<u>CHAPTER-II</u>

CLEAVAGES AND OPCLEAVAGES IN THE CATEGORY OF R-DERIVATION MODULES

Let R be a commutative ring with unity. Unless stated otherwise, by an algeora we mean a commutative unitary R-algebra. In the following, A, B, C will denote commutative unitary R-algebras and f : A--->B, g : B-->C will denote R-algebra homomorphisms.

Definition (2.1) : An <u>R-derivation module</u> is an ordered triple (A, M, d) where A is a commutative unitary R-algebra. M is a unitary A-module and d : $A \rightarrow M$ is an R- derivation. Definition (2.2) : A derivation module (A, N, δ) is said to be a <u>derivation A-submodule</u> of a derivation module (A,M,d) if N is an A-submodule of M and d restricted to N is δ .

<u>Remark (1)</u> : Let (A, M, d) be an R-derivation module and $Q: M \longrightarrow N$ is an A $\frac{1}{10}$ module homomorphism of M into another A - module N. Then $Q.d: A \longrightarrow N$ is an R - derivation. This gives a derivation module (A, N, Q'_1d).

<u>Definition (2,3)</u>: A derivation module (A, M, d) is called <u>simple</u> if it does not contain a proper derivation A-submodule. <u>Remark (2)</u>: Let (A, M, d) be a derivation module. Let N be the A-submodule of M generated by dA_{\bullet} Then (A, N, d) is a derivation A-submodule of the derivation module (A, M, d).

<u>Remark (3)</u>: A derivation module (A, M, d) is simple if and only if M is generated by dA as an A-module.

<u>Remark (4)</u>: Every derivation module (A, M, d) contains a simple derivation A-submodule (A, N, δ) and $|N| \leq |A| \leq \delta$.

Definition (2.4) : Let (A, M, d) and (B, N, δ) be two R-derivation modules. Then a <u>derivation module homomorphism</u> Q: (A, M, d) \longrightarrow (B, N, δ) is an ordered pair (Q_0, Q_1) where Q_0 : A \longrightarrow B is an R-algebra homomorphism and Q_1 : M \longrightarrow N is an R-module homomorphism such that $Q_1(am) = Q_0(a) Q_1(m)$ and the following diagram commutes :

When $Q_0 = f$, Q will also be referred to as $\underline{f} - d\underline{e}\underline{r}\underline{i}\underline{v}\underline{s}\underline{t}$ ion module <u>homomorphism</u>. If the derivation module homomorphism $Q : (A, M, d) \longrightarrow (A, N, \delta)$ is such that $Q_0 = I_A$ then we have $Q_1 d = \delta$ and Q will be referred to as an <u>A - derivation</u> <u>module homomorphism</u>. <u>Remark (5)</u>: The class of all R-derivation modules and R-derivation module homomorphisms forms a category and we shall denote it by \mathfrak{D} .

Remark (6): The class of all A-derivation modules and A-derivation module homomorphisms forms a category and we shall denote it by $\mathcal{D}(A)$.

<u>Remarks (7)</u>: Let $\{(A, M_{\alpha}, d_{\alpha})\}$ be a family of A-derivation modules. Then $(A, \Pi M_{\alpha}, (d_{\alpha})_{\alpha})$ is a derivation module of A and is the 'product' of the family in $\hat{\mathcal{B}}(A)$.

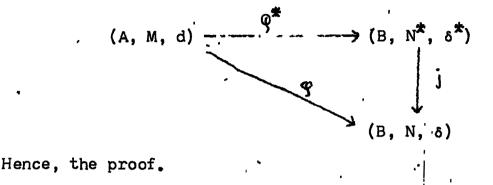
<u>Remarks (8)</u>: Let (B, N, δ) be a B-derivation module and f: A-->B be an R-algebra homomorphism. Then N can be considered as an A-module via f : A-->B by defining the scaler multiplication as a.n = f(a)nfor a \in A and n \in N. Moreover, δ .f : A-->N is an R-derivation making (A, N, δ f) an A-derivation module.

<u>Remark (9)</u> : Let (A, M, d) be an R-derivation module. Defining m.m' = o and d₁(m) = o for all m, m' \in M, an R-derivation module (A, M, d) offers an R-complex (X, δ) where X₀ = A, X₁ = M, X_n = O for n $\geqslant 2$ and $\delta_0 = d$, $\delta_n = 0$ for n $\geqslant 1$. Then an f-derivation module homomorphism **Q** : (A, M, d) \rightarrow (B, N, ∂ -) is the f-complex homomorphism **Q** : (X, δ) \rightarrow (Y, Δ) where $\varphi_0 = f$, $\varphi_1 = \varphi_1$, $\varphi_n = 0$ for n $\geqslant 2$ and Y₀ = B, Y₁ = N, Y_n = O for n $\geqslant 2$ and $\Delta_0 = \partial$, $\Delta_n = 0$ for n $\geqslant 1$. <u>Definition (2.5)</u> : Let (A, M, d) and (B, N, δ) be R-derivation modules. Let Q : (A, M, d) \longrightarrow (B, N, δ) be the derivation module homomorphism. Then the derivation module (B, N, δ) is said to be Q - simple if and only if N is generated by δ (B) U Q_1 (M) as a B-module. We shall usually denote Q_0 and Q_1 by the same symbol Q.

