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»C H A P T £- r! II ‘

Problems in two'dimensional boundary, layer'theory
_ . ■»*" i 1 i . > ’

* * „ *
, ' \

t * 1 l *

■ 1. Introduction to t,he problem ..

, ' \ . • ‘ “

E.M.Sparrow |l7 J studied the boundary rlayer on a

non-isothermal surface with non-uniform free'stream
. ‘ , ' i • •

X » 1 ,

velocity. In this paper he obtained at? exact solution for 

thermal boundary layer on a non-isothermal surface 

subjected to non-uniform free stream velocity! is presented
, * . i ,, *

in the form of a series and Fal-Jcner-Skae-type differential
. * f

equation. By using universal function this equation is 

solved. H.A.Hassan f 6 }considered unsteady laminar
W -i ’ 1 “j.' ’*»f '

boundary layers. He shown that solution of Falkner-Skan
, r '

type equations could be expressed in ..terms of universal

functions. Loitsianskii £8j[ , investigated the universal
>

* equations and parametric approximation in the theory of
■ ' . * <n •

laminar boundary layer. Also he obtained Falk^errSkan type 

equation. ;;
, 4 4

Freeman and Simpkins generalized* the diffusion
' • |

of species in similar boundary layer with finite recombination 

rate at the wall and they observed that bbundary layer 

equation reduces to Falkner-Skan type equation aid solved ,
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by using series solution methods. Mirk J14 | made rapid 

calculations for boundary layer transfer using Wedge solution 

and asymptotic expansion.

/eldman and Vande Vooren [25^j obtained a generalized * 

Falkner-Skan equation. They proved that similarity solutions 

in hydrodynamics could'be. expressed the differential equation

y*" + pyy" + ^(l - y'2) * o ,

with the boundary condition .

y= y* =0/ at x = 0 

j y * | —=> 1 as x —
l

where )\ and jj, are real constants with jj, ? O and they 

calculated existence and uniqueness of-the above differential 

equation. Moulden |l5”| made comments bn an exact solution 

of Falxner-Skan equation when the pressure gradient parameter
i * ' 1

taxes the value £ = -1 ;

Filey [lsQ studied surface reactiohs in similar
i

boundary layers and observed that boundary layer equation 

reduces to Falkner-Skan type equation. William III and ' 

Rhyne ^26"*|investigated bound’ary layer development on a 

wedge impulsively set into motion. They-showed that the 

solution have been obtained for-a number,of impulsively
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started Falkne^Skan type flows Ranging from' the' two- 

dimensional stagnation point flow to the incipient 

separation flow. Nanbu jl8^ established unsteady Falkner- 

skan Flow.

Graven and Fete tier 'presen ted, the uniqueness
t j ■ ,

of solution of the Falkner-skan 'equation.’ Craven and 

Ppletier j*5j further, confirmed solution, of Falkner-skan 

equation for 1. Hasting jfli”J studiec(; C,raven and

Peletier's .problem. Lihby and Liu "investigated
r .

the further solution of Falkner-Sican equatio,rt.

Tapas Ranjan- Roy jf23j 's.tudied the boundary layer
, 1 ^ /, %

flow of a power-law of liquid past aw^dge in the neigh- 

•bourhood’of the stagnation point. The potential flow 

velocity in this 'region is proportional to the arc length 

raised to a oower. The similarity transformation is 

successfully applied. The asymptotic two, point boundary 

v.alue problem is obtained that is' Tapas Ranjan Roy obtained 

a generalised form of Falkner-skan equation. This generalised 

form is then reduced to the .initial value problem by
i'* * ,«

applying the Nachtsheim-Swigert iterative scheme and
i

obtained solution. Tapas Ranjan Roy applied the Fourth-
I

order Range-uutta method to this scheme. The FORTRAN 

programme for the problem was run over Burroughs 6700
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computer for different values of power law index 'n'. The 

‘expession” for the local npn-dimensional.skin friction
* 4

coefficient, displacement thickness, momentum thickness and 

kinetic energy thickness were found. '

