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1

CHAPTGE R - IT

1 . -

Problems in two diménsional boundary layer. thebry

i
3

3

1, Introduc_gion;to the pralglg_n_

N [}
[
s

4 ‘{
E.M, Sparrow {17} studied the boundary layer on a
non«-isothermal surface with non- um.form freen stream

velocity, In th:.s paoer he obtained an exact solutlo,n for

N

|
thermal boundary layer on a non—lsothermal surface

1] 1

subjected to nonuunlfom free stream Veloca.ty is presented
in the form of a series and Fal—knerc—skan. ;:ype dif ferential
equation. By using universal function this equatn.on is

solved, H,A,Hassan Esjconsz_dered unsteady laminar _
R

boundary layers, He shown that solutlon of Fallmer-—Skan
s ¢ 5

type edqua tions could ‘be expressed in terms of universal

func tions, Lo:.tsa.anskli LB} investlgated the universal

" eQuations and parametric approximation in the theory of

» - “ - ln »
laminar boundary layer, Also he obtained FalkA'er:-Skan type

eduation, o

) L

Freeman' and Simpkins [5} g:enerali:Zem the diffusion
of species in similar boundary layer withl finite recombination
rate at the wall and they observed that boundary layer

edquation reduces to Falkner-Skan type eduation and solved
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by using series solution methods, Mirk [;4!‘made rapid
. - e B
calculations for boundary layer transfer using Wedge solution

and asymototic expansion,

veldman and Vande Vooren [251 obtalned a generallzedﬂ_,
Falhner-SKan eduation, They proved that simllarity solmtlons

in hydrodynamics could be expressed the dif ferential equation

yu o+ pyyh + N1 - y’z) =0

) “~

with the boundary condition

'

y=y' =0, at x=0

| y'j- 1 as x -~

i
where ) and p are real constants with p # O and they
calculated existence and unidueness of -the above differential
ejquation, Moulden {}S] made commente on an exact so}ution

of Falkner-Skan equation when the prelssure gradient parameter

¢ -

|
|

takes the value g = -1

Filey {lél studied surface reactlons in similar
boundary layers and observed that boundary 1;yer equation
reduces to Falkner-Skan type edquation, William IITI and’
Rhyne [Qéilnvestlgated boundary layer deVelopment on a
wedge impulsively set into motion, They showed that the

solution have been obtained for-a number of impulsively
‘ .



.
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7

started Falkner-8Skan t&be flows %ahginé fromfﬁhe'two—
dimensional stagnation poilnt flow to the incipient
separation flow Nanbu [?8} established unstpady Falkner-

skan Flow,

Graven and Pbletiér‘[4] presented:the uﬁiqdéness’
of solution of the Falkner-skan GQuatlon Craven and
Peletier fSJ further conflrmea solutlon uf Falkner—Qkan
equation for Ay 1, ‘Hasting [}I] studleq:Craven and
Peletier's f4] prsblem. ulbby and Liua IEB] 1nvest1gated

the further solution of Falkner~Sxan equatuon.

Tapas Rahjanigoy Eés]‘stuAied-qﬂ§‘§oﬁndar§ layer
flow of*a power-iaw of liqdﬂi past aiwéaéé‘in the neigh-
.bourhood’: .of the stagnation point, The potentlal flow
~veloc1ty in this - reglon is prooortional to the arc length
raised tola oower, The similarity transfopmatlon is
sucéeséfully applied, The asymptotic two éoint'boundary
value problem is obtained thagniS'Tapas Ranjan Roy obtained
a generalised form of Falkner—skan equation. This-generalised
form is then reduced t: the . 1n1t1al value problem by

'ln

apolying the NaChtshelmrSw1gert iteratlve SCheme and

obtained solution, lapas Ranjan Roy applied tﬁe Fourth-
1

order Range-iutta method to this scheme., The FORTRAN

programme for the problem was run over Burroughs 6700
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-

computer for diffarent values of power law index ‘n', The

‘expession” for the local non-dimensional skin friction

coefficient, disolécement thicKness, momeritum thickness and

kinetic energy ‘thickness were fourd,

- t

M.A,Abdel~Gaid, M.A,Khaider and M, Elandery {1]’
. i . 1

‘obtained the solution of boundary layer euation forj a

Non—Newtonian‘ électricaliy conéuc ting power law fluid past

gsemi~infinite porous plat:e, They calculated the tthkneSS

of boundary laypr, They ajopl:.ed the sqccesslve appgoxlma tlon

(Pai 1956, Nas:Lk:L, 1965) methoe} t'o the differen’tial ednation

‘:ll ‘,
L

and ‘they found that the SuCCeSSiVe ap*oroxmatlon me thod

gave goxd resplts ,Wi,th _Zero apprOX1mat410n.
1 ':' . . y .t {’:
i

In this Chapter 'in Section (3} we. studied the

SRR

boundary layer ' flow of a power-law of liquid past a flat
plate and obtained a generalized Blasisus dif ferential

eqxxation, by similar argu'ment made by 'Tapaa Ranjan Roy
!
(23) in his paoer!and we dlscussed L.he method of solv:.ng