<u>Proposition (2,1)</u> : Let (A, M, d) be an R-derivation module. Then for any R-derivation module (B, N, δ) and derivation module homomorphism \mathfrak{P} : (A, M, d) \longrightarrow (B, N, δ), there exists a \mathfrak{P}^{\bigstar} - simple derivation module (B, N^{\bigstar}, δ^{\bigstar}) and a B-derivation module monomorphism j : (B, N^{\bigstar}, δ^{\bigstar}) \longrightarrow (B, N, δ) such that j $\mathfrak{Q}^{\bigstar} = \mathfrak{Q}$.

<u>Proof</u>: Denote by N^* the B - submodule of N generated by $\delta(B) \cup \mathcal{Q}(M)$. Since N^* is a B - submodule of N and since $\delta(B) \subseteq N^*$ we have that (B, N^*, δ^*) is an R-derivation module where $\delta^* : B \longrightarrow N^*$ is defined as $\delta^* = \delta$.

Define q^* : (A, M, d) \rightarrow (B, N^{*}, δ^*) as $q^* = q^*$. Then clearly (B, N^{*}, δ^*) is q^* -simple. Let $j : N^* \rightarrow N$ denote the natural inclusion. Then j : is a B-derivation module monomorphism satisfying $j = q^* = q$; i.e. making the following diagram commutative.

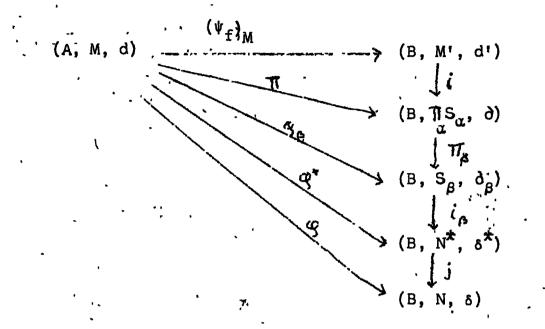


Now we are going to prove that any R-algebra homomorphism f : $A \rightarrow B$ in \mathcal{A} gives rise to a natural covariant functor from the category of A - derivation modules to the category of B - derivation modules.

<u>Proposition (2.2)</u>: Let f : A \longrightarrow B be an R-algebra homomorphism. For any R-derivation module (A, M, d), there exists an R-derivation module (B, M', d') and an f-derivation module homomorphism $(\Psi_f)_M$: (A, M, d) \longrightarrow (B, M', d') in \mathcal{J} such that for any R-derivation module (B, N', δ) and an fderivation module homomorphism \mathfrak{G} : (A, M, d) \longrightarrow (B, N, δ), there exists a unique B - derivation module homomorphism $\mathfrak{G}^{\mathfrak{a}}$: (B, M', d') \longrightarrow (B, N', δ) satisfying $\mathfrak{G}^{\mathfrak{a}}$ ($\Psi_f)_M = \mathfrak{G}$. Moreover, (B, M', d') and ($\Psi_f)_M$ are unique in the sense that if there exists another such B-derivation module (B, \overline{M} , \overline{d}) and an f-derivation module homomorphism $h_{\overline{M}}$: (A, M, d) \longrightarrow (B, \overline{M} , \overline{d}) then there exists a B-derivation module isomorphism i : (B, M', d') \longrightarrow (B, \overline{M} , \overline{d}) satisfying i. ($\Psi_f)_M = h_{\overline{M}}$. <u>Proof</u>: If φ : (A, M, d) \longrightarrow (B, S, ∂) is any f-derivation module homomorphism and if (B, S, ∂) is φ - simple then [S[\leq |B[\otimes_{0} holds. So there exists a family $\{(B,S_{\alpha},d_{\alpha})\}_{\alpha\in I}$ of φ_{α} - simple derivation modules indexed by the set I such that for any φ - simple R-derivation module (B, S, ∂), there exists a B-derivation module isomorphism i_{α} : (B, $S_{\alpha}, d_{\alpha}) \longrightarrow$ (B, S, ∂) for some $\forall \in I$ such that $i_{\alpha}, \varphi_{\alpha} = \varphi$.

I is nonempty, because the trivial B-derivation module (B, O, o) is Q - simple where $\partial = o$ and Q : (A,M,d) \rightarrow (B,O,o) is f - derivation module defined by Q = (f,o).

Now consider the derivation $\partial : B \longrightarrow \Pi S_{\alpha}$ defined as $\partial(b) = (\partial_{\alpha}(b))_{\alpha}$. This gives the product $(B, \Pi S_{\alpha}, \partial)$ of the representative family $\{(B, S_{\alpha}, \partial_{\alpha})\}_{\alpha \in I}$ of φ_{α} - simple B-derivation modules. Let $\Pi : (A, M, d) \rightarrow (B, \Pi S_{\alpha}, \partial)$ be defined as $\Pi(a) \stackrel{!}{=} f(a)$ and $\Pi(m) = (\varphi_{\alpha}(m))_{\alpha}$ for $a \in A$ and $m \notin M$. Let M' denote the B-submodule of ΠS_{α} generated by $\delta(B) \cup \Pi(M)$. Since $\delta(B) \subseteq M'$, (B, M', d') is a derivation module where d' : $B \longrightarrow M'$ is defined as d' = ∂ . Define $\{\Psi_{f}\}_{M} : (A, M, d) \longrightarrow (B, M', d')$ as $(\Psi_{f})_{M} = \Pi$. Then $(\Psi_{f})_{M}$ is an f-derivation module homomorphism and (B, M', d') is $(\Psi_{f})_{M} - \text{simple.}$



Now, for any derivation module (B, N, δ) any f-derivation module homomorphism \mathcal{G} : (A, M, d) \longrightarrow (B, N, δ), there exists by prop(2.1) a \mathcal{G}^{\star} - simple derivation module (B, N^{*}, δ^{\star}) and B - derivation module monomorphism j: (B, N^{*}, δ^{\star}) \longrightarrow (B, N, δ) such that j $\mathcal{G}^{\star} = \mathcal{G}$.

