CHAPIER-III

CLEAVAGES AND OPCLEAVAGES IN THE CATEGORY OF R-COMPLEXES

In the previous chapter we have discussed cleavages and opcleavages in the category of R-derivation modules. In this chapter we shall develop analogous's concepts for complexes. Since the proofs of the theorems; run on same familiar lines we have omitted the detail is. "

Definition(3,1) :'Let $f: A \longrightarrow B$ be' at unitary algebra homomorphism in $\mathcal{A}_{p}^{\prime \prime}$ ' Let (X, d) be. an' 'A-complex and (Y, δ) a B-complex. A graded R -algebra homomorphism $\boldsymbol{G}: X \longrightarrow Y$ is said to be an. f - complex homomorphism if 'and only if $\varphi \mid A=f$ and $\varphi d=\delta \varphi ;$ and will be denoted as $Q:(X, d) \longrightarrow(Y, \delta)$. In this case (Y, δ) is said to be Q.- 'simple if and only if $B U \delta(B) U \dot{\rho}(x)$ generates Y as an R-algebra.

Proposition (3.لـ) : Let (X, d) be an A-complex. Then for any B-complex (Y, δ) and an f-complex, homomorphism $\varphi:(X, d) \longrightarrow(Y, \delta)$, there exists a $\varphi^{\prime \prime}$ - - simple B-complex $\left(Y^{*}, \delta^{*}\right)$ and a B-complex mónomorphism,

$$
j:\left(Y^{*}, \delta^{*}\right) \longrightarrow(Y, \delta) \text { such that'j } \varphi^{*}=\varphi .
$$

- Here Y^{*} is the R-subalgebra of Y generated by $B U \delta(B) U \varphi(X)$ and $\delta^{*}=\delta \mid Y^{*} \cdot\left(Y^{*}, \delta^{*}\right)$ is a B-complex. $\varphi^{*}:(X, d) \longrightarrow\left(Y^{*}, \delta^{*}\right)$ is defined as $\varphi^{*}=Q$ and $j: Y^{*} \longrightarrow Y$ is the natural inclusion, and the following diagram commutes.

Proposition (3.2) : For any A-complex (X,d) there exists a B-complex (X^{\prime}, d^{\prime}) and an f-complex homomorphism ($\left.\Psi_{f}\right)_{X}$: $(X, d) \longrightarrow\left(X^{\prime}!, d^{\prime}\right)$ in \mathscr{O} such, that for any $B-\operatorname{complex}(Y, \delta)$ and any f-complex homomorphism $\varphi:(X, d) \longrightarrow(Y, \delta)$, there exists a unique B-complex homomorphism $\rho^{\text {tI }}:\left(X^{\prime}, d^{\prime}\right) \longrightarrow(Y, \delta)$ satisfying $\varphi^{\prime \prime}\left(\Psi_{f}\right)_{x}^{\prime}=‘ \varphi$. Moreover ($\left.X^{\prime}, d^{\prime}\right)$ and $\left(\Psi_{f}\right)_{x}$ are unique in the sense that if there exists, another, such B-complex ($\overline{\mathrm{X}}, \overline{\mathrm{d}}$) and an f-complex homomorphism $h_{x}^{\prime}:(X, d) \longrightarrow(\bar{X}, \bar{d})$, then there exists a B-complex isomorphism $I:\left(X^{\prime}, d^{\prime}\right) \rightarrow(\dot{\bar{X}}, \bar{d})$ satisfying $I\left(\Psi_{f}\right)_{X}=h_{X^{*}}$

Here the B-complex (Y^{*}, δ^{*}), the f-complex homomorphism φ^{*} and the B-complex monomorphism j are as in the previous Proposition (3.1). Let $\left\{\left(S_{\alpha}, \partial_{\alpha}\right)\right\}_{\alpha \in I}$ be a family of. $\varphi_{\alpha}{ }^{-}$simple B-complexes indexed by the set I such that for the ϱ^{*}-simple B-complex (Y^{*}, δ^{*}), there exists a B-complex isomorphism
$i_{\beta}:\left(S_{\beta}, \partial_{\beta}\right) \longrightarrow\left(Y^{*}, \delta^{*}\right)$ for same $\beta \in I_{\text {a satisfying }}$ $\dot{i}_{\beta}, \varphi_{\beta}=\varphi^{*}$.