M.A.Abde 1~Gaid, $.A. KhSLider ^ and M. Elangery M 

obtained ' the solution of boundary layer equation for a
i . i . v

Non-Newtonian, electrically conducting power law fluid past
, i

‘ * - * i ,

semi-infinite porous plate.s They calculated the thickness 
„ 1 * , * ' „ 1 1 *

of boundary layer.1-They applied the sgccessjiye appfoxiin^tion 

(Pai 1956, Nasiki, '1965) method to jthe diirf.eren'ti al equation
. ‘ ‘ ’ 'i

* . ; I" i '' * 1 I - * ‘

and they found tha.t the successive approximation method
i « i 1 r

gave good results wi.th'.zero approximation.
. ♦ i1 . r 1 "*• • * ; \

i *f
* p i

In this .Chapter 'in Section (3)j we-studied the 

boundary layer1 flow of a power-law of 'liquid past a flat 

plate and obtained a generalized Blasisuu dif ferential 

equation, by similar argument made by Tapas Ranjan Roy
1 i hi

; i I
(23) in his paperland we discussed the method of solving

; ■ „ ! ■ ' j V* •
this differential equation by using Nacutsheim-Swigert

(1965) iterative scheme 'apd forth-order Range-Kutta method.
1 1 ,

In Section (4)' of i this, chapter we studied the boundary
Vi

layer flow of a'poWer-law of convergept channel,' by
' , '' > t
applying the same above technique we .can solve differential

1 # 1 9

equation. Befo,re our investigation we' require some boundary
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/

layer equations, with ' their solutions and ‘some basic concepts' 

as pre-requisite which have been given belo^ in Section
t i

(2a) and Sec tion■(£b) respec tively.
)

s (2a) Bajsic boundary .layer' equations, with .their solutipns*

- (I) Similar solutions of the boundary layer equations' >

Blasisu and Topfer j24j; obtained similar

solutions of’the1’boundary layer equation^. They considered * * 1 *'*
u/\j is a function of "H, i.e. u/w = fCn) where ‘H^y/j'

* i ,r

"H is called as .similarity variable and, .u/U(x) is the 

function of one' variable 

, u . y
-------. = f (-------) / where g(x)^ 6 where 6 is
u(x) g(x) ' -

the boundary layer thicKnt ss
t

c‘o-ord m at‘es x-, ' and x2
I “* M

u (’X^ / y/g,(x1) )*

U (xp

t -

. Hence for.any two streamwise

u(x9, y/g(x9)O
——----- ... (1)

U (x^)

■ i •

Similar solutions will be possible when partial differential 

equations transformed into ordinary differential equations. 

For limited choice of Uj(jx) and --the correspond ing form of 

g(x), the similar solutions exists,. This, problem was first
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studied by Goldstein |8J and later improved by Mangt&r |16 

The boundary layer equations for a incompressible flow are

D u u du
... (2)

"7) x ■ '2 y dx

Du D v
... (3)—— + ----------  0.

~c$ x D y '

with the boundary conditions. ;
I

y=0;,u = v=0

y ~^oO ; u = u (x) ... (4)

we introduce stream function '^-(x,y) such that

7 ^
u = ----- - , v ------------- ... (5)

y ~5 x

Then the equation of continuity is satisfied and equation 

of motion becomes

_ u4U .4,^
The corresponding boundary conditions are

- to

u(»x) (7)



24 4

Now we shall introduce a non-dimensional quantities

T} y
N/Rel

L.g(x)

£(
(x,y).VSSL 

L.U<x) g(x)
... (8)

L .
Rel = —™— = Reynold number where i© the characteristic

r
velocity of flew

L is the characteristic length of flow.
f %

g(x) is the noh-dimen^ional function of x.

From (8) we calculate ,

-V

= U f'

L

yfiel
£

d
— (Ug) + Ug ( 
dx

i~i>£ h1 — + ).
L , ?*• _

~ (10)

^ u

■S X

~c> u 1
1 ——— — + U ( —

X L x

^ U u £u^/r7i
nm"

'ly y L.glx) *

25 U u ^e1
vL» _ .

,

y
f *•'*

T2 2L g

.... (ID

... (12)

.... (13)
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"Substituting equations (9) to (13) in equation (?);we apt

f»f + a ff» + p (l-f«2) U g" ^ £'
— ( f' ---- “a ff" — )

•,...(14)
Lg d

where a = ---- ----(Ug) )
U dx > )2 ^ 
Lg du )

^ u dx

... (15)

The corresponding boundary conditions are

n = 0; f = 0; f = 0 )
) ...- (16) 

X\ 7 f* = 1 )

Since similar solutions exist if f and f1 are independent of
\

^ i.e. they are functions of i) only. Therefore a, £ are 
independent of x, i.e. oc, p are constants. With this 
arguments £14) and (16) are reduced to

f«» + a ff.« + p (i - ff2) = o' ... (17)
i i

with the boundary conditions.