Since the derivation module (B, N^{*}, δ^*) is \mathfrak{g}^* - simple, there exists some \mathfrak{g}_{β} - simple derivation module (B, S_{β} , \mathfrak{d}_{β}) in the representative family {(B, S_{α} , \mathfrak{d}_{α})} for some $\mathfrak{s} \in \mathbb{R}$ and B-derivation module isomorphism

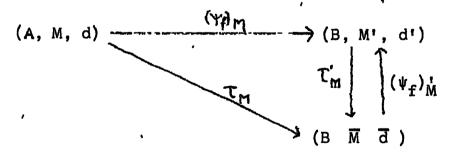
 i_{β} : (B, $S_{\beta}, \partial_{\beta}$) \longrightarrow (B, N^{*}, S^{*}) with $i_{\beta}.q_{\beta} = q^*$.

Let T_{β} : (B, TS_{α} , d) \longrightarrow (B, S_{β} , δ_{β}) be identity on B and β^{th} projection on TS_{α} . Then T_{β} $T = \mathcal{P}_{\beta}$. Let i: (B, M', d') \longrightarrow (B, TS_{α} , d) denote the inclusion mapping. Then i $(\Psi_{f})_{M} = T$.

Let us put $Q^{\mu} = j \quad i_{\beta} \quad \pi_{\beta}$ i. Then, since all the small triangles in the above diagram commute, the outermost triangle also commutes. Therefore, $Q^{\mu} \cdot (\psi_{f})_{M} = Q$ i.e. there exists a B-derivation module homomorphism $Q^{\mu} : (B, M', d') \longrightarrow (B, N, \delta)$ such that $Q^{\mu} \cdot (\psi_{f})_{M} = Q$.

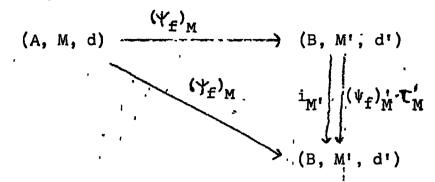
The uniqueness of \mathcal{G}^{w} follows from the fact that (B, M', d') is $(\Psi_{f})_{M}$ - simple from the definition of (B,M',d').

Finally to prove the uniqueness of (B, M', d') and $(\Psi_f)_M$, let (B, \overline{M} , \overline{d}) and an f-derivation module homomorphism . \mathbf{T}_M : (A, M, d) \longrightarrow (B, \overline{M} , \overline{d}) be another such, then there exists a unique derivation module homomorphism . \mathbf{T}_M^{\prime} : (B, M', d') \longrightarrow (B, \overline{M} , \overline{d}) such that \mathbf{T}_M^{\prime} (Ψ_f)_M = \mathbf{T}_M and there also exists a derivation module homomorphism $(\Psi_f)_M^{\prime}$: (B, \overline{M} , \overline{d}) \longrightarrow (B, M', d') such that $(\Psi_f)_M^{\prime} \mathbf{T}_M^{=}(\Psi_f)_M$ as in the following diagram :



Now $(\Psi_f)_M' \cdot T_M' : (B, M', d') \longrightarrow (B, M', d')$ is a B - derivation module homomorphism satisfying

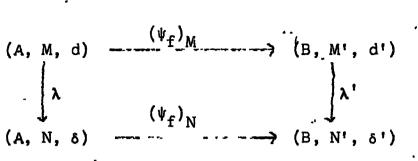
 $(\Psi_{\mathbf{f}})_{\mathbf{M}}^{\prime} \quad (\Psi_{\mathbf{f}})_{\mathbf{M}}^{\prime} = (\Psi_{\mathbf{f}})_{\mathbf{M}}^{\prime}$



But the identity mapping $i_{M'}$ on (B, M', d') is also another such derivation module homomorphism. Hence, by uniqueness of such B-derivation module homomorphisms we have $(\psi_f)'_M = i_{M'}$

In the same way $T'_{M}(\Psi_{f})_{M}^{\prime} = i_{\overline{M}}$. Hence $T'_{M}: (B, M', d') \longrightarrow (B, \overline{M}, \overline{d})$ is a derivation module isomorphism such that $T'_{M}(\Psi_{f})_{M} = T_{M}$. This completes the proof. <u>Proposition (2,3)</u>: Let (A, M, d) and (A, N, δ) be derivation modules and (B, M', d') and (B, N', δ ') be the corresponding derivation modules. Then for any A-derivation module homomorphism λ : (A, M, d) \longrightarrow (A, N, δ), there exists a unique B-derivation module homomorphism λ' : (B, M', d') \longrightarrow (B,N', δ ') such that λ' (Ψ_{f})_M = (Ψ_{f})_N λ .

<u>Proof</u>: The composition $(\Psi_f)_N \lambda$: (A, M, d) \longrightarrow (B, N', δ ') is an f-derivation module homomorphism. Therefore, there exists by Prop (2.2) a unique B-derivation module homomorphism λ' : (B, M', d') \longrightarrow (B, N', δ ') such that the following diagram commutes.:



Hence, the proof.

