<u>CHAPTER - III</u>

CLEAVAGES AND OPCLEAVAGES IN THE CATEGORY OF R-COMPLEXES

41

In the previous chapter we have discussed cleavages and opcleavages in the category of R-derivation modules. In this chapter we shall develop analogous concepts for complexes. Since the proofs of the theorems run on same familar lines we have omitted the details. Definition (3,1): Let f: A-B be a unitary algebra homomorphism in A Let (X,d) be an A-complex and (Y, δ) a B-complex. A graded R-algebra homomorphism $G: X \longrightarrow Y$ is said to be an f - complex homomorphism if and only if $G \mid A = f$ and $G d = \delta G$; and will be denoted as $G: (X,d) \longrightarrow (Y,\delta)$. In this case (Y, δ) is said to be G - simple if and only if B U δ (B) J G (x) generates Y as an R-algebra.

Proposition (3.1): Let (X, d) be an A-complex. Then for any B-complex (Y, δ) and an f-complex homomorphism $Q: (X,d) \longrightarrow (Y,\delta)$, there exists a Q^* - simple B-complex (Y^{*}, δ^*) and a B-complex monomorphism,

 $j: (Y^*, \delta^*) \longrightarrow (Y, \delta)$ such that $j \quad q^* = q$.

Here Y^* is the R-subalgebra of Y generated by BU $\delta(B) \cup Q(X)$ and $\delta^* = \delta Y^*$. (Y^*, δ^*) is a B-complex. $Q^*: (X,d) \longrightarrow (Y^*, \delta^*)$ is defined as $Q^* = Q$ and $j : Y^* \longrightarrow Y$ is the natural inclusion, and the following diagram commutes.

<u>Proposition (3.2)</u>: For any A-complex (X,d) there exists a B-complex (X',d') and an f-complex homomorphism $(\Psi_f)_X$: $(X,d) \longrightarrow (X',d')$ in \mathcal{C} such that for any B-complex (Y, δ) and any f-complex homomorphism \mathcal{G} :(X,d) \longrightarrow (Y, δ), there exists a unique B-complex homomorphism \mathcal{G}^{W} :(X',d') \longrightarrow (Y, δ) satisfying \mathcal{G}^{U} (Ψ_f)_X = \mathcal{G} . Moreover (X',d') and (Ψ_f)_X are unique in the sense that if there exists another such B-complex (\overline{X} , \overline{d}) and an f-complex homomorphism h_X : (X,d) \longrightarrow (\overline{X} , \overline{d}), then there exists a B-complex isomorphism \overline{I} : (X',d') \longrightarrow (\overline{X} , \overline{d}) satisfying \overline{I} (Ψ_f)_X = h_X .

Here the B-complex (Y^*, δ^*) , the f-complex homomorphism \mathcal{G}^* and the B-complex monomorphism j are as in the previous Proposition (3.1). Let $\{(S_{\alpha}, \partial_{\alpha})\}_{\alpha \in I}$ be a family of \mathcal{G}_{α} -simple B-complexes indexed by the set I such that for the \mathcal{G}^* -simple B-complex (Y^*, δ^*) , there exists a B-complex isomorphism

 $i_{\beta} : (S_{\beta}, \partial_{\beta}) \longrightarrow (Y^{*}, \delta^{*})$ for some $\beta \in I$ satisfying $i_{\beta} = \varphi^{*}$.

Consider the product $(\overline{B} + \underline{z} \pi S_{\alpha,n}, \overline{\partial})$ of the $n \geqslant |\alpha|$ $n \geqslant |\alpha|$ of φ_{α} - simple B-complexes and π : $(X,d) \longrightarrow (\overline{B} + \underline{z} \pi S_{\alpha,n}, \overline{\partial})$ the f-complex

homomorphism defined as

$$\pi (\underline{\Sigma} \times \underline{X}) = (\mathfrak{g}_{\alpha}(\underline{x}_{0}))_{\alpha} + \underline{\Sigma} (\mathfrak{g}_{\alpha}(\underline{x}_{n}))_{\alpha}$$