T] = 0; f = 0/ f' = 0 )
) ... (18)

n •, f* * i )

Equation (17) with (18) is known as Falkner and skan (7) 
equation and solutions have been studied in detail.
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Now we shall find ait the forms of U(x) and g(x) for which 
similar solution exists. From (15) we f,ind that

L d 2
2a - a = ------ (g u ) ... (19)

* d

Case Is 2a “ ^ / 0

Then from eguoa tioti (19) we get

g2 ---- = (2a - ft) x/L ... (20)
UsQ ' K
2 •U

when x = 0, g —— = 0.U£p
gives Blasisus and Hxemenz solutions.

Due to equation (15), equation (20) becomes

UgL
U £7°

dg
dx

... (21)

Simplifying equation (20) we get

f U (x)L C g^
o • o (22)

where C is a'constant of Integration. Eliminating g between 
equation (20) and (22) we get ;
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u(x) _ 2/(2a-ft)------- - C P l (2o - p) _ .
UoO L LJ
Due to equation (20), equation (23) becomes

(23)

g(x) (2a - p)
U b

Hence from equations (8) and (24) the similarity variable' x
j

will be given by

(24)

n = y
1 u *n %

(2a - p)
(25)

Hence equation (23) gives the potential, f low velocity 

distribution for which the similar solution exists and the
i

function g(x), which is proportional to the boundary layer 

thickness by equations (24) and (25) respectively. The
' i

equation (23) can be normalized by taxing the following 

considerations s

(1) If a / 0
r

s
Let ^ a-»l and m = --—

2“ P

Then the equations (23) and (25) in the'normalised form 

may be written as
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n = y (
1 + m _>*

y x
... (28)

Thus from the aboye equation we can write 'the potential flow 

velocity varies as some power of x i.e.

U (x) o-v*; x™

and similar solution exists.

Examples oif potential flow is given by equation 

(26) include the following s

a = 1/ = 0; U(x) = constant

flow past a flat plate

a = 1/ p a lf u(x)^~* x

flow near' the forward stagnation point.

p/(2-p)
=1/ O < p ( 2 ; U(x) x

flow past a wedge with wedge angle -Jf

vOC
M

C
M

x 
i iq

M
H
* + 3

fH

o
Jt*X 

1 Ji a
+ l 

to
 

i
3 l .

X

a i 
a 

!

XO
'

(2) If a = 0
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Then from equation (23) we see that U(x) is proportional

to 1/x for all values of p; the equation (23) may be

normalised by caking p = + 1. This is a case of a two-

dimensional source or sink as u(x) is positive or negative.

It may be interpreted as flow in divergent or convergent

channel with flat walls

a - 0# (5=1; u(x) = - --- ( 0)
x

flow in a convergent channel.

a = 0, p = -1? u(x) = —- ( 0)
x

flow in a divergent channe.l.

Case II : If 2a - p = 0.

From equation (19) we find that 

2
g U(x) = Constant ... (29)

from second equation in (15) and form from equation (29) 

we get

1
— —= Constant

U dx
. . px 

i.e. U (x) = e

where p is positive co ns tan t when p ——^ 2/ then m —P- 

Then the solution is taker! as the limiting form the 

Case (I).
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(II) Boundary layer flow past a wedge '

A boundary layer flow of incompressible fluid past 

e wedge, with the wedge angle -*jy p where p = 2nr/(m+l) 

as snown in Pig. 1.

Pig.l Boundary layer ;f luid past a wedge for 
incompressible flow.