Consider the product $\left(\bar{B}+\underset{n \geqslant}{i}{\underset{1}{\alpha}}_{\pi}^{\alpha} S_{\alpha, n,}, \dot{\text { ' }}\right)$ of the representative family $\left\{\left(S_{\alpha} ; \partial_{\alpha}\right)\right\}$ af \quad of φ_{α} - simple B-complexes and $\pi:(X, d) \longrightarrow\left(\vec{B}+\underset{n}{2} \frac{\pi}{1} S_{\alpha, n}, \dot{d}\right)$ the f-complex homomorphism defined as

$$
\pi\left(\sum_{n \geqslant 0} x_{n}\right)=\left(\varphi_{\alpha}\left(x_{0}\right)\right)_{\alpha}+\sum_{n \geqslant 1}^{2}\left(\varphi_{\alpha}\left(x_{n}\right)\right)_{\alpha}
$$

for $\sum_{n \geqslant 0} x_{n}$ in X.

$$
\pi_{\beta}:\left(\bar{B}+\sum_{n \geqslant 1}{\underset{\alpha}{\alpha}}_{\pi} S_{\alpha, n}, \partial\right) \longrightarrow\left(S_{\beta}, \partial_{\beta}\right) \text { the }
$$

natural projection' is' the B-complex homomorphism satisfying $\pi_{\beta} \pi=\Phi_{\beta}$. Let X be the subalgebra of $\bar{B}+\sum_{n \geqslant 1} \pi_{\alpha} S_{\alpha, n}$ generated by $\bar{B} \cup \partial(\bar{B}) \cup \pi(X)$. This gives a B-complex $\left(X^{\prime}, d^{\prime}\right)$ where $d^{\prime}=\partial \mid x^{\prime}, \quad$ Define $\left(\Psi_{f}\right)_{x}:(X, d) \longrightarrow\left(X^{\prime}, d^{\prime}\right)$ as $\left(\Psi_{f}\right)_{\dot{x}}=\pi$. Then $\left(\Psi_{f} \ddot{j}_{x}\right.$ is an $f-c o m p l e x$ homomorphism and
i : $\left(X^{\prime}, d^{\prime}\right) \underset{\sim}{\longrightarrow}\left(\bar{B}+\Sigma_{n \geqslant 1} \pi_{\alpha} S_{\alpha, n}, \partial^{\prime}\right)$ denotes the inclusion. Then obviously $i\left(\Psi_{f}\right)_{x}=\pi_{\text {。 }}$.

Let us put $\varphi^{w i}=j \cdot i_{\beta} \pi_{\beta} \quad i$.
As before, in the above diagram, since all the small triangles commute, the outermost triangle also commutes and we have $\varphi^{w} \quad\left(\psi_{f}\right)_{x}=\rho$.
$Q^{\prime \prime \prime}$ is unique since (X^{\prime}, d^{\prime}) is $\left(\Psi_{f}\right)_{x}$ - simple. Finally the uniqueness of. $\left(\dot{X}^{\prime}, d_{l}^{\prime}\right)$ and $\left(\Psi_{f}\right)_{x}$ can be proved on similar lines as in the proof of Proposition (2:2).

Proposition (3.3) : Let (X, d) and ($\mathrm{Y}, \mathrm{8}$) , be A-complexes and ($\mathrm{X}^{\prime}, \mathrm{d}^{\prime}$) and ($\mathrm{Y}^{\prime}, \delta^{\prime}$) be the corresponding B- ∞ mplexes. Then for any A-complex homomorphism $\lambda:(X, d) \rightarrow(Y, \delta)$, there exists a unique B-complex homomorphism $\lambda^{\prime}:\left(X^{\prime}, d^{\prime}\right) \longrightarrow\left(Y^{\prime}, \delta^{\prime}\right)$ such that $\lambda^{\prime}\left(\Psi_{f}^{\prime}\right)_{x}=\left(\Psi_{f}\right)_{y} \quad \lambda$.