Define f_{\star} : $\mathscr{D}(A) \longrightarrow \mathscr{D}(B)$ as $f_{\star}((A,M,d)) = (B, M', d')$ [as defined in Brop (2.2)] and $f_{\star}(\lambda) = \lambda'$ [as defined in prop(2.3)], for all $(A, M, d) \in \mathscr{D}(A)$ and for all $\lambda \in \mathscr{D}(A)$.

If I : (A, M, d) \longrightarrow (A, M, d) is the identity in $\mathfrak{D}(A)$, then $f(I) = I' : (B, M', d') \longrightarrow (B, M', d')$ is also the identity in $\mathfrak{D}(B)$.

Let (A, M, d), (A, N, δ) and (A, L, δ) be derivation modules in $\mathscr{D}(A)$ and let Q: (A, M, d) \longrightarrow (A, N, δ) and ψ : (A, N, δ) \longrightarrow (A, L, δ) be morphisms in $\mathscr{D}(A)$. Then

$$(A, M, d) \xrightarrow{(\Psi_{f})_{M}} (B, M', d') \xrightarrow{[\Psi_{f}]_{N}} (B, N', d') \xrightarrow{[\Psi_{f}]_{N}} (B, N', \delta') \xrightarrow{[\Psi_{f}]_{L}} (B, N', \delta') \xrightarrow{[\Psi_{f}]_{L}} (B, L', \delta') \leftarrow (\Psi_{f})_{L}$$

We have $(\psi_f)_L \psi \varphi = \psi' (\psi_f)_N \varphi = \psi' \varphi' (\psi_f)_{M^{\bullet}}$

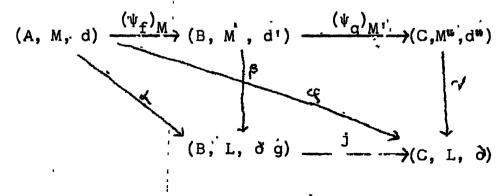
Similarly we have $(\psi_f)_L \ \psi \ g = (\psi \ g)' \ (\psi_f)_{M'}$ By the uniqueness of such morphisms we have $(\psi \ g)' = \psi' \ g'$.

i.e.
$$f_{\star}(\psi, q) = f_{\star}(\psi) f_{\star}(q)$$
.

Thus we have proved : <u>Theorem (2,1)</u>: If $f:A \rightarrow B$ is an algebra homomorphism, then there exists a covariant functor $f_{\star}: \mathfrak{D}(A) \rightarrow \mathfrak{D}(B)$ defined by $f_{\star}((A,M,d)) = (B, M', d')$ and $f_{\star}(\lambda) = \lambda^{*}$ for all $(A,M,d) \in \mathfrak{D}(A)$, and $\lambda \in \mathfrak{D}(A)$.

<u>Proposition (2.4)</u> : If A, B, C are unitary commutative R-algebras, f:A \rightarrow B and g : B \rightarrow C are unitary algebra homomorphisms, then there exists a natural equivalence c_{fg} : (g f) $\rightarrow g_{\pm}$ f_{\pm}.

<u>Proof</u>: Let (A,M,d) and (C,L,∂) be R-derivation modules. Let Q; $(A, M, d) \longrightarrow (C, L, \partial)$ be a g f - derivation module homomorphism. The C-module L can be considered as B-module via g : B \longrightarrow C and ∂ g': B \longrightarrow L is R-derivation and $(B,L,\partial g)$ is a B-derivation module.



Define α : (A,M,d) \longrightarrow (B,L, ∂ g) as $\alpha = (f, \varphi_1)$. Since α is f-derivation module homomorphism, then by Prop (2.2) there exists a unique B-derivation module homomorphism β : (B, M', d') \longrightarrow (B, L, ∂ .g) such that β (Ψ_f)_M = α . Now define j : (B, L, ∂ g) \longrightarrow (C, L, ∂) as j = (g, I). Then j β : (B, M', d') \longrightarrow (C, L, ∂) is a g-derivation module homomorphism. Therefore again by Prop (2.2) there exists a unique C - derivation module homomorphism Υ :(C,M^u,d^u) \longrightarrow (C,L, ∂) such that Υ (Ψ_g)_{M'} = j β . Moreover j α = φ because j.4 (a m) = j(f(a). $\varphi_1(m)$) = g,f(a) $\varphi_1(m) = Q(am)$ for a ϵ A and m ϵ M.

We claim that $\Upsilon (\Psi_g)_{M'} (\Psi_f)_M = \mathcal{G}$. In fact $\Upsilon (\Psi_g)_{M'} (\Psi_f)_M = j \beta (\Psi_f)_M = j \alpha = \mathcal{G}$. The uniqueness of Υ follows from the fact that (C,M'', d'') is $(\Psi_g)_{M'} (\Psi_f)_M - \text{simple}$.