for $\Sigma \times_{n \geqslant 0}$ in X. $\pi_{\beta} : (\bar{B} + \Sigma \pi S_{\alpha,n}, \partial) \longrightarrow (S_{\beta}, \partial_{\beta})$ the

natural projection is the B-complex homomorphism satisfying $\pi_{\beta} \pi = \varphi_{\beta}$. Let X' be the subalgebra of $\overline{B} + \sum_{n \neq 1} \pi S_{\alpha,n}$ generated by $\overline{B} \cup \partial(\overline{B}) \cup \pi$ (X). This gives a B-complex (X',d') where d' = $\partial | x'$. Define $(\psi_f)_x : (X,d) \longrightarrow (X',d')$ as $(\psi_f)_{\dot{X}} = \pi$. Then $(\psi_f)_x$ is an f-complex homomorphism and i: $(X',d') \longrightarrow (\overline{B} + \Sigma \pi S_{\alpha,n}, \partial)$ denotes the inclusion. $n \ge 1 \alpha$ Then obviously i $(\Psi_f)_x = \pi$.

Let us put $\varphi^{w} = j i_{\beta} \pi_{\beta} i$. As before, in the above diagram, since all the small triangles commute, the outer-most triangle also commutes and we have $\varphi^{w} \quad (\psi_{f})_{\chi} = \varphi$. $\varphi^{w} \quad (\psi_{f})_{\chi} = \varphi$. φ^{w} is unique since (X', d') is $(\psi_{f})_{\chi}$ - simple. Finally the uniqueness of (X', d') and $(\psi_{f})_{\chi}$ can be proved on similar lines as in the proof of Proposition (2.2).

Proposition (3.3) : Let (X,d) and (Y, δ) be A-complexes and (X',d') and (Y', δ ') be the corresponding B-complexes. Then for any A-complex homomorphism λ : (X,d) \rightarrow (Y, δ), there exists a unique B-complex homomorphism λ' : (X',d') \rightarrow (Y', δ ') such that λ' (ψ_{f})_X = (ψ_{f})_Y λ .

Consider the diagram

The composition $(\psi_f)_y \lambda$ is an f-complex homomorphism. Therefore, Prop (3.2) assures the existence of a unique B-complex homomorphism λ' making the above diagram commutative. Let $f:A \longrightarrow B$ be the R-algebra homomorphism. Define $f_{\star} : \mathcal{C}(A) \longrightarrow \mathcal{C}(B)$ as $f_{\star}((X,d)) = (X',d')$ [as defined in Proposition (3.2)] and $f_{\star}(\lambda) = \lambda'$ [as defined in proposition (3.3)] for all (X,d) in $\mathcal{C}(A)$ and λ in $\mathcal{C}(A)$.

The following Theorem can be proved in the same way in which Theorem (2.1) was proved.

<u>Theorem (3.1)</u> : If f: A \longrightarrow B is an R-algebra homomorphism; then there exists a covariant functor f_{\pm} : $\mathcal{C}(A) \longrightarrow \mathcal{C}(B)$ defined by $f_{\pm}(X,d) = (X',d')$ and $f_{\pm}(\lambda) = \lambda'$ for all $(X,d) \in \mathcal{C}(A)$ and $\lambda \in \mathcal{C}(A)$.

<u>Proposition (3,4)</u> : Let A, B, C be commutative unitary R-algebras and f: $A \longrightarrow B$, g : $B \longrightarrow C$ be unitary algebra homomorphisms. Then there exists a natural equivalence

$$c_{fg}: (g f)_{*} \longrightarrow g_{*} f_{*}$$

Consider the diagram

On the other hand, for the g f - complex homomorphism $g: (X,d) \xrightarrow{-} (Z,d)$ there exists by Prop (3.2) a unique C-complex homomorphism $\Theta: (\overline{X}, \overline{d}) \xrightarrow{-} (Z,d)$ such that

Hence by the uniqueness of such C-complexes and C-complex homomorphisms there exists a C-complex isomorphism

$$(c_{fg})_X : (g f)_* (X,d) \longrightarrow g_* f_*(X,d)$$

such that $(c_{fg})_X (\psi_{gf})_X = (\psi_g)_X \cdot (\psi_f)_X$.
This shows the existence of a natural equivalence
 $c_{fg} : (g f)_* \longrightarrow g_* f_*$.