Consider the diagram

The composition $\left(\Psi_{f}\right)_{y} \lambda$ iss an f-complex homomorphisms. Therefore, Prop (3.2) assures the existence of a unique B-complex homomorphism λ^{\prime} making the above diagram commutative.

Let $f: A \longrightarrow B$ be the R-algebra homomorphism. Define $f_{*}: \mathscr{C}(A) \longrightarrow \mathscr{C}(B)$ as, $f_{*}\left(\left(X, d^{\prime}\right)\right)=\left(X^{\prime}, d_{1}^{\prime}\right) \quad[$ as defined in Proposition (3.2)] and $f_{*}(\lambda)=\lambda^{\prime}$ [as defined in proposition (3.3)] for all (X,d) in $\mathscr{O}(A)$ and λ in $\mathscr{C}(A)$.

The following Theorem can be proved in, the same way in which Theorem (2.1) was proved.

Theorem ($3^{\prime}, 1$) : If $f: A \longrightarrow B$ is an R-algebra homomorphism; then there exists a covariant functor $f_{*}: \dot{G}(A) \longrightarrow G(B)$ defined by $f_{*}(X, d)=\left(X^{\prime}, d^{\prime}\right)$ and $f_{*}(\lambda)=\lambda^{\prime} ;$ for all $(x, d) \in \zeta(A)$ and $\lambda \in \zeta(A)$.

Proposition(3.4) : Let A, B, C be commutative unitary R-algebras and $f: \cdot A \longrightarrow B, g: B \rightarrow C$ be, unitary algebra homomorphisms. . Then there exists a ṇațural, equivalence

$$
\mathbf{c}_{f g}:(g f)_{*} \longrightarrow g_{*} f_{* *}
$$

Consider the diagram

Here (X, d) is an A-complex, (Z, d) a C-complex and ¢ : (X, d) \longrightarrow —— (Z, d) a g f - complex homomorphism. (Z^{*}, ∂^{*}) is.a B-complex defined via $g: B \longrightarrow C$ and $j:\left(Z^{*}, \partial^{*}\right) \longrightarrow \underset{*}{\longrightarrow}(z, \partial)$ is a g-complex homomorphism and $\alpha:(X, d) \longrightarrow\left(Z^{*}, \partial^{*}\right)$ is an f-complex homomorphism defined as $\alpha \mid A=f$ and $\alpha \mid X_{n}=\varphi$ for $n \geqslant 1$; satisfying $j \alpha=\varphi$. Since α is an f-complex homomorphism, there exists by Prop (3.2) a unique B-complex homomorphism $\beta:\left(X^{\prime}, d^{\prime}\right) \longrightarrow\left(Z^{*}, d^{*}\right)$ such that' $\beta\left(\Psi_{f}\right)_{x^{\prime}}=\alpha$. Again j $\beta:\left(X^{\prime}, d^{\prime}\right) \longrightarrow(z, \partial)$ is a g-complex homomomorphism, therefore, there exists by Prop (3.2) a unique C-complex homomorphism $\gamma:\left(X^{\text {w }}, \mathrm{d}^{\mathrm{WI}}\right) \longrightarrow(\mathrm{z}, \mathrm{d})$ such that $\gamma \cdot\left(\Psi_{g}\right)_{X^{\prime}}=j$. So we have $\gamma\left(\Psi_{g}\right)_{X},\left(\Psi_{f}\right)_{X}=\varphi$. The uniqueness of γ follows from the $\left(\Psi_{g}\right)_{X,}\left(\Psi_{f}\right)_{X}-$ simplicity of $\left(X^{c_{i}}, d^{m}\right)=g_{*} f_{*}(X, d)$.