On the other hand, let $(\Psi_{gf})_{M}: (A,M,d) \longrightarrow (C,\overline{M},\overline{d})$ be the 9.f-derivation module homomorphism where $(C,\overline{M},\overline{d})=(gf)_{*}(A,M,d)$. For the g.f - derivation module homomorphism $\mathfrak{P}: (A,M,d) \longrightarrow (C,L,\overline{d})$ there exists by Prop (2.2) a unique derivation module homomorphism $\mathcal{T}: (C,\overline{M},\overline{d}) \longrightarrow (C,L,\overline{d})$ such that $\mathcal{T} \cdot (\Psi_{gf})_{M} = \mathfrak{P}$. i.e. making the following diagram commutative.

$$(A, M, d) \xrightarrow{(\psi_{qf})_{M}} (C, \overline{M}, \overline{d})$$

$$(C, L, \overline{d})$$

By the uniqueness of such C-derivation modules and

C-derivation module homomorphisms, there exists a C-derivation module isomorphism

 $(c_{f,g})_M$: $(C, M, d) \longrightarrow (C, M^w, d^w)$ such that $(c_{fg})_M (\psi_{gf})_M = (\psi_g)_M (\psi_f)_M$ i.e. making the following diagram commutative :

$$(A,M,d) \xrightarrow{(\Psi_{qf})_{M}} (C,\overline{M},\overline{d}) = (gf)_{*} (A,M,d)$$

$$(\Psi_{g})_{M} (\Psi_{f})_{M} (C,M^{u},d^{u}) = g_{*}f_{*} (A,M,d)$$

'This means that

 $(c_{fg})_{M}$; $(gf)_{*}$ (A,M,d) \longrightarrow $g_{*}f_{*}(A,M,d)$ is an isomorphism. Thus, the natural transformation c_{fg} : $(gf)_{*} \longrightarrow g_{*}f_{*}$ is the natural equivalence.

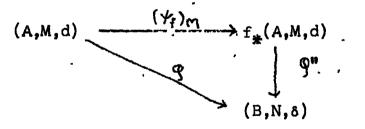
Let \mathscr{F} denote the category of all unitary commutative algebras over R. Let \mathscr{D} denote the category of all R-derivation modules. Consider the functor $P : \mathscr{D} \to \mathscr{F}$ defined as P((A,M,d) == A and $P(\mathfrak{Q}) = \mathfrak{Q}_0$ where $\mathfrak{Q} : (A, M, d) \longrightarrow (B, N, \delta)$ is a derivation module homomorphism. Then the fibre $P^{-1}(A)$ is the category $\mathscr{D}(A)$ of A-derivation modules and A-derivation module homomorphisms. Let $J_A : \mathscr{D}(A) \to \mathscr{D}$ denote the inclusion functor. Our claim is :

<u>Theorem (2.2)</u> : The functor $P : \mathcal{J} \to \mathcal{H}$ admits an opcleavage $\{f_{\pm}, v_{\underline{f}}, c_{\underline{f}}\}$.

<u>Proof</u>: For each f : A \longrightarrow B in \mathscr{A} and for any (A,M,d) $\in \mathscr{D}(A)$ there exists a unique $f_{\star}(A,M,d) = (B,M',d') \in \mathscr{D}(B)$ and an fderivation module homomorphism $(\Psi_{f})_{M}:(A,M,d) \longrightarrow f_{\star}(A,M,d)$ in

$$\begin{split} & \Im \text{ such that } P \ (\ (\psi_f)_M) = f \text{ by Prop } (2.2). \text{ For any morphism} \\ & \lambda : (A,M,d) \longrightarrow (A,N,\delta) \text{ in } (A) \text{ these exists a unique morphism} \\ & \lambda' = f_{\bigstar}(\lambda) : f_{\bigstar} (A, M, d) \longrightarrow f_{\bigstar} (A, N, \delta) \text{ in } (B) \text{ by Prop}(2.3). \\ & \text{Thus each morphism } f : A \longrightarrow B \text{ in } \mathcal{A} \text{ gives rise to a functor} \\ & f_{\bigstar} : (A) \longrightarrow (B). \text{ There exists a natural transformation} \\ & \psi_f : J_A \longrightarrow J_B f_{\bigstar} \text{ satisfying the condition that } P \ (\ (\psi_f)_M \) = f \\ & \text{for all } (A,M,d) \in (A) \text{ by Prop } (2.2). \end{split}$$

For any f-derivation module homomorphism $Q: (A,M,d) \longrightarrow (B,N,\delta)$ satisfying P(Q) = f, there exists a unique B-derivation module homomorphism $Q^{u}: f_{\star}(A,M,d) \longrightarrow (B,N,\delta)$ in $\mathcal{O}(B)$ such that $Q^{u}.(\psi_{f})_{M} = Q$ by Prop (2.2), i.e. making the following diagram commutative.

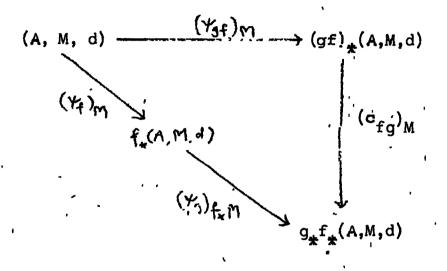


Now consider the composition $A \xrightarrow{f} B \xrightarrow{q} C$ in \mathcal{A} . Then for each (A,M,d) in $\mathcal{D}(A)$ there is a uniquely determined morphism

 $(c_{fg})_M : (g.f)_*(A,M,d) \longrightarrow g_* f_*(A,M,d) in \hat{\partial}(C)$ such that

$$(c_{fg})_{M} (\psi_{gf})_{M} = (\psi_{g})_{f_{*}M} (\psi_{f})_{M}$$
 by Prop (2.4).

i.e. the following diagram commutes :



It can be easily seen that $(c_{fg})_{M}$ are the components of a natural transformation $c_{fg} : (gf)_{*} \longrightarrow g_{*}f_{*}$. This natural transformation c_{fg} is a natural equivalence by Prop (2.4). This proves that the functor $P : \mathfrak{H} \to \mathcal{A}$ admits an opcleavage $\{f_{*}, \psi_{f}, c_{fg}\}$.

