corresponding derivation modules in $\mathcal{D}(A)$. Then for any $B-$ derivation module homomorphism $k:(B, M, d) \longrightarrow(B, N, \delta)$ there
exists a unique A-derivation module homomorphism
$\bar{k}:(A, \bar{M}, \bar{d}) \longrightarrow(A, \bar{N}, \bar{\delta})$.such that $\left(\theta_{f}\right)_{N} \bar{k}=k\left(\theta_{f}\right)_{M^{*}}$
Proof : The composition ' k ' $\left(\theta_{f}\right)_{M}:(\lambda, \bar{M}, \bar{d}) \longrightarrow(B, N, \delta)$ is an f-derivation module homomorphism. Therefore, there exists by Prop (2.6) a unique A-derivation module homomorphism $\bar{k}:(A, \bar{M}, \bar{d}) \longrightarrow(A, \bar{N}, \bar{\delta})$ such that the following diagram commutes :

Hence the proof.
Define $f^{*}: \mathscr{D}(B) \rightarrow D(A)$ as $f^{*}((B, M, d)):=(A, \bar{M}$, d) [as defined in Prop (2.5)] and $f^{*}(k)=\bar{k}$ as defined in Prop (2.7)] for all ($B, M, d) \in \mathcal{D}_{1}$ ('B) and for all $k \in \mathcal{D}(B)$.

If $I:(B, M, d) \longrightarrow(B, M, d)$ is the identity in $\mathcal{D}(B)$, the $f^{*}(I)=\bar{I}:(A, \bar{M}, \bar{d}) \longrightarrow(A, \bar{M}, \bar{d})$ is also the identity in $\mathscr{O}(\mathrm{A})$.

Let $(B, M, d),(B, N, \delta)$ and ($B, L, d)$, be derivation modules in $\mathscr{D}(B)$ and let $\varphi:(B, M, d) \longrightarrow(B, N, \delta)$ and $\Psi:(B, N, \delta) \longrightarrow(B, L, \partial)$ be morphisms in $\mathcal{D}(B)$. Then

We , have $\psi \varphi\left(\theta_{f}\right)_{M}=\psi\left(\dot{\theta}_{f}\right)_{N} \dot{\bar{\rho}}=\left(\theta_{f}\right)_{L} \quad \bar{\psi} \quad \overline{\bar{\varphi}} . \quad$ Similarly we have $\psi \cdot Q\left(\theta_{f}\right)_{M}=\left(\theta_{f}\right)_{L}(\bar{\Psi} . \varphi)$.

By the uniqueness of such morphisms we have

$$
\begin{aligned}
\overline{(\Psi \varphi)} & =. \Psi \Phi \\
\text { i.e. } f^{*}(\Psi \varphi) & =f^{*}(\Psi) f^{*}(\varphi) .
\end{aligned}
$$

Thus we have proved :

Theorem $(2,3):$ If $f: A \rightarrow B$ is an algebra, homomorphism then there exists a covariant functor $f^{*}: D(B) \rightarrow i g(A)$ defined by $f^{*}(B, M, d)=(A, \bar{M}, \bar{d})$ and $f^{*}(k)=\bar{k}$ for all, $(B, M, d) \in D^{\prime}(B)$ and $k \in S(B)$.
proposition (2, 8) : If A, B, C. are unitary commutative R-algebras and $f: A \rightarrow B$ and $g: B \rightarrow C$ be unitary algebra homomorphisms. Then $f^{*} g^{*}=(g f)^{*}$.

Proof: For this take a derivation module (C, M, d) in $D(C)$. Then $g^{*}: D(C) \rightarrow D(B)$ associates with $\left(C, M,{ }^{\prime} \dot{d}\right.$) the derivation module (B, \bar{M}, \bar{d}) in $D(B)$. Again $f_{1}^{\pi}: D(B) \longrightarrow D(A)$ associates with (B, \bar{M}, \bar{d}) the derivation module ($\bar{A}, \bar{M}, \bar{d})$ in $\mathcal{D}(A) . S_{i m i l a r l y}\left(g_{0} f\right)^{* k}: D(C) \rightarrow D(A)$ ássöociates with (C, M, d) the derivation module ($A, \tilde{M}, \widetilde{d}$) in: $D(A)$.

Define the mapping

$$
\left(d_{f g}\right)_{M}:(A, \bar{M}, \overline{\bar{d}}) \xrightarrow{\vdots}(A, \tilde{M}, \dot{\tilde{\delta}})
$$

as $\left(d_{f g}\right)_{M} \mid A=$ identity and $\left(d_{f g}\right)_{M} \backslash M=$ identity.

$$
f^{*} g^{\star \cdot}(C, M, d)=(A, \vec{M}, \bar{d})
$$

$$
\left(d_{f g}\right)_{M}
$$

- Obviously $\left(d_{f g}\right)_{M}$ is the identity A-derivation module isomorphism in $\mathscr{g}(A)$ on the derivation module $(A, \overline{\bar{M}}, \bar{d})=(A, \tilde{M}, \tilde{d})$.