Let origin be taken at the stagnation point. The 

x-axis along the wall and the y-axis perpendicular to 

the wall. Thus we have the 'boundary layer equation

~b u ^5 “ i du
+ v —— = U j ——

*3 x y i dx

u ^ v
1 __ M A-t- — utt

*^y

. 0 . ( 1 )

... (2)
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with the boundary conditions

y = o? u =0 = v

y —jcfi ; u = U(x) ... (3)

where ^ is the kinonatic viscosity, and U(x) is the 

potential flow velocity. Now we introduce the scream funcfcidn- 

N"^-'(x/y)‘/ which satisfies the continuity equations (2)

Thus we take

u >4 ■^4
v ~ ^ (4)

by using equation (4), equation (1) takes the form

^2 ***/ - vj«Ay'
'by'3-

The corresponding boundary conditions are

- '(S')

y = 0; = ---- = 0

y-^C>Q j ------ = U (x) (6)

In the neighbourhood of the stagnation point the potential 

flow velocity U may be written as

U (x) = Uj. x?1, m^ 0, m P

Hence by the substituting this values of U(x) in (8) of the 

previous articles/ takes the form -
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ti = y
1 + m U(x) 

- 2 x

%

n = y
1 + m u Jg (m-l)

x

2 <m+1>
and (x,y) = ( --------— )^ x 2 * f (n).

m + 1

. (7)

<8)

Using equations (7) and (8) we get die following

u
'S'V

"3S-
" ~o-%

U (x) f 1 (Tl ) = U^ X™ f1 (T| )

m + 1 —v ,(--— . v u, ) * x 2
2

(9)

f(tl) +

+ -li y f1 (n)
m+l

2 _t2 (2m—1) iu-------= mu^ ff x ' +

(10)

"7>U

*bX

(m-l) (5m-3)
+ u. X f1»f ". y (1+m) Ui . (ID

7>V
"d'y

. m+1 . 2 (2m-l)
(-----)u* x ff"

(m-l) 2 (l4™)"! ^2 (5m - 3)

1 \ U1 y x ff" ...(12)
2
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s>
du

U'---
dx

'2-4-

m u. (2m~l)x

1 + m -

( ) u2 1

x(2m-l) fllt

... (13)

a . A (14 )

Due to equations (9) and (14) the equation (1) cates the 
form

2m 0fii + ff.. + _-- (i - f*2)
1 + m

i.e, £'" + ff" + p (1 - £ *2) 

2m
whete ft - -----r ; 1+m

subjects to the boundary conditions

T| = 0? f * 0 = £'
; f' - i

a o

- o (15)

. (16)

equation (15j with equation (16) is known as the 
Hartree'-s equation. It is a particular case of Falkner
and Skan -equation. Ibe numerical solution of equation (15) 
was first investigated by Hartree £*9j and later by other

workers«

Hartree1s Solutionj
oO

K\ - i»

Let f(T0 - • • d (17)
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which satisfies the first two boundary conditions of (16) 

substitution (17) in equation (15) we find the coefficient 

expressed in terms of a2 ~ a*

a2 = a

a3 = - p

a4 = - (1 - 2p) a2 

a6 = 2 (1 - 3p), ap 

= —2 (2 - 3p) p2 

a8 = - (1 - 2p) (11 - 10p)«3 

&9 = “2 (45 - lip + 66 p^) ,pa2 

a10 = 16 (2-3p) (8 - 7p) ctp2 

and as on.

It mfcy be noted that a = f"(0) is still unknown.

For finding value of a, Meksyn (17) adopted the

following procedure. By substituting the values of f and

ff ffotn equation (17) in (15) we get a, linear differential

equation in f" (n) J- €- cp [rq) ... (18)
where f(ri) = ^ f(T])dy ' ... (19)

o >

and 0 (Vi)-a-p ^ (1 - f,2) ef(Tl) dTj, ... (20)

equation (18) satisfies the boundary condition at t] = o.