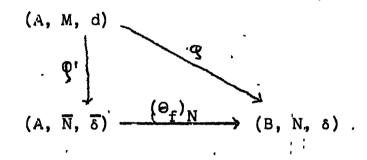
In the following, we shall prove that any unitary algebra homomorphism $f:A \longrightarrow B$ in \mathcal{A} gives rise to a covariant functor f^* from the category of B-derivation modules to the category of A - derivation modules.

<u>Proposition (2,5)</u>: Let $f:A \longrightarrow B$ be a unitary algebra homomorphism. Then for any derivation module (B,N, δ) in \mathcal{A} (B), there exists a derivation module (A, $\overline{N},\overline{\delta}$) in \mathcal{A} (A) and f-derivation module homomorphism (Θ_f) : (A, $\overline{N}, \overline{\delta}$) \longrightarrow (B, N, δ).

, 32 <u>Proof</u>: Let (B, N, δ) be a derivation module in $\mathfrak{D}(B)$. Consider the derivation module (A, \overline{N} , $\overline{\delta}$) where $\overline{N} = N$ as an A-module and $\overline{\delta} = \delta$ f. Then (A, \overline{N} , $\overline{\delta}$) is in $\mathfrak{D}(A)$. Define the mapping $(\Theta_f)_N : (A, \overline{N}, \overline{\delta}) \longrightarrow (B, N, \delta)$ as $(\Theta_f)_N = (f, I)$. Clearly $(\Theta_f)_N$ is f-derivation module homomorphism because the following diagram commutes.

Thus for any derivation module (B, N, δ) in $\mathcal{P}(B)$ there exists a derivation module (A, $\overline{N}, \overline{\delta}$) in $\mathcal{D}(A)$ together with an f-derivation module homomorphism (Θ_f)_N : (A, $\overline{N}, \overline{\delta}$) \longrightarrow (B, N, δ). <u>Proposition (2.6)</u> : Let f: A \longrightarrow B be an algebra homomorphism and (A, M, d) and (B, N, δ) be derivation modules. Then for any f-derivation module homomorphism \mathfrak{G} : (A, M, d) \longrightarrow (B, N, δ) there exists a unique A-derivation module homomorphism $\mathfrak{G}' = (A, M, d) \longrightarrow (A, \overline{N}, \overline{\delta})$ such that $(\Theta_f)_{N_1} = \mathfrak{G}$. <u>Proof</u> : Let \mathfrak{G} : (A, M, d) \longrightarrow (B, N, δ) be f-derivation module homomorphism. Then there exists by Prop' (2.5) a derivation module (A, $\overline{N}, \overline{\delta}$) together with an f-derivation module homomorphism (Θ_f)_N : (A, $\overline{N}, \overline{\delta}$) \longrightarrow (B, N, δ). Define Q': (A, M, d) \longrightarrow (A, \overline{N} , $\overline{\delta}$) as Q' = (I, Q). Since $Q d = \delta$ f holds we have that Q': (A, M, d) \longrightarrow (A, \overline{N} , $\overline{\delta}$) is an A = derivation module homomorphism.

Now we claim that $(\Theta_f)_N \ \mathcal{Q}' = \mathcal{Q}$. Let a.m \in M be any element. Then $(\Theta_f)_N \ \mathcal{Q}' (a.m) = (\Theta_f)_N (a.\mathcal{Q}(m)) = f(a)$. $\mathcal{Q}(m) = \mathcal{Q}(a.m)$ for a \in A and $\mathfrak{M} \in M$. Thus the following diagram commutes :



To prove the uniqueness of φ ' which makes the above diagram commutative, suppose there is another such A-derivation module homomorphism Q^{u} : (A, M, d) \longrightarrow (A, \overline{N} , $\overline{\delta}$) satisfying

 $(\hat{\Theta}_{f})_{N} \quad \mathcal{G}^{u} = \mathcal{G}_{0}$ $\mathcal{G}_{0}^{u} = \mathcal{G}_{0}^{\prime} = I_{A}$. For $m \notin M$ We have $(\Theta_{f})_{N} \cdot \mathcal{G}^{u}(m) = (\Theta_{f})_{N} \cdot \mathcal{G}^{\prime}(m)$ But, since $(\Theta_{f})_{N} \mid \overline{N} = \text{identity we have } \mathcal{G}^{u}(m) = \mathcal{G}(m)$. Thus $\mathcal{G}_{I}^{u} = \mathcal{G}_{I}^{\prime}$. Thus $\mathcal{G}^{u} = \mathcal{G}^{\prime}$. Hence, such \mathcal{G}^{\prime} is unique. <u>Proposition (2.7)</u> : Let (B, M, d) and (B, N, δ) be derivation. modules in $\hat{\mathcal{G}}(B)$ and let (A, \overline{M} , \overline{d}) and (A, \overline{N} , $\overline{\delta}$) be the corresponding derivation modules in $\hat{\mathcal{O}}(A)$. Then for any Bderivation module homomorphism k : $(B,M,d) \longrightarrow (B,N,\delta)$ there

> GARR. BALASANEB KHABDEKAR LIBRARY CHIVALI UNIVERSITY, KOLMATSE

exists a unique A-derivation module homomorphism .