Let \mathcal{A} denote the cateogry of all unitary commutative R-algebras and \mathcal{C} denote the category of all R-complexes. Consider the functor P : $\mathcal{C} \rightarrow \mathcal{A}$ defined as P (X,d) = X and P (Q) = 9 for (X,d) in \mathcal{C} and Q in \mathcal{C} . Then the fibre P⁻¹ (A) is the category $\mathcal{C}(A)$ of all A - complexes and A-complex homomorphisms. Let $J_A : \mathcal{C}(A) \rightarrow \mathcal{C}$ denote the inclusion functor. Our claim is <u>Theorem (3.2)</u> : The functor P : $\mathcal{C} \rightarrow \mathcal{A}$ admits an opcleavage.

<u>Proof</u>: For each morphism $f:A \rightarrow B$ in \mathscr{A} and for any (X,d)in $\mathscr{C}(A)$ there exists a unique $(X',d') = f_{*}(X,d)$ in $\mathscr{C}(B)$ and an f-complex homomorphism $(\psi_{f})_{X}:(X,d) \xrightarrow{} f_{*}(X,d)$ in \mathscr{C} by Prop (3.2). For any morphism λ : $(X,d) \rightarrow (Y,\delta)$ in $\mathscr{C}(A)$, there exists a unique morphism λ' : $f_{*}(X,d) \longrightarrow f_{*}(Y,\delta)$ in $\mathscr{C}(B)$ by Prop (3.3). Thus each morphism $f:A \rightarrow B$ in \mathscr{A} gives rise to a functor $f_{\star} : \mathcal{C}(A) \longrightarrow \mathcal{C}(B)$. For each $f:A \longrightarrow B$ in \mathscr{A} there exists a natural transformation $\psi_{f} : J_{A} \longrightarrow J_{B} f_{\star}$ satisfying P $((\psi_{f})_{\chi}) = f$ by Prop (3.2). Then for any f-complex homomorphism \mathfrak{G} : $(X,d) \longrightarrow (Y \delta)$ satisfying P(\mathfrak{G}) = f, there exists by Prop (3.2) a unique morphism $\mathfrak{G}^{\mathfrak{c}}$: $f_{\star} (X,d) \longrightarrow (Y,\delta)$ in $\mathcal{C}(B)$ such that $\mathfrak{G}^{\mathfrak{u}} (\psi_{f})_{\chi} = \mathfrak{G}$; i.e. making the following diagram commutative $(X,d) \xrightarrow{(\psi_{f})_{\chi}} (X',d') = f_{\star}(X,d)$

Consider the composition $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{A} . Then for each (X,d) in $\mathcal{B}(A)$ there exists by Prop (3.4) a uniquely determined morphism

(Y.8)

 $(f_{fg})_X : (g f)_* (X,d) \longrightarrow g_* f_* (x,d) in \mathscr{C}(C)$ such that

$$(c_{fg})_X (\psi_{gf})_X = (\psi_g)_{f_{*X}} (\psi_f)_X$$

making the following diagram commutative

It is easily seen that $(c_{fg})_X$ are the components of a natural transformation

 $c_{fg} : (g f)_{\ast} \longrightarrow g_{\ast} f_{\ast}$

Each such c_{fg} is a natural equivalence by Prop (3.4). Thus the functor P: $\mathcal{C} \rightarrow \mathcal{A}$ admits an opcleavage $\{f_{\star}, \psi_{f}, C_{fg}\}$.

In the following we shall prove that any algebra homomorphism f: $A \longrightarrow B$ in \mathcal{A} gives rise to a covariant functor $f^* : \mathscr{E}(B) \longrightarrow \mathscr{E}(A)$.

<u>Proposition (3.5)</u> : Let f: A \longrightarrow B be an R-algebra homomorphism. Then for any B-complex (Y, δ) there exists an A-complex ($\overline{Y},\overline{\delta}$) and the f-complex homomorphism $(\Theta_{f})_{Y}$: ($\overline{Y}, \overline{\delta}$) \longrightarrow (Y, δ).