Then unknown parameter a is found from the equation
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eP(n) jZKn) dti = 1 . (21)

Hartree (9) solved the equation (15) numerically on a 

differential analyser for different values of ps Prom 

the solution of (15) we .obtained boundary layer parameters*

(a) Displacement thickness *

61 = S C1 - fr ) ^

0

(
2% ^1™)%

1+m, ux
oCj

A<B)

where A(B> » ^ (1 - f») dn
0

and A(B) = lim (t| f(tj> 
n -->0^

(b) Momentum thickness *

62 = N 7 (1 - - )dy
2- Q U u

2 ^L“m k
- ( ~ B (g)1+m ux p

' oo
where B(p) =* S fr (1 - f *) dti

- f* (o) - P A(B) - pB(p)

I
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(c) Shearing Strees s

X - n<> y - 0

m + 1
» ^ .— . ux x;<3m“1) )% f "(o)

2

(III) Boundary layer flow along the wall of a

converger).t chan nel of incpmor ess' ifalet flow

Fig.2 * Boundary layer flow along the wall of a

convergent channel of incompressible flow*

1

The potential flow velocity is given by

U(x) = —- (ux 7 0)
X ■

where x is measured along the well of the channel# and 

U£ is the strength of the sink placed at 0. Y - axis is 

perpendicular to the wall. This is an another exam ole in
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which a similar solution of the bound ary layer equations 

is possible* Pholhausen, K (1921) was the first who 

obtained the solution of this problem. For this he 

introduced the similarity variable.
• i

n

» - O f(n)

... (1)

... (2)

from ©nation (1) and (2) the equation 6f the boundary 

layer (1) in artical (2) takes the forms as

fmt '+ r - f,2 = o • a 9 (3)

with the boundary conditions

T| ~ 07 f 88 0/ f1 = 0 )
) ... (4)

Tl-^oO ; f' a 1 )

For the solution of equation (3) we multiplying it by 

2fand integrating we get

f"2 - - (f - l)2 (£' + 2) = G ... (5)
3

where C is constant of integration.

When T} = o; f* - 0, f=0

n = tO ; f • a i/ and £" = 0*
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Hence C = ,0

equation (5) becomes

f"2 - 2/3 (f‘ - l)2 <f' + 2) = 0

• - [* 02/3 (f' + 2) l % (1 - f1 )

Let f +2-3 tan h‘ 

we find that

n

S and integrate it

£ = _
* (2)35 + K

where K is constant of integration/ determined from the 

boundary conditions,

T| = 0; f' = 0 

K =* tan i-f1 (2/3)^ = 1.14C

Henc e u/U = f1 (rj) = 3 tan h2<^ - 2

9 n
f' = 3 tan hz ( —-r + ) - 2

<2)%

(1)

Boundary layer parameters

Displacement thickness s
cjO

S (1 - u/U) dy 
0

0,778x ( ^/’u1 )**

t

(6)
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(2) Momentum thickness s

C*5>
&2 ~ 5 u/a d “ u/U) dy

0
= 0.376 x ( '^'u1)3s

(3) Shearing Stress s

_ VTw = -u (--------) y = 0

Tw =
1-54 “2 (vVs>5 35A 1

S' * Basic Concepts :
W—<—■■ W—■ mrn luff IHKIO.—

I

(I) Newtonian Fluid :
1

1

Newton observed that in a simple rectili

of fluid two neighbouring fluid layerp, one is m

lear motion 

Dving over

the other with the same relative velocity, will experience
i 1

a tangential force proportional to the relative velocity
I

between the two layers and inversely proportional to the
1

distance between the layers. If the two1 neighboujring fluid 

layers are movihg with velocities u and u + 6u and at a 

distance 6y the shearing stress is given by
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6u

6y
&3C

du

dy

This is called 11 the Newtonian hypothesis" and a fluid 

satisfying this hypothesis is called Newtonian Fluid.

The constant cf proportionality y, is called as 

coefficient of viscosity and du/dy is the strain-rate of 

the fluid.

Newtonian fluids are also called as viscous fluids.

(II) Non-Newtonian Fluids :

The fluids which do not satisfy the Newtonian 

hyoothosib that fluids are called as non-Newtonian fluids.

The non-Newtonian fluids are classified into 

following three ways j

(i) Purely viscous fluids

(ii) Visdo-plastic fluids and perfectly plastic 

materials.

(iii) Visco-elastic fluids.

(i) Purely Viscous Fluids s

h fluid in which the stress tensor p.. . is given 

as the function of tho strain rate is called purely
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viscous fluid; provided in the absence of strain-rate the 

stress tensor is zero. Mathematically/ this can be given 

as

P,, = f(e,n.) and f(0) = 0XJ XJ

where the function of cannot be comoletely arbitrary. The 

different forms of the function f gives different types of 

purely viscous fluids.