 \overline{k} : $(A, \overline{M}, \overline{d}) \longrightarrow (A, \overline{N}, \overline{\delta})$ such that $(\Theta_f)_N \overline{k} = k (\Theta_f)_{M^{\circ}}$

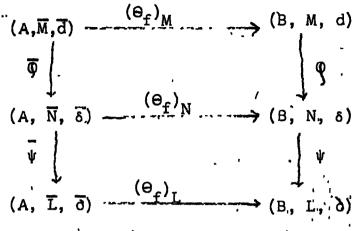
<u>Proof</u>: The composition k $(\Theta_f)_M : (A, \overline{M}, \overline{d}) \longrightarrow (B, N, \delta)$ is an f-derivation module homomorphism. Therefore, there exists by Prop (2.6) a unique A-derivation module homomorphism $\overline{k} : (A, \overline{M}, \overline{d}) \longrightarrow (A, \overline{N}, \overline{\delta})$ such that the following diagram commutes :

Hence the proof.

Define $f^* : \mathcal{D}(B) \rightarrow \mathcal{D}(A)$ as $f^*((B,M,d)) = (A, \overline{M}, \overline{d})$ [as defined in prop (2.5)] and $f^*(k) = \overline{k}$ [as defined in Prop (2.7)] for all (B, M, d) $\in \mathcal{D}(B)$ and for all $k \in \mathcal{D}(B)$.

If I : (B, M, d) \longrightarrow (B, M, d) is the identity in $\mathfrak{F}(B)$, the $f^{\bigstar}(I) = \overline{I} : (A, \overline{M}, \overline{d}) \longrightarrow (A, \overline{M}, \overline{d})$ is also the identity in $\mathfrak{F}(A)$.

Let (B, M, d), (B, N, δ) and (B, L, δ) be derivation modules in $\mathfrak{J}(B)$ and let \mathfrak{Q} : (B, M, d) \longrightarrow (B, N, δ) and ψ : (B, N, δ) \longrightarrow (B, L, δ) be morphisms in $\mathfrak{J}(B)$. Then



We have $\psi q(\Theta_f)_M = \psi(\Theta_f)_N \overline{q} = (\Theta_f)_L \overline{\psi} \overline{q}$. Similarly we have $\psi q(\Theta_f)_M = (\Theta_f)_L (\overline{\psi} \overline{q})$.

By the uniqueness of such morphisms we have

$$(\psi \ \varphi) = \nabla \overline{\varphi}$$

i.e. $f^{\star}(\psi \ \varphi) = f^{\star}(\psi) f^{\star}(\varphi)$
Thus we have proved :

<u>Theorem (2,3)</u> : If f : A \longrightarrow B is an algebra homomorphism then there exists a covariant functor f^* : $\mathcal{D}(B) \longrightarrow \mathcal{D}(A)$ defined by $f^*(B, M, d) = (A, \overline{M}, \overline{d})$ and $f^*(k) = \overline{k}$ for all $(B, M, d) \in \mathcal{D}(B)$, and $k \in \mathcal{D}(B)$.

<u>Proposition (2,8)</u> : If A, B, C are unitary commutative R-algebras and f:A \rightarrow B and g : B \rightarrow C be unitary algebra homomorphisms. Then f^{*} g^{*} = (g f)^{*}.

<u>Proof</u>: For this take a derivation module (C, M, d) in $\mathcal{D}(C)$. Then $g^{\star} : \mathcal{D}(C) \longrightarrow \mathcal{D}(B)$ associates with (C, M, d) the derivation module (B, \overline{M} , \overline{d}) in $\mathcal{D}(B)$. Again $f^{\star} : \mathcal{D}(B) \longrightarrow \mathcal{D}(A)$ associates with (B, \overline{M} , \overline{d}) the derivation module (A, \overline{M} , \overline{d}) in $\mathcal{D}(A)$. Similarly (g.f)* : $\mathcal{D}(C) \longrightarrow \mathcal{D}(A)$ associates with (C, M, d) the derivation module (A, \widetilde{M} , \widetilde{d}) in $\mathcal{D}(A)$.

Define the mapping

$$(d_{fg})_M : (A, \overline{M}, \overline{d}) \longrightarrow (A, \widetilde{M}, \widetilde{\delta})$$

as $(d_{fg})_M$ A = identity and $(d_{fg})_M$ M = identity.

$$f^{*} g^{*} (C,M,d) = (A, \widetilde{M}, \widetilde{d})$$

$$(d_{fg})_{M}$$

$$(g f)^{*}(C,M,d) = (A, \widetilde{M}, \widetilde{d})$$

$$(\Theta_{f})_{M}$$

$$(\Theta_{gf})_{M}$$

$$(C,M,d)$$

• Obviously $(d_{fg})_M$ is the identity A-derivation module isomorphism in $\mathcal{B}(A)$ on the derivation module $(A, \overline{M}, \overline{d}) = (A, \widetilde{M}, \widetilde{d})$.