On the other hand, for the $\mathrm{g} \mathrm{f}^{\prime}$ - complex homomorphism $\rho \mid:(x, d) \xrightarrow{i}(z, \partial)$ there exists by Prop (3.2) a unique C-complex homomorphism $\Theta:(\bar{X}, \overline{\mathrm{~J}}) \longrightarrow(\mathrm{Z}, \partial)$ such that $\theta \quad\left(\Psi_{g f}\right)_{X}=\Phi$.

Hence by the uniqueness of such C-complexes and C-complex homomorphisms there exists a C-complex isomorphism

$$
\left(c_{f g}\right)_{X}:(g f)_{*}(X, d) \longrightarrow g_{*} f_{*}(x, d)
$$

such that $\left(c_{f g}\right)_{X}\left(\psi_{g f}\right)_{X}=\left(\psi_{g}\right)_{X} \cdot\left(\psi_{f}\right)_{X} \cdot$
This shows the existence of a natural equivalence

Let. A denate the cateogry of all, unitary commutative R-algebras and \mathscr{G}, denote the category of all R-complexes. Consider the functor $P: \mathscr{C} \rightarrow \mathscr{A}$ defined as

$$
P \cdot(x, d)=x_{0} \text { and } P(\varphi) \neq \varphi_{0}
$$

for (X, d) in $\dot{\zeta}$ and φ in \vec{b}.
Then the fibre: $P^{-1}(A)$ is the category $\mathscr{C}_{1}^{\prime}(A)$ of all A - complexés and A-complex homomorphisps. Let $J_{A}: \zeta(A) \rightarrow \mathscr{C}$ denote the inclusion functor. Our claim is Theorem (3.2) : The functor $\mathrm{P}: \mathscr{C} \rightarrow \mathscr{A}$ admits an opcleavage.

Proof :- For each morphism $f: A \longrightarrow B$ in $\dot{4}$ and for any (X, d) in $\mathscr{C}(A)$ there exists a unique $\left(X^{\prime}, d^{\prime}\right)=f_{*}(X, d)$ in $\mathscr{C}(B)$ and an f-complex homomorphism $\left(\psi_{f}\right)_{X}:(X, d) \xrightarrow{C} f_{*}(X, d)$ in \mathscr{E} by Prop (3.2). For any morphism $\lambda:(X, d) \longrightarrow(Y, \delta)$ in $\mathcal{C}(A)$, there exists a unique morphism $\lambda^{\prime}: f_{*}(X, d) \longrightarrow f_{*}(Y, \delta)$ in $\mathscr{C}(B)$ by Prop (3.3). Thus each morphism $f: A \longrightarrow B$ in \mathscr{A}
gives rise to a functor $f_{*}: \mathscr{C}(A) \longrightarrow \mathscr{C}(B)$. For each $f: A \longrightarrow B$ in \mathscr{A} there exists a natural transformation $\Psi_{f}: J_{A} \longrightarrow J_{B} f_{*}$ satisfying $P\left(\left(\Psi_{f}\right)_{x}\right)=f$ by Prop (3. 2), Then for any f-complex homomorphism $Q:(X, d) \longrightarrow\left(Y \delta^{\circ}\right)$ satisfying $P(\mathbb{Q})=f$, there exists by Prop (3.2) a unique morphism $\varphi^{*}: f_{*}(X, d) \longrightarrow(Y, \delta)$ in $\dot{C}^{\prime}(B)$ such that $\varphi^{4}\left(\Psi_{f}\right)_{x}=\varphi ;$ ie. making the following diagram commutative

$$
(X, d) \xrightarrow{\left(\Psi_{f}\right)_{x}} \underbrace{\left(X^{\prime}, d^{\prime}\right)}_{(Y, \delta)}{ }^{\prime} \varphi^{\prime \prime} f_{*}^{\prime}(X, d)
$$