Types of purely viscous fluids s
i

(a) Reiner-Rivl in Fluids :

A fluids satisfying the following constitutive 

equation is called Reiner-Rivl in Fluids s

Tlj " - P»ij + ?1»ij + t»l eik ekj + Vz6±l

where T±j = - p5l£j ’+ pij

jiz V2 are constants.

6.j - Kroneker delta tensors.IJ

(b) Power law of fluids *

If the function f in the equation 

P^. = f(e.jj) and f(0) = 0

is taken to be the analytic function of the arguments and
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we can expand it as poWeJ? aferies in strain-rate tensor i.e.

pij = 2V-eij + eik ekj + ^2eiJ elk ekj + • • • •

The relation between the stress tensor p. . and
**-J

strain-rate tensor is in which stress tensor is proportional 

to some power (may be fractional) of the strain-rate tensor 

i.e.

fij =c(eijin or ^ = <eij>n

where Cl is the constant; since Pjj is second order tensor#
, “** J

'hetice right hand side should also be a tensofoaf second 

order.

We can write the above equation as

n-1
pij = (2 elm elm) 2

where |j, is called the coefficient of viscosity and n is 

called the index of the power law of fluids.

If n = 1 then Newtonian fluids

If n > 1 then pseudo-plasic fluids 
\

If n < 1 dilatant fluids.
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(ii) Visco plastic and perfectly elastic materials s
i

If we apply a certain shearing stress on viscous 

fluids, It may cause a continuous deformation in the fluids. 

But in the case of materials lite paints, castes etc. we 

find that if we apply a shearing stress less than a certain 

quantity the material does not move at all. But when this 

shearing stress exceeds the material starts moving and 

strain-rate of material depends uoon the applied stress, 

such a materials are called plastics.

The constitutive equation for viscoplastic is given 

by
-DiJ = e±j <2,1 + ^2h )

where ^2* y Ta where T2 T© + 2yy2** and eij “ 0
1

when T2V2^.inhere p, is the coefficient of viscosi-ty, 

is the yield stress gives the solid character.

If -I •—^ 0 then the material is called as perfectly 

alas tic material.

(iii) Visco-elastic fluid s s
! '
I

The fluids in which the stress depends upon the 

rate of deformation and when stress is removed the strain-
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rate becomes zero. But the deformation has accumulated 

persists# that is it forgets its original position. But 

there are sane fluids like soao solution, p&lymers have 

some elastic properties. This fluids is called as visco­

elastic fluids.

Now with this backward we study the boundary Layer 

of a power law liquid past a flat plate and along the wall 

of a convergent channel.

*4 3, Boundary layer flow of a power law liquid past a 

flat plate :

(a) Intiro'duction :

The boundary layer flow of power-law liquid past

a flat plate is studied in the neighbourhood of the

stagnation point. The potential flow velocity in this

region is constant every where. 'The similarity transformation
*

is successfully applied and \«je get the generalized form of 

the Blasius equation for a boundary layer flow of a power- 

law liquid past a flat plate.-

• • •
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(b) Basic equations *
\/

/A

*. *U)

l-*■

- ^ "I

--4 1
"• "V i_I

/ f J* C

rrrrn'fTn -;T; ■" ” -prrm i/ ^

Fig*3 : Boundary layer on a flat plate

k boundary layer flow of a power law liquid past a
i

flat olate is shown as in the Fig.l. is the generalization 

of the problem for ordinary viscous liquid. Let origin be 

taKen at the:stagnation point. Let x - axis be along the 

flat plate and y - axis perpendicular to the flat plate and 

the potential flew velocity U be constant every where in 

the direction of the x-axis.

*3 3* s I CD rr (U < C
D rr 3" C
D S' G 3 O
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C
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D S' 0? ff o D H
- 3 (T O
'

C
D

Q
j\J

x i 
■d

dWH
r <;

cJ
 | <

zj

K
 I G I II

3r-
\ii 

/© X

C
M

c/
 I c

J
I

k
 i id ii o

cnC
DH

i
O



46

—- + = 0i> x ^ y

with the "boundary conditions *

u = v = 0; ‘y = 0 )

u = U (x); y = c£> )

• • • (3)

... (4)

where, K is kinematic viscosity for the power-law liquid,
i

n is the power law index and U(x) is the'local potentiali

flow velocity.

