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Brief Survey of the developments

in the solution of 
Navier-Stokes Equations



I introduction

In this Chapter in Section 1 we gave the brief 
survey of the viscous flow theory. In Section 2 we gave some 
exact solution and Major developments in exact solutions of 
Uavier-Stokes equations. Section 3 consists of some 
approximate solutions and Major developments in approximate 
solutions of the Navier-Stokes Equations.

1. Fundamental Equations of the flow of viscous fluids

(a) Equation of state s

F(P,^> , T ) = 0 ... (1.1)

where P : Pressure, 

s density,
T s Temperature.

For perfect gas the equation of state is given by

P =* R T ... (1.2)

where R is the gas constant.

(b) Equation of Continuity (Conservation of Mass)

The equation of continuity for compressible viscous 
fluid in cartesion tensor form is given by

^ o
+ ---  ( o V± ) = O

O t ^ Xj j
(1.3)
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where j> : the density of the fluid.
% The components of fluid velocity.

In vector form the equation of continuity can be written as

—'L- + div ( £> V ) * 0 ...(1.4)
'b t 3

for incompressible fluid it is reduced to the form

div V ... (1.5)

(c) Equations of Motion (Navier-Etokes* Equations)

The equations of linear momentum for a viscous 
compressible fluid can be written in tensor form.

) iTt' (1.6)

( i ** 1 to 3, j = 1 to 3)
where
v^ : represent the velocity of the fluid element.
f^ : the body force per unit mass.
y : the density of the fluid.
Tjj : The stress per unit area in the x^ direction, on an

element of the surface where outward normal is in the 
Xj direction. Thus T^* T22 and T^ represent tensions* 
while the remaining six stresses T^2* T13* T21' T23# T31 
and T32 are shear stresses acting through the agency 
of viscosity or internal friction in the fluid. It
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0 -- = o f - v ? + \L V V ... (1.10)
1 Dt J

where D/Dt = t ( ?-V ).

is known as material derivative.

(d) The Navier-Stokes equations of Motion for gases;

The viscous stress component must be linear function,
of the rate of strain component, if a = is the dilation

1 
3

of the rate of strain of pure shearing motions which must be
rate, it can be shown that the non-dilational part, e^j -

resisted by viscous shear stress making a contribution 
2]a ( e^j - | a 6jj) to the stress tensor. Also the isotropic 
part of the stress tensor, ( ^ P^) ^ij * maY ke a functi°n 

of the dilation rate, however, for a monatonic gas, in which 
the internal energy is purely translational ( - - P^k) is the

mm

energy per unit volume and so ( - | P^) is the thermodynamics 

pressure P = 2/3 ^ E. where E is the internal energy per 
unit mass. Although the thermodynamical identity

p » ( y - l) j e
(y * 5/3 for a monatomic gas) 

is not expected to hold except in equilibrium conditions, 
it is convenient in fluid dynamics to Re-define pressure 
so that it does; it is only in work on relaxation phenomena 
that the thermodynamic definition of pressure becomes 
unsuitable so for monatomic gases the stress-rate of strain 
relationship is
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P±j * - P6jj + 2)i (e-jj - 1/3 A§ij )

for a gas with diatomic molecules possessing rotational energy 
as well as translational energy this relationship has to be 
modified since for rotational energy lags behind the transla­
tional energy, i.e. the adjustment to a new state of the 
rotational energy takes a few more molecular collisions than 
for the translational energy, for such a gas under a positive 
dilation rate a# the temperature is falling and since the 
rotational energy is lagging slightly behind the falling 
translational energy, the thermodynamics pressure P = (y-1) £> E. 
remains slightly greater than (-1/3 P^) by an amount f)A, say# 
where p is known as bulk viscosity and so the stress-rate of 
strain relationship becomes

Pij = “ P) §ij + 2ji (e^j - 1/3 A5jj) ... (1.11)

When the presence of energy in other forms is important, the 
time lag is reaching equilibrium is too great for a simple 
linear dependence of the stresses on the first derivative of 
the velocity to be generally valid, and the Relaxation process 
then have to be considered explicitly, the importance of the 
bulk viscosity concept is that when available, it enables 
equilibrium thermodynamics to be used; like the viscosity, the 
bulk viscosity varies with temperature, it may be noted that 
since the bulk viscosity is only important when a is sufficiently 
large its importance in practice has been restricted to such 
a matters as sound absorption and acoustic streaming and shock
waves
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An alternative approach to the stress-rate of 
strain relation may be made through the kinetic theory of 
gases# the kinetic theory gives more than indicated above 
as it also determines the viscosity coefficient in terms 
in molecular properties.