Consider the composition $A \xrightarrow{f} B \xrightarrow{9} C$ in 4 . Then for each (X, d) in $\mathscr{C}(A)$ there exists by Prop '(3.4) a uniquely determined morphism
. . $\left(z_{\dot{f}}\right)_{X}:(g f)_{\text {姜 }}(X, d) \longrightarrow g_{*} f_{*}(x, d)$ in $\mathscr{C}(C)$ such that

$$
\left(c_{f g}\right)_{X} \quad\left(\Psi_{g f}\right)_{X}=\left(\Psi_{g}\right)_{f_{X X}}\left(\Psi_{f}\right)_{X}
$$

making the following diagram commutative

$$
\begin{aligned}
& (x, d) \longrightarrow(y f)_{x}(x, d) \\
& \underbrace{\downarrow}_{\left.\left(y_{f}\right)_{x}\right)_{f_{k} x} \geq g_{n} f_{n}(x, d)}
\end{aligned}
$$

It is easily seen that $\left(\mathrm{c}_{\mathrm{fg}}\right)_{X}$ are the components of a natural transformation

$$
c_{f g}:(g f)_{*} \longrightarrow g_{*} f_{*} .
$$

Each such ${ }^{c_{f g}}$ is a natural equivalence by Prop (3.4). Thus the functor $P: \mathscr{C} \rightarrow \mathscr{A}$ admits an opcleavage $\left\{f_{\star}, \Psi_{f}, C_{f g}\right\}$.

In the following we shall prove that any algebra homomorphism f: $A \rightarrow B$ in gives rise to a covarıant functor $f^{*}: \mathscr{C}(B) \longrightarrow \mathscr{C}(A)$.

Proposition(3.5) ': Let $f: A \longrightarrow B$ be an R-algebra homomorphism. Then for any B-complex (Y, δ) there exists an A-complex $(\bar{Y}, \bar{\delta})$ and the f-complex homomorphism $\left(\dot{\theta}_{f}\right)_{Y}:(\bar{Y}, \bar{\delta}) \longrightarrow(Y, \delta)$.

Here' $(\underset{y}{Y}, \delta)$ is' a B-complex. Then $\bar{Y}=A \oplus \underset{n}{\sum} \underset{1}{Y_{n}}$ can be considered as an A-'algebra via $f: A \rightarrow B$. Define $\bar{\delta}: \bar{Y} \rightarrow \bar{Y}$ as $\bar{\delta}_{0}=\delta_{0} f$ and $\bar{\delta}_{n}=\delta_{n}$ for $n \geqslant 1$.

$$
\bar{\delta} \text { is an R-derivation of degree } 1 \text { of } \bar{Y} \text { satisfying }
$$

$\bar{\delta} \bar{\delta}=0$. This gives an A-complex $(\bar{Y}, \bar{\delta})$. Define the mapping $\left(\theta_{f}\right)_{Y}: \bar{Y} \rightarrow Y$ as $\left(\Theta_{f}\right)_{Y} \mid A=f$ and. $\left(\theta_{f}\right)_{Y} \mid Y_{n}=$ identity for $n \geqslant 1$. Clearly $\left(\Theta_{f}\right)_{Y}$ is an f-complex homomorphism. Thus with every B-complex (Y, δ) there exists an A-complex ($\bar{Y}, \bar{\delta}$) together with an $\mathrm{f}-\mathrm{complex}$ homomorphism $\left(\Theta_{f}\right)_{Y}$.

Proposition (3,6) : Let (X, d) be an A-complex and (Y, δ) a B-complex. Then for any f-complex homomorphism
$Q:(X, d) \longrightarrow(Y, \delta)$ there exists a unique A-complex homomorphism $\varphi^{\prime}:(X, \dot{d}) \longrightarrow(\bar{Y}, \bar{\delta})$ such that $\left(\Theta_{f}\right)_{Y} \varphi^{\prime \prime}=\varphi$.