We can assume that

ti® =. ias -j,x
with this equation (1) becomes

4

u ' ~?>U tJ u
U------ + V — a U------------  + K

15 x 1> y ^ x

But for a flat plate we have

o 3* « n

dU

dx

Hence equation (5) becomes

d U Ciu u
u ------+ V --- -----= K ------- ( —

D x C) y -7 lb y

0 • • (5)

(6)

with the boundary conditions,



47

ti. 0

a ® V « 0; 

u' = u(x);

y = 0

v = •oO'
(7)

fox the solution1 of equation (6)' with the boundary 

condition (.7) we take the stream function ^ which 

satisfies the continuity equation/ that- is we take

= ->V _
~by ~b “31-

Due to equation (8), equation ('65" becomes

... (8)'

y 'f yx ~ t x ir yy ~ ^ yy} (9>

with the boundary ccnd it ion s' 

^•y

Hy’

H" * ='°! y ~ O

U(x);‘

•v(lo)'

In the neighbourhood of the stagnation point the potential 

flow velocity U may be written as

U - C

For the similar' solution, we use*the f ollowing 

transformation with the non-dimensional variables

e b
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v-V (x,y)
f(T1> ■ ------—iil=I)—~j----------xi

(n + l)^n+^^ C (o+l) x Tn^Il x 7n+l")

-1 /2rn t 1_
d y° ( JnTi) C x"* ^+T)

K TITCO

Prom equations (11) and (12) we obtained
/

/ u = 'f y = Cf *

o u
u ---- = H-y • H-yx

n+4) (n-2)
-l c "+1 y. f'f” x"

(n+1, ln+11 (n+1). k'15^

V“ -H-x

1 /2n-l * 1 - n
-<n+1) WIT c(-n-+r> Kr^Vi f x <r+i)

( n + 1 )

+ „-i____  c y f' xf1
n+1

...(H)

(12)

. (13)

(14)
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V
'd u

’iT*
*

S8 Sr x H* yy

(n+4)
C2 £f" X-1 C <n+l> y£ *f" X ^

(n+1)
(n+1) <n+l) (n+i)# k (n+1)

K 0. , u .n
r? nTy; K ~y ( MV"

n C2 x-1 <fu)n“1

(n+1)
• 90 (16)

By using equations (14), (15) and (16) equations (9) and (10) 

take the f orm

a£\t nf"* (f,,)n-1 + ff" = 0 ... (17)

with the boundary conditions.

f* = £ * 0? tj = o )
) ... (18) 

f* —^ l; n — OC )

For n=l equation (17) becomes the Blasius equation for a 

flat plate.

For the solution of equation (17) we can use the 

Nachtsheim-.^wigert iterative scheme (1965) and fourth- 

order Range—Kitta method. Also we can use the FORTRAN



50

programne for this problem which can be run over Burroughs 

6700 computer for different values of the power law ihdex n. 

Thus we can determine the local non-dimensional skin frictiori 

coefficient, displacement thickness/ momentum thickness and
v

kinetic energy thickness. This is under our investigation,

r• *. The ^boundary layer flow of a power law liquid along
*

(a) Introduction s A boundary laver flow of oower law ligud
naM* arfMaMa^- -,+mm ,

liquid along the wall of a convergent channel is studied 

in the neighbourhood of a sink. The potential flew Velocity 

ih this region is inversely proportional to the arc length*

By using the similarity transformation we ,can find the 

generalized equation for the convergent channe.1*

X
(b) Basic equations s'

W-

/>>
s / s \ -i

r
t/ • \

Trr/TTfT7 TTjn r?T>nrrmf> X-rrrmrrrfTi

A bound ary layer flow of a power law liquid past
{

along the wall of the convergent channel.