Here (Y, δ) is a B-complex. Then $\overline{Y} = A \bigoplus \underline{z} Y_n$ can be $n \ge 1$ n considered as an A-algebra via f: A-->B. Define $\overline{\delta} : \overline{Y} \rightarrow \overline{Y}$ as $\overline{\delta}_0 = \delta_0 f$ and $\overline{\delta}_n = \delta_n f$ or $n \ge 1$.

 $\overline{\delta}$ is an R-derivation of degree 1 of \overline{Y} satisfying $\overline{\delta} \ \overline{\delta} = 0$. This gives an A-complex $(\overline{Y}, \ \overline{\delta})$. Define the mapping $(\Theta_f)_Y : \overline{Y} \rightarrow Y$ as $(\Theta_f)_Y \mid A = f$ and $(\Theta_f)_Y \mid Y_n = identity$ for $n \ge 1$. Clearly $(\Theta_f)_Y$ is an f-complex homomorphism. Thus with every B-complex (Y, δ) there exists an A-complex $(\overline{Y}, \overline{\delta})$ together with an f-complex homomorphism $(\Theta_f)_Y$.

CHIVALI UNIVERSITY, KOLHAPUR

<u>Proposition (3,6)</u>: Let (X,d) be an A-complex and (Y, δ) a B-complex. Then for any f-complex homomorphism **G**: (X,d) \longrightarrow (Y, δ) there exists a unique A-complex homomorphism **G**': (X,d) \longrightarrow (\overline{Y} , $\overline{\delta}$) such that (Θ_f)_Y \overline{Q} ' = \overline{Q} .

Here define \mathfrak{G}' : $(X,d) \longrightarrow (\overline{Y},\overline{\delta})$ as $\mathfrak{G}' \upharpoonright A =$ Identity and $\mathfrak{G}' \upharpoonright X_n = \mathfrak{G}$ for $n \ge 1$. Obviously \mathfrak{G}' is A-complex homomorphism making the following diagram commutative

The uniqueness of Q' is obvious.

<u>Proposition (3,7)</u>: Let (X,d) and (Y, δ) be B-complexes and let ($\overline{X},\overline{d}$) and ($\overline{Y},\overline{\delta}$) be the corresponding A-complexes. Then for any B-complex homomorphism k:(X,d) \longrightarrow (Y, δ) there exists a unique A-complex homomorphism \overline{k} : ($\overline{X},\overline{d}$) \longrightarrow ($\overline{Y},\overline{\delta}$) such that (Θ_f)_Y $\overline{k} = k (\Theta_f)_X$.

The composition $k(\Theta_f)_X : (\overline{X},\overline{d}) \longrightarrow (Y,\delta)$ is f-complex homomorphism, hence there exists by Prop (3.6) a unique A-complex homomorphism making the following diagram commutative.

Define a mapping $f^* : \mathscr{C}(B) \longrightarrow \mathscr{C}(A)$ as $f^*((Y,\delta)) = (\overline{Y},\overline{\delta})$ [as defined in Prop (3.5)] and $f^*(k) = \overline{k}$ [as defined in Prop (3.7)]. Then the following Theorem can be proved on similar lines as Thm. (2.3).

<u>Theorem (3,3)</u> : If f: A \longrightarrow B is an algebra homomorphism, then there exists a covariant functor $f^* : \mathcal{G}(B) \longrightarrow \mathcal{G}(A)$ defined as $f^*(Y,\delta) = (\overline{Y},\overline{\delta})$ and $f^*(k) = \overline{k}$.

<u>Proposition (3.8)</u>: Let A, B, C be unitary commutative R-algebras and f:A \rightarrow B and g : B \rightarrow C be algebra homomorphisms. Then f^{*} g^{*} = (g f)^{*}.