Substituting then for the stress tensor Pjj in the 
equation of motion ( - ) and simplifying we have

v i 2p --- + V ( - V ) + WV
) 2

= ^ E - VP - V /A V A (jjlV) - V V2 ji 

+ V ji /\ w + V (£a ) + 4/3 V (p a)

+ V ( V 7 |i) - A V ji . ... (1.12)

where w * VAV
the three scaler equations embodied in this vector 

equation are usually referred to as Navier-Stokes* equations.

The original derivative by Navier applied only to 
incompressible flow# stokes considered compressible flow 
in its compressible form with o and ji constant and a = 0# 
the above equation reduces to

'b v p i ,
---  + WAV ■ f - V ( — + - V ) - VAW ... (1.13)t |p 2

It should be noted that in the incompressible case 
the pressure is not a thermodynamics veriable and is defined
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as (mean of normal stresses) being equal to the hydrostatic 
pressure, when there is no motion*

The form of the stress-rate of strain law, based 
on it, is on a linear relationship might be expected to be 
of limited applicability; however, Judged indirectly by 
comparison of its consequence with experiment the range 
of validity is very wide and it is only with fluids of 
complex molecular structure at high rates of strain that 
the linear relationship has been found inadequate.

e) Equation of Energy :

The equation of energy for viscous incompressible 
fluid in cartesion coordinates.

where

DT
---- + K 7^ T + 0

Dt B t
V2 =

B2 "B2 ~o2
"B x2 By2 B z

(1.4)

jef = 2}a

+ }X

"B u 0 —)2 + ( 
"B *

B v
---- )
■a y

B v B u B w(--+----)2
B x By By

B w _+ (--- )2
~b z2

B v + —— ) B z
B u B w 0(--+--- )2
B z B x

D/Dt =
B B B B
---  + u---  + V---  + w --Bt Bx By Bz

p : density 
T s Tenperature



3

Cv s specific heat 
K : Thermal conductivity 
ff s dissipation function 
Q : External heat.

2. Some exact solutions of the Navier stokes equation
and major developments.

(a) Some Exact Solution of Navier-Stokes Equation

There is no general method for the solution of 
Navier-Stokes Equation of motion. The main reason is that 
these equations are nonlinear therefore, at the present 
time, there is no known general method for solving these 
nonlinear differential equations. Only for a small number 
of special cases we can find the exact solution of these 
equations.

In obtaining these exact solutions of the Navier- 
Stokes Equations the following assumption have been made:

i) Simple configuration for the flow pattern is 
considered.

ii) the fluid is incompressible i.e. the density of 
the fluid is assumed to be contant.

lii) the coefficient of viscosity, and that of heat 
conduction are constant. Under these assumption 
we can solve for the three components of velocity 
in space and the pressure of the fluid from the
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equation of motion and the equation of continuity 
(Navier-Stokes equations of a viscous fluid in the 
ordinary sense). After the velocity and pressure 
distributions in the flow field are known, the 
temperature distribution will be determined by 
energy equation.

Although the Navier-Stokes equations of a viscous 
incompressible fluid are much simpler than those equations 
for a viscous compressible fluid, and hence not solvable in 
general. Only in some simple configurations the nonlinear 
terms of the Navier-Stokes equations drop out or become 
simple enough,then the equation are solvable. In most of 
these cases only one component of the velocity is different 
from zero and the independent variables are limited to two 
namely, either two spatial coordinates or one spatial 
coordinate and the time, we are going to discuss some of 
these cases.