Fig.4 s
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A boundary layer flow of a power law liquid past 

along the wall of the convergent channel is a generalization 

of similar otoblem for ordinary viscous liquid. Let the 

origin be taken at the sink point. Let the x-axis be along 

the wall of the convergent channel and let y-axis be 

perpendicular to the wall. Then we have the boundary layer 

equation in the form

u 3u
“sy

-1 ^ p
^ TTx

& u ( - 
, o y

)n • • * (1)

p
— = o ... (2)

^ y

+ j.y
-Tx "5"*? 0 .. (3)

With che boundary conditions

u = v = 0, y = 0 )
^ ) ' ... (4)

u - U (x) ? y = cO )

where K is the kinematic viscosity for the oowjer law liquid, 

n is the power law index, U(x) is the potential flow velocity 

Velocity along the wall of a convergent c’hanndl.

Ste assume that 

dU
U ■* I— MiaMi

dx

i -^p
5 i*
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with boundary conditions 

u - V = 0; y = 0 ) 
)

u — U (x) / y_^cO )

fte introduce the stream function as follows which

satisfies the Continuity equation

'c'H-

(&)

u - —- =S- ,Ty
~b%-Y JS « vV- (7)

from equation <7}, equation (5) becomes

y ■“ 'vKc.v^'\'y =■ ^ ~g)
jj cix 1 ~~

with the boundary conditions

H-y" =

= U{x);

0; y = o )
)

r>.y )
19)

The potential flow velocity along 'the wall of convergent 

channel is given by

tf(x)
C
x < c *> 0 )

ID

d | J* 
fi\ft

cn

•I
 

W
1°

^ 
.?

ouJSrH

H
*

C
O

C
D *Q p pj rr H
-

O 3C
u S P C

O H
-

O lO

!*+i
D

JX
'O

l'O1

0*
 j X
IG + <? ^[
c/

 
si

 ic
 

u

where x is measured along the wall of the channel and C 

is the strength of the sink at origin*
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Hfence for the application of similarity transformation 

we use the following dimensionless variables*

/ 21L. )ln+l 
2n

's|--(x/ y)

<2n-lT‘ 
C Tn+1) Kxbii (-2n+2)

x '7n~lT

(10)

2n
y a (

n+l

—
Tn+ll

K

G
2/n+l

(2-=-a>
n+l x

jri-3)
"* (n+l)

(11)

from (1-0) and (11) we obtained

•1u Cf x

c* u
u ——>* =~L> X ^-y H- yx

i 1 1 _ (n+4)
= - c2 f2 X-3 - ( ~23! J.fTfli (2r3 , C Tn+H

n+l n+l

y f a

V s» -
c^S-

>'JL >■x_

(12)

ni+l4 l/n+1 1/ n+‘lK
(2n~l)I (--3 n+l)

( r-il) — k*,“" f„( ---B) ic 7n+l) c (n+l) +
2n n+l i

i
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. n - 3 .+ c (--------- ) y f' x
n+1

(2n-2) 
I n+1)

V
~$y = -

= ( ) C= f f" x-3

_(n+4_) (-2n~6)
( ~“f) (-It)^11*1* c ^f'f“ x

n+1 n+1 1

K
l/(n+l)

...(13)

du U -~~- 
dx

-C2 x“3 .. (14)

r
n. ( ----- ) .e2. x“3 f"r (£")n~1 

n+1

K
(15)

Due to the equations (12), (13), (14) and (15), equation 

(8) takes the form

no ( -HE ) f»« (f")11"1 + Hl2E £f” + 1 - f*2 = 0 ...(16)
n+1 n+1

subject to the boundary conditions.

f1 = f = 0? n = 0 )
) ...(37 )

fr —y 1; —y CKO )
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liquation (16) is the generalized equation for the 

boundarsr layer flow of a power law liquid past along the 

wall of the convergent channel* in particular if n = 1, 

then equation (16) will be reduced to the Falkn-rr-Skan 

equation for convergent channel. .
' t

For the solution of equation (16) we can use 

Nachtsheim-Swigert iterative scheme and fourth order Range 

Rutta method. We can also use the FORTRAN programme for 

this problem which can be run over Burroughs 6?Q0T„computer
, i "' v"

for different values of the power law index n. Thus we cart 

determine the local non-dim&nsional skin'fr'idtion 

coefficient, displacement thickness, momentum thickness 

and kine tic, energy thickness* we would like to investigate 

these in our further research work.

oOo
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