-

this diff eren t:. al equatlon by usmg Nacutshe:.m—Sw:.gert

[
(1965) iterative scheme and forth-order Range—kutta method,
1

In Section (4) ofithls chapter we stu'.iled the boun'iary
layer flow of a’ éower—law of convergent channel, by
Iapplying the s-'ame' é'bove'teéﬁnique we _c’:an solve differential
equation.v Befo.ire-' our investigation we:requiro some boun:?ary

4
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layer eqmations,with'théir solutions and some basic concepts: -

as pre—requisn.te Wthh have been given below in Section

(2a) and Section (3b) respectwely.
1]

L

- (2a) Basic boundary ,iayer’ eqaa'tiongz_-wit'h their solutions:

- (1) similar solutlons of the_boundary_ la\_/er eduations ¢

e 3 oy B o

Blasisu [3_] and Topfer {241 dptainéd similar
solutions of ’i:he”bour;dary layer equa tiong. They considered
uAg is a functioh of M, i.e.'u/u'.--' £(n) vhere N~ vy/F
N is called as .éimilarity variable and. u/U(x) is the
function of one variable

.u : .

y e = £( —mm ), where g(x)~§ where § is
U(x) gl(x)’ .

O.L

the boundary layer thickness, Hence for .any two streamwise
; .- o ,

co-ordan ates X ' and X,

- —-———-n-——-—-—c—-n-—

ubxy, y/o(x)) ¥ 7 ulxy, y/g(x ) ) (1)
U (x;) LU () IR

Similar solutic'ms will be ‘possible wh'én 'partial differential .
equations transformad into ordlnary dlfferentlal edua tlons.
Por limited choice of U(ﬁx) and the corresnond ing form of

g(x), the s:LmJ.lar go lutions e,X1sts. Th:Ls oroblem was first
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studied by Goldstein {8] and later improved by Mangter [1 6].

The boundary layer eduations for a incompressible flow are

= u vau du :""'

{-‘Q - o -i: T - = - ."’-Q}-:ﬁ o008 (2)
™ X DYy dx Y —
Du av
::---‘ m—— = O‘ eoe (3)
3 X DY

with the boundary  conditions, ;
|

y=0ru=v=20
y ==»o° ; u = Ulx) eee (4)

we introduce stream £unction \{-a(x,y) such that

Y - vy

U S =ewem , VS o aea

Y DX

eeo (5)

Then the eduation of continuity is satisfied and eduation

of motion becomes

OV 2.)1— . e 'b
B ™ 22k~ Udy L TN )
J  ex ey o4 RN

y o ==309; -==- = U(x) Coees ()
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Now we shall introduce a non-dimensional quantities

. ' Rel
% = x/L' =Y e
L.g(x)

: (x,y).VRel
f(% 171, zi’ ------- = e o oen (8)
L, U{x) glx)

Up L
Rel = —:§«~ = Reynold number where'U,a is the characteristic

velocity of flow

L is the characteristic length of flow,

%
3

g{x) is the non -dimen=sional function of x,
From (8) we calculate

’

‘llﬁ' o =Uf' @06 (9)

Vo= il = mesmen | £ —um (UQ) +Ug ( == mem o+ Dmmen )

- L [ a 1 ®Ef £ ¥m "g

X _/Rel dx L > £2
, . % ' oo‘o(lo) -
u u ~ D E! '9 n.
”3__. == f ' E-u-‘ -+ U ( }- badedd g + f” ""'""- I) s o006 (ll)
D x D x B EES
S u LIV |
— ——— = - . s S s 2 s ) cew (12)
y L,g(x)
"%f'u U R_1
“ 5 . e -1 . o ¢
—u-—-li = —-‘-2-—-5 f ' o0 - (13 ) .
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"Substi tuting equations (9) to (13) in equation (2)% we get