The known exact solutions for the temperature 
distribution in the incompressible fluid cases are fewer 
than those for the velocity distribution. Whenever the 
expression for the velocity distributions become too compli­
cated, the exact solution of the energy equation is difficult 
to solve. Another current practice in finding the temperature 
distribution approximately is to drop the viscous dissipation 
terms in the energy equations and then to solve for the 
temperature distribution.
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For a viscous compressible fluid# the only possible 
exact solution seems to be that with one spatial coordinates 
one dimensional steady flow# which is the problem describing 
the shock wave thickness.

For the calculation of practical importance# the 
fundamental equation of a viscous compressible fluid have 
to be further simplified by other assumption so that more 
complicated configuration may be treated approximately.

(b) Major Developments in the exact solutions of Navier-
Stokes equation :

Poiseulle, J £l83 studied flow in a circular pipe and 
obtained velocity distribution and temperature 
distribution and calculated volume rate of flow 
and coefficient of skin friction.

Stokes# G.G. [20^) studied unsteady incompressible flow 
with constant fluid properties.

Couette# ^4J studied parallel flow between two parallel
plates and obtained the velocity distribution and 
temperature distribution and calculated volume rate 
of flow and coefficient of skin friction.

Poiseulle, J [18] studied the incompressible flow in tubes 
of uniform cross section and obtained volume rate 
of flow in annular# Elliptic# Equilateral# triangular 
and Rectangular cross section.

Jeffery and Hamel# G. jj8 & 14J studied the flow in a
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convergent and divergent channel. Thus the solution 
of this problem may be expressed in terms of 
elliptical integrals, the different possible cases 
of this type have been discussed by Hamel.

Couette ^4 Investigated flow between two concentric
rotating cylinders and obtained velocity distribu­
tion and temperature distribution.

Prandtl, L. fl9~l studied the Relation between viscosity and 
temperature, this result had been vgryfled by 
experiment.

Syzmanski, F. [21^ studied the starting flow in a pipe with 
constant pressure gradient and obtained velocity 
distribution for uhsteady flow in a circular pipe.

Illingworth, C.R. jjLl
of the Navier-Stokes equations of a viscous compre­
ssible fluid and found that only solutionssimilar 
to coutie flow of an incompressible fluid could be 
obtained in simple closed form and that no simple 
solution corresponding to poiseuilla flow or other 
exact solutions of an incompressible fluid be found. 
He obtained exact solutions for
i) plane couetle flow past a porous flat plate,

ii) simple shearing motion between rotating 
cylinders and

iii) circulating flow round a circular cylinder with 
suction at the surface.

] tried to find some exact solution
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Nanda, R.S. ^J.7"3 studied two dimensional steady laminar 

flow of viscous incompressible fluid between two 

parallel plates and obtained velocity distribution 

and temperature distribution for plane couetle 

flow with transpiration cooling.

Bansal, J. j^2j studied Generalised plane couetle flow with 

uniform suction and injection at the stationary 

plate and plane couetle flow with transpiration 

cooling.

Jain, N.C. jj.3^] studied couetle flow with transpiration 

cooling when the viscosity of the fluid depends 

on temperature and studied with variable viscosity 

plane couetle flow and obtained the exact solution.

Heusenblas, H. studied variable viscosity plane poiseulla 

flow and obtained velocity distribution and tempera­

ture distribution.

Sudhanshu Kumar Ghoshal 2 ~J obtained non-regular solution

of the Navier-Stokes equations for an incompressible 

three dimensional flow.

Alan, R. Elcrat £lj studied a boundary value problem which

hielded exact solution of the Navier-Stokes Equations, 

for the flow between two infinite co-axial and 

permeable discs, and desired some conclusions.

Dorrepaal, J.M. j^6^j obtained similarity solution for the 

flow impinging on a flat wall of arbitrary
. t \

v /" \ 'o' \incidance the technique which he has adopted:'is \Py,\ 

similar to a method used by Jeffery and Pezegrine 1 k,J
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3* Approximate Solutions and Major development in 
Approximate Solutions of Navier-Stokes Equations*

(a) Approximate solutions of Navier-Stokes Equations :

In this section we shall discuss the approximate 
solutions of the Navier-Stokes equations for problems of 
the very small Reynolds number.