Here define $\varphi^{\prime}:(X, d) \longrightarrow(\bar{Y}, \bar{\delta})$ as $\left.q^{\prime}\right\} A=$ Identity and $\varphi^{\prime} \mid X_{n}=\varphi$ for $n \geqslant 1$. Obviously φ^{\prime} is A-complex homomorphism making the following diagram commutative

The uniqueness of φ^{i} is obvious. .
Proposition (3,7) : Let (X, d) and (Y, δ) be B-complexes and let (\bar{X}, \bar{d}) and $(\bar{Y}, \bar{\delta})$ be the corre'sponding A-complexes. Then for any B-complex homomorphism $k:(X, d) \longrightarrow(Y, \delta)$ there exists a unique A-complex homomorphism $\overline{\mathrm{k}}:(\overline{\mathrm{X}}, \overline{\mathrm{d}}) \longrightarrow(\overline{\mathrm{Y}}, \bar{\delta})$ such that $\left(\theta_{f}\right)_{Y} \bar{K}=k\left(\theta_{f}\right)_{X}$.

The composition $k\left(\Theta_{f}\right)_{X}:(\bar{X}, \bar{d}) \longrightarrow(Y, \delta)$ is f-complex homomorphism, hence there exists by Prop (3.6) a unique A-complex homomorphism making the following diagram cómmutátive.

Define a mapping $f^{*}: \mathscr{C}(B) \longrightarrow \mathscr{C}^{\prime}(A)$ as ' $f^{*}((Y, \delta))=(\bar{Y}, \bar{\delta}) \quad[$ as defined in Prop (3.5)] i and $f^{*}(k)=\bar{k} \quad[$ as defined in Prop (3.7)]: Then, the following Theorem can be' proved on similar lines as Tho. (2.3).

Theorem $(3,3) .:$ If $f: A \rightarrow B$ is an algebra homomorphism, then there exists a covariant functor $f^{*}: C^{\prime}(B)^{\prime} \longrightarrow C^{\prime}(A)$ defined as $f^{*}(Y, \delta)=(\bar{Y}, \bar{\delta})$ and $f^{*}(k)=\bar{k}_{\text {. }}$.

Proposition (3, 8) \ddagger et A, B, C be unitary commutative R-algebras and $f: A \rightarrow B$ and $g: B \rightarrow C$ be algebra, homomorphisms. Then $f^{*} g^{*}=(g f)^{*}$.

For this take a C-complex (X, d). Then g^{*} associates with (X, d) a B-complex (\bar{X}, \bar{d}) where $\bar{X}=B \oplus_{n \geqslant 1}^{\sum_{n}} X_{n}$ and $\bar{d}_{0}=d_{0} g$ and $\bar{d}_{n}=d_{n}$ for $n \geqslant l_{\text {. }}$
f^{*} associates with (\bar{X}, \bar{d}) an A-complex ($\left.\overline{\bar{X}}, \overline{\bar{d}}\right)$ where $\overline{\bar{X}}=A \oplus \sum_{n \geqslant 1} X_{n}$ and $\bar{d}_{0}=\bar{d}_{0} f=d_{0} g f$ and $\bar{d}_{n}=\bar{d}_{n}=d_{n}$ for $n \geqslant 1$.

Similarly (gf)* associates with (X, d) an A-compléx (\tilde{x}, \tilde{d}) where $\tilde{x}=A \oplus \sum_{n \geqslant 1} x_{n}$ and $\widetilde{d}_{0}=d_{0} g f$ and $\tilde{d}_{n}=d_{n}$ for $n \geqslant 1$.

$$
\begin{gathered}
f^{*} q^{*}(x, d)=(\bar{x}, \bar{d}) \\
\left(d_{f g}\right)_{x}
\end{gathered}
$$

$(g f)^{*}(X, \alpha)=(\widetilde{X}, \widetilde{d})$

Define the mapping $\left(d_{f g}\right)_{X}:(\overline{\bar{X}}, \vec{d}) \rightarrow(\tilde{X}, \tilde{d})$ as $\left(d_{f g}\right)_{X}=$ $=$ identity on $\overline{\bar{X}} . \quad$ Obviously $(\bar{X}, \bar{d})=(\bar{X}, \bar{d})$ and $\left(d_{f g}\right)_{X}$ is the identity A-complex. isomorphism.