. 2 )
U £! £
fB* + o ££Y + 8 (]_..f'z) = ...?... ( £! z_,_ - f" ;S__ )
U
= G %‘ (14)
g 4
where o = ==m= === (Ug )
U ax ' 3
2 ) eos (15)
g dau )4
T mmemm - )
P U ax

NM=0 £=0 £'=0 )

) ao @ (16)
n -3 ; £'=1 )
Since similar solutions exist if £ and f£' are independent of
g i.e, they are functions of 7 only, Therefore a, g are

independent of %, i.,e. a, g are constants, With this

arguments €14) and (16) are reduced to

f"' + o ffn +ﬁ (l - flz) ~ O' cue (17)

with the boundary conditions,

]

N =0 f 0, £f' =0

co. (18)

St el S

N —=3 £f' = 1

EqQuation (17) with (}8) is known as Falkner and skan (7)

equation and solutions have been studied in detail,
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Now we shall find out the forms of U(x) and g(x) for which

similar solution cxists. From (15) we £ind that

2 R O .. (19)
- = e U N s oo 19
o« - p el g

Case I 3 2 = B.# o]

Then from eguoation (19) we get

U
g% e = (2¢ - g) /L eeo (20)
Ueo - .
, U
whel x = 0, g —— = 0,
U

glves Blasisus and Hiemenz solutions,
Due to eQuation (15), equation (20) becomes

UgL dg
€= = mem e ees (21)

- oo ax

Simplifying equation (20) we get

L,""G"f,}' = cd oo (22)

where C is a‘constant of Integration, Eliminating g between

eduation (20) and (22) we get
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U(x) 2/(2a-g) -
——— = P [(205 - 5) aa/(za & eoe (23)

U o>

Due to edquation (20), equation (23) becomes

Ugp % 3
g(X) = (2“ - B) 5~~— i: doaoo (24)
Hence from equations (8) and (24) the similarity variable

will be given by

1 U .
n = Y ———— - eaoo (25)
(20 - p) ? X

Hence cJuation (23) gives the potential flow velocity

distribution for which the similar sol;ution eXists and the
function g(x), which ‘is proportional to the boundary layer
thickness by eJuations (24) and (25) respectively, The
equation (23) can be normélized by taxiélg the following

cons Iderationsg @
(1) If 0 # 0

let= g=»1 and m = —E--
-

Then the eduations (23) and (25) in the normalized fomrm

may be written as



U (x) 1+m 2 X
e = C_( (“‘""—"_ ¢ ™ )m eo0q (26)
U 5N 1l +m L
2 U
g(x’ = ( e e Fmammmes o }—c );i soco (27)
1 +m U L
1l +m U
Ny o o) e (28)

2 ¥ x

Thus from the above cJuation we can write 'the ootential flow

velocity varies as some power of x i.e.
U (x) ~r ) D '
and similar solution exists,

Examples of potential flow is given by equation

(26) include the following @

« =1, g=0; U(x) = constant
flow past Ia flat plate |
oc=l,gl‘=l, U(x) ~ x

flow near the forward stagnation point,

g{? =1,0pg2; Ulx)™ xB/(z-B)

flow past a wedge with wedge angle 77 Be
|

(2) If «

0
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Thenh from squation (23) we see that ‘U(x) is proportional
to 1/x %or all values of g7 the ejuation (23) may be
normalised by caking g = + 1. This is a case of a two-
dimensional source or sink as U(x) is positive or negative,
It may be intervoreted as flow in divergent or convergent
channel with flat walls

x =0, g=1; Ulx) = - 3 ( \XV7 0)

X

flow in a convergent chamel,

@ =0, ==l Ux) = =2 ( 7 o)

X
flow in a divergent channel,
Case IT @ If2(x-g=0.

From ejuation (19) we f£ind that

g2 U(x) = Constant eos (29)

from second eduation in (15) and form from eJuation (29)

we get
1 “udu
—— e = Cons tant
U dx

i,e. U(x) = epx

where p is positive constant when g s--) 2, then m -~=%°"
Then the solution is takern as the limiting form the

(3
Case (I).
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(I1) Boundary layer flow past a wedge @

A boundary layer flow of incompressible fluid past

2 wedge, with the wedge angle ’)“)’B where g = 2m/ (m+1)