Very few exact solution of the Navier-Stokes 
equations are available and none of these deal with flow 
past a finite body, because of these limitation approximate 
equation have been derived from the Navier-Stokes equations, 
these approximate solution fall into two categories s

i) The equations of stokes and oseen for flows at low 
Reynolds number and

ii) Prandtl boundary layer equations for flow at high 
Reynolds number.

In these problems the frictional forces are much 
larger than the inertial forces the approximate solution 
are supposed to hold true for systems with Reynolds number 
below 1, these problem may be divided into two groups? one 
group deals with the motion of very small bodies with very 
small speeds such as the falling of sand segments in water 
or the falling of just in air. Let us consider the case 
of a small sphere falling in air. If the Reynolds number 
Re = |Vd /-^ is equal to 1, the diameter 'd' of the
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sphere will be only 1 mm and its velocity 'V1 1.4 cn\/sec 
for an average value ^ for air which is approximately
^ =0.14 cm2/sec it is indeed a very small body with

small velocity. The other group deals with the flow of 
liquids of large viscosity such as the motion of oil in the 
theory of lubrication. In both groups the veldcity of fluid 
is always small.

One of the simplest cases of a tiny body moving
slowly in the viscous fluid is the passage of a sphere in a 
viscous fluid. The solution of this problem was given by

the solutions for other simple cases such asStokes
a circular cylinder, ellipsoids, and the like, have also been 
worked out. They are given in lamb's classical book of hydro­
dynamics.

Eventhough the stokes solution gives good results 
for the drag of sphere of Re C 1, the flow pattern at large 
distances from the sphere given by stokes solution is not 
correct, oseen improved stokes solution so that a correct 
overall picture of the flow field is obtained.

(b) Major Development in Approximate solution of Navier- 
Stokes* Equations.

investigated a new coordinate
system in the galerkin method for the solving the
Navier-Stokes equations. This system is complete in 
L 2 ( ) metric in the space of solenoid vectors
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Some numerical results were obtained by using 
computer for turbulent flow.

Ivonov, K.P. and Kapiska, A. £12"] studied an approximate 

solution of the Navier-Stokes equation for an 
arbitrary domain with a smooth boundary, using the 
variational difference scheme technique.

Dey, S.K. [S'] studied most numerical solutions of the

Navier-Stokes equation have been obtained by explit 
finite difference method.

Ma, Yan Wen studied two difference schemes are
proposed for reducing the oscillations near a shock 
in solving the Navier-Stokes equations one is a 
scheme obtained by using a fine increment parameter, 
the other is a one step difference scheme with an 
adjustable parameter.

Belov, Yu. Ya. J^3 studied approximations of the Navier- 

Stokes equations in which the equation of notion 
are third order equations nonlocal with respect to 
time, and containing a parameter £ > 0, for the 
case of first boundary value problem. They proved 
the corresponding problem for the Navier-Stokes 
equations.

Foias, C., Manley, O.P., Temam, R., Treve, Y.M. [_ 7 "J studied 

recent efforts to estimate the number of modes 
sufficient for the approximate solution of Navier- 
Stokes Equation in two dimensional and three 
dimensional motions.
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Kheshgi, Haroon, Luskin and Mitchell jjL5"] studied a numerical 

analysis of incompressible viscous fluid using the 
variable sign penalty method.

Hamza, E.A.; MacDonald, D.A. [lo] studied viscous incompre-
ssible fluid is contained between two parallel disks,
at time *t* are spaced a distance H /sj~l -.at apart

and are rotating with angular velocities proportional 
to -A- (1 - at)~* the governing Navier-Stokes
equation was reduced to a set of ordinary differential 
equation they obtained the approximate solution to 
these equations.

Von Kerman*s Q24J studied flow due to rotating disc and 
obtained approximate solution of Navier-Stokes 
equation in cylindrical polar coordinate in absence 
of body force by an approximate method which was 
later improved by Cochran, W.G. and other workers.

0O0
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