For this take a C-complex (X,d). Then g^{\star} associates with (X,d) a B-complex $(\overline{X},\overline{d})$ where $\overline{X} = B \bigoplus_{\substack{x \in X \\ n > 1}} X_n$ and $\overline{d}_0 = d_0 g$ and $\overline{d}_n = d_n$ for n > 1.

f^{*} associates with $(\overline{X},\overline{d})$ an A-complex $(\overline{X},\overline{d})$ where $\overline{X} = A \bigoplus X_n$ and $\overline{d}_0 = \overline{d}_0$ f = d₀ g f and $\overline{d}_n = \overline{d}_n = d_n$ for $n \ge 1$. Similarly $(gf)^*$ associates with (X,d) an A-complex $(\widetilde{X},\widetilde{d})$ where $\widetilde{X} = A \oplus \Sigma X_n$ and $\widetilde{d_0} = d_0 g f$ and $\widetilde{d_n} = d_n f$ or $n \ge 1$.

د کې *و*

And for any C-complex homomorphism \mathcal{Q} : $(X,d) \longrightarrow (Y,\delta)$, it is **Obvious** that the following diagram is commutative

(x,	= :(e+=) →	(x,	a)	1 1 1
f [*] 9 [*] (<i>q</i>)= <i>q</i>	· ·· ,	1.1.2	ã T.	(g f)*(<i>q</i>)
· (<u>¥</u> ,	$\overline{\delta}$ $(d_{2})_{\gamma}$	(¥,	δ)	

Clearly $(d_{fg})_X$ are the components of the identity natural equivalence d_{fg} : $f^* g^* \longrightarrow (g f)^*$. Thus $f^* g^* = (g f)^*$.

<u>Theorem (3.4)</u> : The functor $P : \mathcal{C} \to \mathcal{A}$ admits a normalized split cleavage $\{f^*, \Theta_f, d_{fg}\}$.

<u>Proof</u>: For each $f : A \rightarrow B$ in \mathcal{A} and for any (Y,δ) in $\mathcal{C}(B)$ there exists a unique $(\overline{Y}, \overline{\delta})$ in $\mathcal{C}(A)$ and the f-complex homomorphism $(\Theta_f)_Y : (\overline{Y}, \overline{\delta}) \longrightarrow (Y,\delta)$ in $\mathcal{C}(B)$ Prop. (3.5). For any morphism $k : (X,d) \longrightarrow (Y,\delta)$ in $\mathcal{C}(B)$ there exists a unique morphism $\overline{k} : (\overline{X}, \overline{d}) \longrightarrow (\overline{Y}, \overline{\delta})$ in $\mathcal{C}(A)$ by Prop (3.7). Thus each $f:A \rightarrow B$ in \mathcal{A} gives rise to a functor $f^* : \mathcal{C}(B) \rightarrow \mathcal{C}(A)$. There exists a natural transformation $\Theta_f : J_A \quad f^* \longrightarrow J_B$ satisfying the condition that $\overline{P}(\Theta_f)_Y) = f$ by Prop (3.5). For any f-complex homomorphism $\hat{Q} : (X,d) \longrightarrow (Y,\delta)$ such that P(Q) = f, there exists a morphism $Q' : (X,d) \longrightarrow f^*(Y,\delta)$ in $\mathcal{C}(A)$ making the following diagram commutative.

Now consider the composition $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{A} . Then there exists by Prop (3.8) a uniquely determined morphism. 53

$$(d_{fg})_X : f^* g^* (x,d) \longrightarrow (g f)^* (X,d) in \mathcal{C}(A)$$

such that

 $(\Theta_{gf})_X (d_{fg})_X = (\Theta_g)_X (\Theta_f)_g \star$ i.e. the following diagram commutes :

 $(d_{fg})_X$ are the components of the identity natural equivalence d_{fg} : $f^* g^* \longrightarrow (g f)^*$.

Therefore, the functor P has a split cleavage $\{f^*, \Theta_f, d_{fg}\}$. Let $I_A : A \longrightarrow A$ be the identity in \mathcal{A} , then $(I_A)^*$: $\mathcal{C}(A) \longrightarrow \mathcal{C}(A)$ is the identity functor on $\mathcal{C}(A)$. Therefore the cleavage is normalized. Thus the functor P: $\mathcal{C} \rightarrow \mathcal{A}$ has a normalized, split, cleavage.