8s shown in Fig,l,

Fig,l, Boundary layer fluid past a wedge for
incompressible flow,
Let origin be taken at the stagnation point, The
X=-axis along the wall and the y=axis perpendicular to

the wall, Thus we have the 'boundary layer equation

2
u j-t:'-)---l--l- + v E—L—I=UE-§3— + ?}—E-Z eos(l)
J x Dy I ax Y
D u ™V

il

o ay o + o e g O°

o0 6 (2)
o x 3y
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with the boundary conditions

y =0 u=0=v

y ==3; u = U(x) cos (3)

where ? is the kinematic viscosity, and U(x) is the
potential flow velocity, Now we introfuce the stream functidh-
\‘-«(x,y)} which satisfies the continuity eQuations (2)

Thus we take

N .
u = ’\aK v = .aj eceo (4)

by using equation (4), equation (1) takes the form as

2
AR
oY 32 ‘a‘{-b* =\J JU M?Bk*' i OB
*xof Exd qu d&l 'aj‘b
The corresponding boundsry conditions are
y = 0; \i_} }%.. = 0
%
Y-
O, mmmom = U(x) ces (6)
Yy-7 J 3

In the neighbourhood of the stagnation point the potential

flow velocity U may be written as
i
U(x) = u; ¥ my0, m= -—
2-p
Hence by the substituting this values of U(x) in (8) of the

previous articles, N takes the foOorm -
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{1 +m U(xf} <
M=y | mmm—m e
2 X

- 1 :
v 1 +m 7z {m-1)
n=y \'-—5--— -%‘-] x 2 ee (T)
. (m+1)
2Nk g 0 m—mm=
and \f- (X’Y) = ( -'"g‘:-""il );i X 2 f.(n). s 00 (8)
m ,

Using edquations (7) and (8) we get the following

= E-\-\"" = U(X) f'(n) = u-l )(-In fl (’n) oo (9)
oYy
a m-+ 1 S.;l\.?:.]:..)..
v= - :i..-: c (e Vuy) Tx 2 E(m+
ok . 2 g
L™ osey | veo (10)
m+l
Lo ma? £12 Llem=1)
Y
(5m=3) —
(m-1) e
+ ui _____ x 2 fnufu.y{i.l-irﬂ.).- ul‘\ ;i“. (11)
2 2
- m+1l
v __EEX_ - e (e )u?_ X(Zm—l) FEN -
"87 2
(m=1) (1+4m) | er.-3)
me-l) », 7 (l¥m) =< === 5= u
- o e oo u?- rul___‘____j\ y b4 ,2 ff ceo (12)
2 |- 2 4
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du

. 2 (2m~1)
U it dand = m u-l X ¢oo (13)
ax
s
1? S-S QN N < (2m=1) eas (14)
Y 2 .

Due to eQuations (9) and (14) the eduation (1) ctakes the

form

2m

EMY 4 EE" 4 —emem (L - £'2) = 0
1 +m
fees £"' + ££% +g (1 -£'2) =0 ees (15)
2m
where g =  ————-
+ 1+m

subjects to the boundary conditivrns

N =20 £=0=¢'!

1 voo (16)

Ik

Nyt ¢ £F

FEquation (15) with eduation (16) is known as the
dartrec’s [9] equation, It is & particular case of Falkner
and Skan .eguation, The numerical solucion of equation (15)
was first investigate§ by Hartree [9];and later by other

workers,

Hartree's Solution
Q2

fael ’\,n
Let £(1) = ﬂ_.: Z_ ees (17)
e 1N :
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which satisfies the first two boundary conditions of (16)
substitution (17) in equation (15) we find the coefficient

exXpressed in terms of ag = o,

ap = o

a3 = = R

a4 = o (l e ZB) CCZ
ag = 2 (1 - 3&) (IB

ay = =2 (2 - 3g) 52

ag = - (1~ 2p) (11 - 10g)a’
ag = -2 (45 - 1llp'+ 66 p2) po?
ajp = 16 (2-3p)(8 - 7g) «p?

and so on,
It may be noted that o = £"(0) is still unknown,

For f£inding value of «, Meksyn (17) adopted the

£ollowing proccdure, By substituting the values of £ and

' £1 from equation (17) in (15) we get a, linear differential
i
L -Fen)

s e . 0
equation in £ n('fl) Co S =By eee (18)
where £(n) = § £(n) ay | cee (19)
(o] i
n .
and ﬂ (ﬁ) = - B %(l - f'z) ef(n) dn. svo (20)

equation (18) satisfies the boundary condition at M = O,

Then unknown parameter o is found from the ejuation
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~F(n)
e

ﬂ(n) dn = l L (21’