And for any C-complex homomorphism $\varphi:(X, d) \longrightarrow(Y, \delta)$,
it is obvious that the following diagram iss commutative

Clearly $\left(d_{f g}\right)_{X}$ are the components of the identity natural equivalence $d_{f g}: f^{*} g^{*} \longrightarrow(g f)^{*}$. Thus $f^{*} g^{*}=(g f)^{*}$.

Theorem ($3: 4$) : The functor $P: E \rightarrow S$ admits a normalized split cleavage $\left\{f^{\star}, \theta_{f}, d_{f g}\right\}$.

Proof : For each $f: A \rightarrow B$ in \mathscr{A} and for any (Y, δ) in $\mathcal{G}(B)$ there exists a unique $(\bar{Y}, \bar{\delta})$ in $\mathcal{G}(A)$ and the f-complex homonorphism ($\left.\Theta_{f}^{\prime}\right)_{Y}:(\bar{Y}, \overline{\bar{\delta}}) \longrightarrow(Y, \delta)$ in \mathscr{C} by Prop.' (3.5)., 'For any moŕphism $k:(X, d) \longrightarrow(Y, \delta)$ in $\mathfrak{C}(B)$ there exists a unique'morphism $\bar{k}:(\bar{X}, \bar{d}) \underset{\square}{\longrightarrow}(\bar{Y}, \bar{\delta})$ in $\vec{b}(A)$ by Prop (3.7). Thus each $f: A \longrightarrow B$ in \mathscr{A} gives rise to a functor $f^{*}: \mathscr{C}^{(B)} \rightarrow \mathscr{C}(A)$. There éxisists a natural transformation $\theta_{f}::_{A} f^{*} \longrightarrow J_{B}$ satisfying the condition that $\left.P\left(\theta_{f}\right)_{Y}\right)=f$ by Prop (3.5). For any f-complex homomorphism $\dot{\phi}:(\dot{X}, d) \longrightarrow(Y, \delta)$ such that $P(\varphi)=f$, thère exists à morphism' ' $\varphi^{\prime}:(X, d) \longrightarrow f^{*}(Y, \delta)$ in $\mathcal{E}(A)^{\prime}$ making the following diagram commutative.

Now consider the composition $A \xrightarrow{f} B \xrightarrow{g} C$ in $\mathscr{4}$
Then there exists', by Prop (3.8) a uniquely determined morphism.

$$
\left(d_{f g}\right)_{X}: f^{*} g^{*}(x, d) \longrightarrow(g f)^{*}(X, d) \text { in } \mathscr{G}(A)
$$

such that

$$
\left(\theta_{g f} \dot{f}\right)_{\dot{x}} \cdot\left(d_{f g}\right)_{X}=\cdot\left(\theta_{g}\right)_{X}\left(\theta_{f}\right)_{g}{ }^{*} x \text {. i.e. the following }
$$ diagram commutes :

$\left(\mathrm{d}_{\mathrm{fg}}\right)_{\mathrm{X}}$. are the components of the identify natural equivalence $d_{f g}: f^{*} g^{*} \longrightarrow(g: f)^{*}$.
Therefore, the functor P has a split cleavage $\left\{f^{*}, \theta_{f}, d_{f g}\right\}$ Let $I_{A}: A \longrightarrow A$ be the identity in \mathscr{A}, then $\left(I_{A}\right)^{*}$: $\boldsymbol{C}(A) \longrightarrow \boldsymbol{C}(A)$ is the identity functor on $\boldsymbol{C}(A)$. Therefore the cleavage is normalized. Thus the functor $p: \mathscr{C} \rightarrow \mathscr{S}$ has a normalized, split, cleavage.