Again, for every C - derivation module homomorphism

Q: (C, M, d) --- (C, N, S)

 $in \beta$ (C), the following diagram is commutative. :

For let $a.m \in \overline{M} = M$ be any element where $a \in A$ and $m \in M$. Then $(d_{fg})_N \cdot \overline{\mathfrak{G}} (a.m) = (d_{fg})_N \cdot (a.\mathfrak{G}(m)) = \widetilde{\mathfrak{G}} (a.m) = \widetilde{\mathfrak{G}} (d_{fg})_M (a.m)$. Thus $(d_{fg})_N \quad \overline{\mathfrak{G}} = \widetilde{\mathfrak{G}} (d_{fg})_M$ i.e. the above diagram commutes. Thus $d_{fg} : f^* g^* \longrightarrow (g, f)^*$ is the identity natural equivalence. Hence, $f^* g^* = (g, f)^*$.

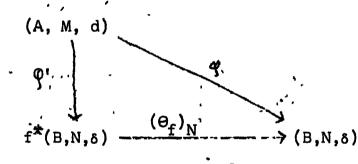
<u>Theorem (2.4)</u>: The functor $P : \mathcal{D} \to \mathcal{S}_{f}$ admits a cleavage $\{f^{\star}, \theta_{f}, d_{fg}\}$.

<u>Proof</u>: For each $f : A \rightarrow B$ in \mathcal{A} and for any (B, M, d) in

 $\mathcal{A}(B)$ there exists a unique $f^{*}(B, M, d) = (A, \overline{M}, \overline{d}) \in \mathcal{A}(A)$ and an f - derivation module homomorphism $(\Theta_{f})_{M}$: $f^{*}(B,M,d) \rightarrow$ (B,M,d) in \mathcal{A} such that $P((\Theta_{f})_{M}) = f$ by Prop (2.5).

For any $k = (B, M, d) \longrightarrow (B, N, \delta)$ in $\mathcal{D}(B)$ there exists a unique morphism : $\overline{k} = f^{*}(k) : f^{*}(k) : f^{*}(B,M,d) \longrightarrow f^{*}(B,N,\delta) in \mathfrak{J}(A)$ by \mathfrak{P} rop (2.7). Thus each morphism $f : A \longrightarrow B$ in \mathscr{A} gives rise to a functor $f^{*} : \mathfrak{J}(B) \longrightarrow \mathfrak{J}(A)$. There exists a natural transformation $\Theta_{f} : J_{A} f^{*} \longrightarrow J_{B}$ satisfying the condition that $P((\Theta_{f})_{N}) = f$ for all (B, N, δ) $\mathfrak{J}(B)$ by Prop (2.5).

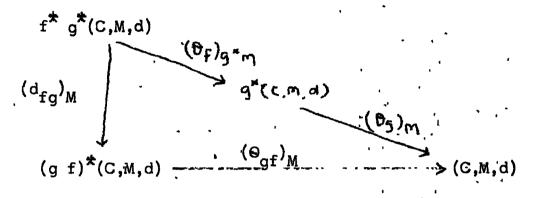
For any f-derivation module homomorphism ; $(\mathbf{A}, \mathbf{M}, \mathbf{d}) \longrightarrow (\mathbf{B}, \mathbf{N}, \delta)$ satisfying $\mathbf{P}(\mathbf{\Phi}) = \mathbf{f}$, there exists a unique A-derivation module homomorphism $\mathbf{\Phi}'$: $(\mathbf{A}, \mathbf{M}, \mathbf{d}) \rightarrow \mathbf{f}^{\star}(\mathbf{B}, \mathbf{N}, \delta)$ in $\mathbf{\Phi}(\mathbf{A})$ such that $(\mathbf{\Theta}_{\mathbf{f}})_{\mathbf{N}} \mathbf{\Phi}' = \mathbf{\Phi}$ by Prop (2.6). i.e. making the following diagram commutative.



Now consider the composition $A \xrightarrow{f} B \xrightarrow{q} C$ in \mathcal{F} . Then for each (C,M,d) in $\hat{\mathcal{D}}(C)$ there is a uniquely determined morphism $(d_{fg})_M : f^*, g^*(C,M,d) \longrightarrow (g f) (C,M,d)$ in $\hat{\mathcal{D}}(A)$ such that

 $(\Theta_{gf})_{M} (d_{fg})_{M} = (\Theta_{g})_{M} (\dot{\Theta}_{f})_{g} *_{M}$

by prop (2.8); i.e. the following diagram commutes.



It can be easily seen that $(d_{fg})_M$ are the components of a natural transformation d_{fg} : $f^* g^* \longrightarrow (g f)^*$. This natural transformation d_{fg} is the identity natural equivalence by Prop (2.8). This proves that the functor P : $D \longrightarrow \mathcal{A}$ admits a split cleavage $\{f^*, \Theta_f, d_{fg}\}$.

If $i_A : A \longrightarrow A$ is the identity morphism in \mathcal{A} , then $(i_A)^* : \mathcal{D}(A) \longrightarrow \mathcal{D}(A)$ is the identity functor on $\mathcal{D}(A)$. Therefore, we have $(i_A)^* = I_{\mathcal{D}(A)}$. Thus the cleavage is normalized.

Hence, the functor $P: \mathcal{F} \rightarrow \mathcal{F}$ has a normalized split cleavage.

Remark (10) : It can be proved that the functor $f_*: \mathcal{D}(A) \longrightarrow \mathcal{D}(B)$ is the left adjoint of the functor $f^*: \mathcal{D}(B) \longrightarrow \mathcal{D}(A)$. Therefore, f_* preserves not only initial object but all colimits.