Hartree (9) solved the eJuation (15) numerically on a
differential analyser for different values of gs From

the solution of (15) we obtained boundary layer parameters,

(a) Displacement thickness

[~ a3
a

5
2§| k= 3
i o). A

o

where A(B) = §> (1L - £') an

8y =

and A(B) = 1im (1 = £(0)
n ==y ;

(b) Momentum thicknesg @

g
= > 2 -2
8y = a)u (1 U)dy
-
= 2 £ )% 5
l+4m u
' . l
o0
WhereB(B)-‘-‘ Sf' (1 - £*) an
O

= £% (0) - g A(B) - pB(g).
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(c) shearing Strees :

O\
=p (2o )y=o0
Ta=w S
m + 1 .
= gy ( —memm w2 3 a0

(III) Boundary laver flow sloang the wall of a <.’ :

A enst wies Wt wow s cptysal W

convergent channel of ianmnr;gss':Lb%g_a_flow

Fig,2 ¢ Boundary layer flow along the wall of a

convergent chamnel of incompressible flow,

The potential flow velocity is given by
~ul N
U(x) = o—=- (U3 3 ©)
x »
where x is measured along the wall of the channel, and
up is the strength of the sink placed at 0, ¥ ~ axis is

verpendicular to the wall, This is an another exam»le in
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which a similar solution of the bourdary layer eguations
is possible, Pholhausen, X, (1921) wag the £first who
obtained the solutinn of this problem, For thig he

introduced the similarity variable,

g v %
Tl ;c' (""'- sse (1)
= - (? ul);‘f(m | eoo (2)

from equation (1) and (2) the eJuation ?f t he boundary
layer (1) in artical (é) takes the formé as

2

fll.'_'_ 1"'fl,=0 O] (3)

with the boundary conditionsg

n=0y £=0, £f'=20 ) ,
) veo (4)
Ny ; £! =1 )

For the solution of equation (3) wé multinlying it by

2f" and integrating we get

gn2 -?3; (£' - 1)%2 (£ +2) =c¢C eee (5)

vhere C 1ig consgtant 6f integration,

When 1 =0; f' =0, £ =0

n=70;f'=l, and £" = O,
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)

eduation (5) becomes

2

£92 _ 273 (£ - 1)2 (£' +2) =0

soe (6)

£ = [2/3 (' +2) 1 B (1 - ")

Let £! + 2 = 3 tan hZQ‘ and integrate it

we find that
G = oo 4K
CT G
where K is constant of integration, determined from the

boundary conditions,

n=0; £'=0

K = tan h™T (2/3)%

l.14¢

£'(M) = 3 tan hzg -2

]

Hence uw/U

n
——+ 1,14¢€ ) -~ 2
(2)

£' = 3 tan h? (

Boundary laver parameters

(1) Displacement thicknesgs :
o
5, = S (1-wu)ay
0

0.,778x ( }aul );ﬁ
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(2) Momentum thickness @
SR
8, = éu/d (1 - vw/U) dy

0,376 x ( S"/ul)%

(3) Shearing Stress @
L)
Tw = -p(&}.}..)y=0
u 1

. 1 NE
Tw = -~ 1,54 - (u,/ ) o
RIS

@ . w 7.) Basgic_ Concepts 3

(I) Newtonian Fluid

Newton observed that in a simple rectili

of fluid two neigh:bcuring fluid layer;s, one is m
=

the other with the same relative Veloicity, will

a tangential force proportional to the relative

1
between the two layers and inversely proportiona

near motion
oving over
eXber ience
velocity

1 to the

distance between the layers, If the t;wo' ne ighboufing £luid

I
layers are movihg with velocities u and u + fu a

distance 8y the shearing stress is gii\ren by

hd at a
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Su du
i RV
8y ay

This is called "the Newtonian hypothesis™ and a fluid

sautisfying this hypothesis ig called Newtonian Fluid,

The constant of proportionality ¢ is called as
coefficient of viscosity and du/dy is the strain-rate of

the £luid,

Newtonian fluids are also called as viscous fluids,

(II) Non-Newtonian Fluids @

e —

The £ luids which do not satisfy the Newtonian

hvoothesis that fluids are called as non-Newtonian fluids,

Fl

The nmn-Newtonian fluids are clasgified into

following three ways ¢

(i) Purely viscous fluids
(ii) Visto-plastic f£luids and perfectly plastic
ma terials,