Again, for every C - derivation module homomorphism

$$
Q:(C, M, d)-(C, N, \delta)
$$

in $\mathscr{A}(C)$, the following diagram is commutative. :

For \quad let $a . m \in \overline{\bar{M}}=M$ be any element where $a \in A$ and $m \in M$. Then $\left(d_{f g}\right)_{N} \cdot \overline{\bar{\varphi}}\left(a_{0} m\right)=\left(d_{f g}\right)_{N}{ }^{\prime}\left(\varepsilon_{0}, \underline{\varphi}(m)\right)=\tilde{\varphi}\left(a_{0} m\right)=\tilde{\varphi}\left(d_{f g}\right)_{M}\left(a_{0} m\right)$. Thus $\left(d_{f g}\right)_{N} \overline{\bar{\varphi}}=\tilde{Q}\left(\alpha_{f g}\right)_{M}$ ice. , the above diagram commutes. Thus $d_{f g}: f^{*} g^{*} \longrightarrow\left(g_{i} f\right)^{*}$ is the identity natural equivalence. Hence, $f^{*} g^{*}=(g f)^{*}$.

Theorem (2.4): The functor $P: \mathcal{D} \rightarrow \mathcal{S A}$ admits a cleavage $\left\{f^{*}, \theta_{f}, d_{f g}\right\}$ 。

Proof : For each $f: A \rightarrow B$ in \mathscr{A} and for any (B, M, d) in $\mathcal{D}(B)$ there exists unique $f_{i}^{*}(B, M, d)=(A, \bar{M}, \bar{d}) \in \mathcal{D}(A)$ and an f-derivation module homomorphism $\left(\Theta_{f}\right)_{M}: f^{*}(B, M, d) \rightarrow$ (B, M, d) in \mathcal{D} such that $P\left(\left(\Theta_{f}\right)_{M}\right)=f$ by Prop (2.5).

For any $k=(B, M, d) \longrightarrow(B, N, \delta)$ in $D^{\prime}(B)$ there exists a unique morphism :-
$\bar{k}=f^{*}(k): f^{*}(k): f^{*}(B, M, d) \longrightarrow f^{*}(B, N, \delta)$ in $\mathcal{D}(A)$ by Prop (2:7). Thus each morphism $f: A \longrightarrow B$ in $\mathscr{4}$ gives rise to a functor $f^{*}: \mathcal{D}(B) \rightarrow \mathcal{S}(A)$. There exists a natural transformation $\theta_{f} \vdots J_{A} f^{*} \longrightarrow J_{B}$ satisfying the condition that $P\left(\left(\theta_{f}\right)_{N}\right)=f$ for all $(B, N, \delta) \in B(B)$ by Prop $(2,5)$.

For any f-derivation module homomorphism Q: $(A, M, d) \longrightarrow(B, N, \delta)$ satisfying $P(\varphi)=f$, there exists a unique A-derivation module homomorphism $\varphi^{\prime}::^{\prime}(A, M, d) \rightarrow f^{*}(B, N, \delta)$ in $D(A)$ such that $\left(\Theta_{f}\right)_{N} \varphi^{\prime}=\varphi$ by Prop (2.6). i. e. making the following diagram commutative. ;

Now consider the composition $A \xrightarrow{f} B \xrightarrow{Q} C$ in \mathscr{X}. Then for each (C, M, \dot{d}) in $D(C)$ there is a uniquely determined morphism $\quad\left(d_{f g}\right)_{M}: f^{*} \cdot g^{*}\left(C^{\prime}, M, d\right) \longrightarrow\left(g f_{1}^{*}\right)(C, M, d)$ in $\hat{D}(A)$ such that

$$
\left(\Theta_{g f}\right)_{M} \quad\left(d_{f g}\right)_{M}=\left(\Theta_{g}\right)_{M} \quad\left(\dot{\Theta}_{f}\right)_{g}^{\prime} * M
$$

by prop (2.8); ie. the following diagram commutes.

It c an' be easily seen that $\left(d_{f g}\right)_{M}$ are the' components of a natural transformation $d_{f g}: f^{*} g^{*} \rightarrow(g f)_{i}^{*}$. This natural. transformation $d_{f g}$ is the identity natural equivalence by Prop (2.8). This proves that the functior P: $P \rightarrow \mathcal{A}$ admits a split cleavage $\left\{f^{*}, \Theta_{f}, d_{f g}\right\}$.

If $i_{A}: A \longrightarrow A$ is the identity morphism in $\mathscr{A} ;$ then $\left(i_{A}\right)^{*}: D(A) \longrightarrow D(A)$ is cthe identity functor on $D(A)$. Therefore, we have $\left(i_{A}\right)^{*}=I_{D(A)}$. Thus the cleavage is normalized.

Hence, the functor $P: \mathscr{D} \rightarrow 54$ has a normalized, split cleavage.

Remark (10) : It can be proved that the functor $f_{*}: ~ D(A) \rightarrow D(B)$ is the lef't adjoint of the functor $f^{*}: D(B) \xrightarrow{\rightarrow}, D(A)$. Therefore, f_{*}^{*} preserves' not only $2 n i t i a l$ object but all colimits.