(iii) Visco-elagtic fluids,

(i) DPurely Viscous Fluidg

A fluid in which the stress tensor pij is given

as the function of the strain rate is called purely
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viscous f£luid; provided in the absence of strain-rate the
stress tensor is zero, Mathematically, this can be given

as

Pij = f(eij) and £(0) =0

where the function .f cannot be completely arbitrary, The

dif ferent forms of the function f gives different types of

purely viscous f£luids,

Types of purely viscoug fluidsg :

H

(a) Reiner-Rivl in Fluids :

A fluids satisfying the following constitutive

euetion is called Reiner~Rivlin Fluids :

Tig = = Pbyy * 2peyy + my ey Sy T va0yy

where Tij = - Db

ij * Pij
Yo B’ 2 are constants,

613- - Kroneker delta tensors.,

(b) Power law of fluids s

If the function £ in the eduation

Py = f(eij) and £(0) = 0O

ij

is taken to be the analytic function of the arguments and
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we can expand it as oowet Heries in strain-rate tensor i.e,

plj = Zp.eij + p,l elk ekj + }Lzei; elk ekj + 6o

The relation between the stress tensor pij and
strain-rate tensor is in which stress tensor is proportional
to some power (may be fractional) of the strain-rate tensor
i,c.

n : = .

‘where (_ 1is the constant; since pij is second order tensor,
Wetice right hand side should also be a tensnioof seconC

order,

We can write the above eQuation as
n-1
Pijy = 2y (2 ©1m elm) 2
where p is called the coefficient of viscosity and n is

called the index of the power law of fluids,

Tf n=1 then Newtonian fluids
If n)> 1l then pseudo~plagic f£luids

Ifn £ 1 dilatant fluids,
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(ii) Visco plast.c and perfectly dslastic materizls

If we apply a certain shaaring stress on viscous
£luidsg, Tt may cause a continuous deformation in the fluids,
But in the case of matcrials like paints, vastes etc, we
find that if we apply a shearing stress less than a certain
quantity the material does not move at all, But when this
shearing stress exceeds the material starts moving and
strain-rate of material devends uvon the applied stress,

Such a materials are called plastics,

The constitutive eduation for viscoplastic is given

by

o, = e (2u + WV c )

~1j ij ‘P 2
vhere Tz%) T. where Ty & To + 21,&2;5 and €4 j =0
when T2V2$ T where 1 is the coefficient of viscosity,

To is the yield stress gives the solid charactcer,

If y -—3 0 then the material is called as perfectly

olastic matarial,

(iii) Visco-elastic fluids :

The fluids in which the stregs depcends upon the

rate of deformation and when sgtress is removed the strain-
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rate becomes zZero, But thc deformation has accumulated

ocrgists, that is it forgets its original position, But
there are some fluids like soao solution, pdlymers have
some elastic properties, Thigs fluids is called as visco-

glastic f£luids,

Now with thig backward we study the boundary Layer
of a power law ligquid past a flat plate and ‘along the wall

of a convergent channel,

43, Boundary layer flow of a onwer law liguid past a

flat plate 3

(a) Intirsduction

The boundary layer flow of power-law liquid past
a flat »late is studied in the neighbourho:;d of the
stagnation soint. The potential flow velocity in this
rogion is constant every where, The similai.:ity transformation
is successfully applied and Wwe get the generalized form of

the Blasius equation for a boundary layer flow of a power-

law liquid past a flat plates
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(p) Basic equations ¢
\/ ‘/i\‘ ‘
}

—~3p ‘.'u)t—“

’(' iy })2-“ .

L L2 AL
PO T T

Fig,3 ¢ Boundary layer on a flat plate

A bourdary iayer £low of a pdwer law liguid past a
flat plate is shown as in the Fig.l., is the generalization
of the problem for ordinary Viscoug liguid, Let origin ke
taken at theistagnat;ion ooint, Let X =~ éxis be along the
flat plate and y - axis perpendicular to the flat plate and

the potential flow velocity U be constant every where in

the direction of the x-axis,

Then we have the boundary layer equation in the

form asg

-l:—\:u }u ~ b 3 F p
| & QTR + V b v com v = K -.:?-— E-—% )n - -1-'- ot cacn wadd o .,.(1)
DX Dy Y D . %Ex
TP
:—a-r -~ o csog (2)
QY
\:‘ﬁ‘;‘r\
f"-;'b ~- 3¢
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*s e (3)

with the boundary conditionsg @

u= v =07 = 0

Y )
) ® 90 (4)
u = U(x); y =30 )

where, K is kinematic viscosity for the power-law liguid,

n is the power law index and U(x) is the'flocal potential

£low velocity,

We can assume that

Udy = . 2r
dx % dx

with this cquation (1) becomes

u ' .—?}u (J U Y —.a u n
U S 4V mamm = U e+ K =T (=mem ) ., (5)
I x Dy 2 X oy 2y
But for a flat plate we have
au
———e 22 )
ax

Hence cquation (5) becomes

-~ u -~ u u
a2l v 2l 2 (2l e (8)

D x oy Y Dy

with the boundary conditions,
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d
u=VvV = 0; y =0

) oos (7)
)

il

U = U(x); y = <K
for the solution of ejguation (6) with the boundary
condition ¢7) we take the stream function “ which

satisfies thHe continuity equation, that is we take

oY e

Due to eduation (8), egdation (6) bedomes

. -~
- = ..?.-a n Sy
\{;:y \PYX—- \t—x "er"y“- K".SY (\X’YY) 6o0c¢ (9)

with the boundary conditiors

. = , = 0; y =
‘Jr y \}; x. 'Y ) (10 ).

L R .

L

8

4 Y.‘—" Ux)s y

In the neighbourhood of the stagnation point the potential

flow velocity U may be written as

U=C

For the gimilar solution, we use the following

transformation with the non-dimensional variables

> 00
. '.X,'?:,._I\.. -\pé\:

l‘;}.(t I~ g
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l(xl )
£ = i~ st = eee(1D)
(n + l)'ZE:‘iT c (I‘H‘i) K Ta¥Id % ?Fx;i-).

L 2=n 1
vo (pabpg VEHY (BT ey (12)
and 1 = — -
K TR¥I)

FProm equations (11) ard (12) we obtained

ru= Ny =Cf' coe (13)
o u
R
n+4) (n~2)

-1 ¢ n+ L Ve F1EM X- (n+1")

e cae (14)

{n+l) (n+1) (n+l), K @+)

V= - “rx

L (20=1_y i =B
2 emm—— - -+
(n+ 1)

+ wmZww o CYE! 1
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Du
V Sorsmams

5% 07T % x My

7

(0+4) -(n-2)
2 w o1 Tat1) (n+1)
- C% ff ¢ (n+l) 1gu
= -——_—..--—f—-u L P — Yf f x e O (15)
(n+1) Ao L

s o

(n+1) (n+l) (p41), K (n+1)

nc? xl gnr (guy-l

eoe (16)
(n+l)

By using eduations (14), (15) and (16) ejuations (9) and (10)
take the form

e nE" ! (fﬂ)n"‘l

+ ££" = O ees (17)
with the boundary conditions,
£E' = f=0; 1 =0 )]
) * 80 (18)
1 - -
f —“? ll n - ?’ 'F: )

For n=1 equation (17) becomes the Blasius equation for a
flat plate,

For the solution of equation €17) we can use the

Nachtsheim-Swigert iterative schene €'1965) and fourth-

order Range-Kutta method, Also we can use the FURTRAN
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programn@ for this problem which can be run over Burrbughs

6700 computer for different

values of the power law index n,

Thus we can detemine the iocal non-dimensional skin frictien

coefficient, disoslacement thickness, momentum thickness anad

\

kKineti¢ energy thickness, This is under our investigation,

e,

*e

The boundary layer flow

the wall of a convergenkt cha

of a_power law ligquid along

nnel,

(a) ZIntroduction A bound

1iquid along the wall of a ¢
in the neighbourhood of a si
ih this region is inversely

By using the similarity tran

wod and u-

ary layer flowl of oower law liqud
onVerdent chamgl ig studied

nk, The potential flow velocity
proportional to the arc length,

sforma tion we .can £ingd the

generalized ejuation for the ¢onvergent channel,

.
,, >

(b) Basic ejuations

/
e

-

T s e

Smk n

Fig.,4 = A ourdary layer fl

along the wall of t

4
F

.
47’?*\-
A e

/
T
g/*

v,

/ x&‘—p

¢

~

T

. s
m-’mrm—mrrg' 7 rrrrr X

ow of a power law ligqu id oast

he convergent channel,
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A boundary layer flow of a power law liquid past
along the wall of the convergent chamnel is a generalization
of similar oroblem for ordinary viscous liduid. Let the
crigin be taken at the sink point, Let the X-axis be along
the wall of the convergent channel and let y-axis be
perpendicular to the wall, Then we have the boundary layer

equation in the form

:‘\' — é ‘\
u —-;_E + vV _9—2 = —i 9—.'9-- + |K oy ;ji}& )n.-o(l)
T X =y ] ax SY By
D P
e smue 22 () cee (2)
3
S D
........9'. -+ ...3...‘!. = 0 , PP (3)
Tx O3y '

With the bourdary conditions
u=sv=0, y=0

)
)’ ! o008 (4)
u:U(x); y = ol ’

where K ig the kKinematic viscogity for the »oWer law liquid,
n is the power law index, U(x) 1s the potentidl flow velocity

Velocity along the wall of a convergent c'hanneil.

fae assume that

-l niop L e el L]

ax S »x
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By usinc this equation (1) becomes

R du . 4.9 D (E_E yn (5)

S ——— 23 ol e ke K e e PP

X DY dx DY oy

with boundary conditions

u=V=0 y=0

u

)
) oo £6)
U(x); y_50 )

We introduce the stream function - as follows which

satisfies the tontinuity ejuation

e Y-
e com ca 3 ’ M2 e meeampn S e 00 o 7
ey he vEosr T b “

from eduation (7), eduatiosi (5) becomes

R \- JU
T Ty T Ry = LS kD n
b KTy Jx Tk 5‘5@35.’ = A8

with the boundary conditinmns

\%'Y=\*‘x=o’ y=290

)
) {9)
\k“y= U{x)s yo= ) )

The potential flow velocity aslong the wall of convergent
channel is given by
c
U(X)‘-—“--}-{-— (c 5 o)

where X is measurcd along the wall of the channel and C

ig the strength of the sink at origin,
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) Hence for the application of similarity transforma tion

We use the following dimensionless variables.

N, y) |

EAN) = e e e
: o1 '+ {2n-1) 1 (-2n+2)
¢ e amen ot o v o ?""i-l-; e el T
¢ 21 yim+l ¢ (n+l) kA x (n+1)
2n ] Coy
* K] (10 )
2n -_iﬂ- ' ga:—g) ié:;l
Vo ( wmm=w) (OF1D) o x (n+l)
‘n‘ = S e S 0o n-}:l""”"‘ el ""‘-"'-'—G-"--'—‘—'-‘-—---l-n-:-——‘-—h— sdoo (u )

X 1/n+l

from (10) and (ll) we obtained ' S

4= .CEt x T '
S u |
u P 2 T——
%" Ty Y |
= - v2 =3 _ ( LéDly n+lr (2o n+l
c4 £14 ¥ n+ii)‘ Li (n+1 )y C ]
I ol
Y' f’f” W
- -M-“d‘-.‘-—.-" e o0 ‘12
G (atl) “2)
By Coy
V B = e = - ' oo
X et
) (=3n+l) . (2n-1)
- (o, Vet /4 2-2n) i ¢ e

[
£ ( ==—==% , k
2n n+l’ !

|

|

.



{2n-2)
+ c n -3 y y £ x (n+l)
n+l
S\
55 77 vy
= 2_-_-.__2_n~ 2 o3
ey ) C% £ £V x
1/ (n+1) (n+4) (-2n-6)
n-3 2n n -+3. ten o (ndl)
L lE G e e (D)
1/(n+1)
0o (13)
v 29 = g2 i3 ves(14)
dx ;
SO b
Y -:5';1') :g;\\*‘yy)
n. ( --3-_?—- ) .2, x73 g (gm)nl
O S ... (15)

K
Due to the edustions (12), (13), (14) and (15), edquation

(8) takes the form

ne (=23 gm (@)™t o 228 g v 1 - 22 =0 .06
n+l n+1

I
gsubject to the boundary conditions,
£' = £ =0; n=0

)
) 0o (17)
£' =% 1; 0 -=>» 0% )
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aquation (16) is the geheralized eduation for the
bound ary layer f£low of a power law liguid past along the
wall of the convergent ¢hannel, In particular if n = 1,
then equation (16) will be reduced to the Falkn:r-Skan

eJuation for convergent channel,

"o
For the solution of edquation (16)' wWe can use
Nachtsheim-Swigert iterative scheme and fpﬁr,th order Rangg
Rutta method, We can also use the FORTRAN programme for
thig problem which can ke run over Burroughs G‘ZH‘OQR,(computer
' ! v
for diffurent values of the power law index n, Thus we cai
determine the local non-dimznsional skin'fricdtion
coefficiant, dis:‘:iaéement thickness, momentum thickness
and kinetic energy thidkness, Wwe would like to irvegtigate

these in our further research work,

olo
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